SiC基石墨烯材料制备及表征技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为可以在室温下稳定独立存在的平面材料,石墨烯是碳原子以sp2杂化形成的六角蜂窝状晶格结构的二维材料,也是构成石墨、碳纳米管和富勒烯等碳基材料的母体和基本单元。石墨烯独特的晶格结构赋予它丰富而新颖的物理、化学、机械、电学、热学和光学性质,被认为是在post-CMOS时代,突破Si技术所遇到的尺寸极限效应,延续Moore定律的候选材料之一。因此,制备高质量大面积低缺陷的石墨烯材料是一个亟待解决的问题。在众多石墨烯的制备方法中,由于易于与现有的半导体工艺技术相兼容,导致在SiC衬底上外延生长石墨烯的方法被认为是最有潜力制备石墨烯基电学器件而被寄予厚望。但是在该方法中,存在诸多影响石墨烯形成的因素,譬如,衬底类型(硅面和碳面)、生长环境(UHV和氩气压力)、温度和生长时间等。目前,学术界还没有完全理解外延石墨烯的形成机理。
     本研究在理论上探索了SiC基石墨烯材料的生长机理,并通过工艺实验,最终获得了大面积外延石墨烯样品。重点研究了该方法制备石墨烯的工艺路线和表征技术,所涉及的研究内容和创新性成果如下:
     (1)研究了用于生长石墨烯的SiC衬底的氢刻蚀工艺。在对衬底进行清洗的基础上,首先探索了硅面和碳面氢刻蚀的工艺方法,以去除SiC衬底表面的化学机械划痕,形成规则的台阶状条纹,其形貌特征表现为,台阶宽度约微米量级,高度约纳米量级,这样的结构有利于石墨烯在衬底的成核和生长。
     (2)研究了不同的生长温度对形成石墨烯质量的影响。借助生长动力学和成核理论,结合Raman光谱,分析了在适宜的生长压力下,温度变化对于Si面和C面外延石墨烯的影响。结果表明,生长温度越高,石墨烯的晶格质量就越高,受衬底和杂质的影响也越小。进一步地,比较了Si面和C面外延石墨烯的填充结构,层厚等差异。
     (3)外延大面积石墨烯的研究。针对目前在超高真空和大气压力氩气环境下制备石墨烯的优缺点,独辟蹊径的提出在较低的氩气压力环境下生长外延石墨烯的构想,探索出一整套工艺路径,最终制备出了大面积(厘米量级)高质量石墨烯样品,并且石墨烯的形貌结构和质量接近于现有的已经报道的研究成果。
     全文共分为六章,阐述如下:
     第一章为绪论部分,简要介绍石墨烯的晶格结构、基本性质、研究进展和四种主要制备方法(微机械剥离法、金属衬底的化学气相沉积法、氧化石墨还原法和在碳化硅衬底上外延生长石墨烯)的实验机理,工艺方法以及各自的优缺点。
     第二章阐述了外延石墨烯生长机理和表征方法。阐述SiC单晶的物理性质,外延石墨烯形成的主要工艺流程(氢刻蚀、去除化合物和外延生长过程),以及外延石墨烯确认、形貌、尺寸和层厚等表征技术。
     第三章包括氢刻蚀工艺探索。在对SiC衬底进行清洗的基础上,探索硅面和碳面氢刻蚀的工艺方法,即对4H/6H-SiC衬底的硅面(0001)和碳面(0001)分别使用不同的氢刻蚀工艺,使用AFM予以表征,得到硅面和碳面各自适宜的氢刻蚀工艺方法。
     第四章从理论上分析了温度对外延石墨烯形成的影响。在适宜的生长压力不变的条件下,分别在4H-SiC衬底硅面(0001)改变生长温度(1200℃~1500℃),在6H-SiC碳面(000T)改变生长温度(1400℃~1600℃),查看石墨烯的生成尺寸和质量的变化并予以理论分析,尤其研究了在碳面形成的非AB填充型外延石墨烯的形成原因和Raman特征。
     第五章大面积外延石墨烯的制备。确定了在较低的生长压力(4mbar)下,以4H-SiC衬底硅面(0001)制备厘米量级的外延石墨烯的适宜的工艺流程和SEM,AFM,Raman光谱和XPS对石墨烯的尺寸、表面形貌、层厚和衬底与石墨烯界面处碳原子的化学成分进行表征。
     第六章结束语。总结全文并对后续研究予以展望。
As a flat planar material existed stably and independently at room temperature, graphene is a two-dimensional (2D) honeycomb lattice of sp2-hybridization carbon atoms, also a basic block and mother material of other carbon-based materials such as graphite, carbon nanotubes and Fullerenes and so on. The special lattice structure gives graphene the extraordinary physical, chemical, mechanical, electrical, thermal and optical properties, so graphene may be regarded as one of the promising candidates, aiming at breaking the physical limit effect in Si technology, extending Moore's law in the post-CMOS era. Therefore, how to prepare high-quality, large-area and low defect graphene is an urgent issue. Among the preparation methods, epitaxial graphene grown on single-crystalline silicon carbide (SiC) has been paid a high expectation in graphene-based electrical devices due to its compatibility with the current semiconductor technology. However, there still exist many factors to effect the formation of graphene, such as the type of substrate, Si-face or C-face, the conditions (UHV and argon pressure), growing temperature and time. At present, the formation mechanism of epitaxial graphene has not yet fully understood.
     In this dissertation the formation mechanism of epitaxial graphene grown on SiC substrates is studied in theory and experiment. Especially the process method and characterization technology of epitaxial graphene are investigated, and the main contributions are as follows:
     (1) The preparation of SiC subatrates used to grow high quality epitaxial graphene with hydrogen-etching process has been studied. Based on the pre-cleaning substrate, the hydrogen-etching process has been used to deal with the Si-face (0001) and C-face (0001)4H/6H-SiC substrates in order to remove the chemical mechanical scratches on as-received substrates and form a regular atomic stepped surface with the steps high several nanometers and terraces width microns. This morphography helps epitaxial graphene nuclearation and grow larger on the SiC subatrates.
     (2) The effects of different growth temperature on the formation of epitaxial graphene have been studied. Using the growth kinetics, nuclearation theory and Raman spectroscopy, we have analyzed how the growth temperature affecting on the formation of epitaxial graphene grown on Si-or C-face SiC substrates under an appropriate pressure conditions. It shows that a higher growth temperature can help the formation of better quality epitaxial graphene samples and also can decrease the influence of the substrates and impurities. Moreover, the stacking types and the thickness of epitaxial graphene grown on Si-or C-face SiC substrates are compared.
     (3) By analyzing the advantage and disadvantage of epitaxial graphene grown under ultra-high vacuum and atmospheric argon pressure conditions, a new approach has been proposed, which grows epitaxial graphene under lower-pressure argon condition and explores a full process routes to achieve centimeters order of magnitude of epitaxial graphene on Si-face of4H-SiC (0001) substrates at a pressure of4mbar. The measurement results demonstrate that the quality of epitaxial graphene is very similar to the current reported results in this field.
     This dissertation is composed of six chapters as follows:
     Chapter Ⅰ is Introduction to make a brief introduction of lattice structure, the basic properties, the current research progress of graphene, and the formation mechanism of four main preparation methods (Micro-mechanical exfoliation of graphite, Chemical Vapor Deposition on metal substrate, the reduction of graphite oxide and epitaxial graphene grown on SiC substrates) and their advantages and disadvantages.
     In Chapter Ⅱ, the growth mechanism and characterization methods of epitaxial graphene are presented. It describes the physical nature of SiC single crystallines, the main growth process of epitaxial graphene (hydrogen-etching, removing oxides and epitaxial growth process), and the characterization techniques such as the confirmation, size, morphology and the thickness of epitaxial graphene.
     In Chapter Ⅲ, the investigation of the hydrogen-etching process is presented. Based on pre-cleaning SiC substrates, different hydrogen-etching routes have been implemented on Si-and C-face4H/6H-SiC substrates. Using atomic force microscope, it is confirmed that Si-and C-face of SiC substrates have different hydrogen etching process.
     In Chapter Ⅳ, the influence of growth temperatures on the formation of epitaxial graphene is analyzed. Under an appropriate pressure, by changing the growth temperatures (from1200to1500℃) for4H-SiC (0001) Si-face substrates, and by changing the growth temperatures (from1400to1600℃) for6H-SiC(0001) C-face substrates, the size and the quality of epitaxial graphene have been studied. Especially, the non-AB stacking type epitaxial graphene grown on the C-face substrates has been characterized using Raman spectroscopy in order to investigate its formation mechanism.
     In Chapter Ⅴ, the growth of large-area epitaxial graphene is studied. At a lower pressure (4mbar), on the Si-face4H-SiC substrate, epitaxial graphene with size of centimeters order of magnitude has been successfully grown and then the characterizations, such as its size, thickness, morphological structure and chemical compositions of carbon atoms on the interface of epitaxial graphene and SiC substrates, have been achieved using scanning electron microscopy, atom force microscopy, Raman spectroscopy and X-ray Photoelectron Spectroscopy.
     Chapter VI is the conclusion for this dissertation and gives some suggestions for the further research.
引文
[1]W.A. de Heer, Claire Berger, Xiaosong Wu, et al. Epitaxial graphene electronic structure and transport. Journal of physics D:applied physics 2010 43 374007
    [2]J.Hass, W.A. de Heer, E.H. Conrad. The growth and morphology of epitaxial multilayer graphene. Journal of physics condensed matter.2008 20 323202
    [3]Caterina Soldano, Ather Mahmood, Erik Dujardin. Production, properties and potential of graphene. Carbon 2010 48 2127
    [4]Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, et al.100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010 327 662
    [5]Y.M. Lin, Alberto Valdes-Garcia, Shu-Jen Han, et al. Wafer-Scale Graphene Integrated Circuit. Science 2011 332 1294
    [6]J.W. Hill, R.H. Petrucci, General Chemistry.3rd edition, Prentice Hall, NJ, (2002)
    [7]A. A. Balandin. Thermal properties of graphene and nanostructured carbon materials. Nature materials.2011 7 569
    [8]K.S. Novoselov, A.K. Geim, S.V. Morozov. et al. Electric field effect in atomically thin carbon films. Science 2004 306 666
    [9]A.K. Geim, K.S. Novoselov. The rise of graphene. Nature materials 2007 6 183
    [10]J.May.Surf.Sci.1969 17 267
    [11]R.R. Haering. Can. J. Phys.1958 36 352
    [12]朱宏伟,徐志平,谢丹等.石墨烯-结构、制备方法与性能表征.清华大学出版社[北京],2011年11月。
    [13]A.C. Ferrari, J.C. Meyer, V. Scardaci, et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev.Lett.,2006 97187401
    [14]W.A.de Heer, C. Berger, X. Wu, et al. Epitaxial graphene. Solid State Comm.2007 14392
    [15]K.S. Novoselov, A.K.Geim, Morozov, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005 438 197
    [16]Y.B. Zhang, Y.W. Tan, H.L. Stormer, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005 438 201
    [17]K.I. Bolotin, F. Ghahari, M.D. Shulman, et al. Fractional quantum hall effect and insulating phase of Dirac electrons in graphene. Nature 2009 462 196
    [18]X. Du, I. Skachko, F. Duerr, et al. Fractional quantum hall effect and insulating phase of Dirac electrons in graphene. Nature 2009 462 192
    [19]T. Shen, J. Gu, M. Xu, et al. Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001). Applied Physics Letters 2009 95 172105
    [20]J. Jobst, D.Waldmann, F.Speck, et al. Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B 2010 81 195434
    [21]X. Wu, Y.Hu, M. Ruan, et al. Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters 2009 95 223108
    [22]C. Berger, Z.M. Song, X. B.Li, et al. Electronic confinement and coherencein patterned epitaxial graphene. Science 2006 312 1191
    [23]D.L. Miller, K.D. Kubista, GM. Rutter, et al. Observing the quantization of zero mass carriers in graphene. Science 2009 324 924
    [24]Z. Jiang, E. A.Henriksen, Tung, et al. Infrared spectroscopy of landau levels of graphene. Physical Review Letters 2007 98 197403
    [25]M. Orlita, C. Faugeras, P. Plochocka, et al. Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Physical Review letters 2008 101 267601
    [26]M.L. Sadowski, G. Martinez, et al. Landau level spectroscopy of ultrathin graphite layers. Physical Review Letters 2006 97 266405
    [27]M.L. Sadowski, G.Martinez, M.Potemski, et al. Magnetospectroscopy of epitaxial few-layer graphene. Solid State Communications 2007 143 123
    [28]K.I. Bolotin, K.J.Sikes, J.Hone, et al. Temperature-dependent transport in suspended graphene. Physical Review Letters 2008 101 096802
    [29]F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, et al. Transition between electron localization and antilocalization in graphene. Physical Review Letters 2009 103 226801
    [30]M. Sprinkle, D.Siegel, Y.Hu, et al. First direct observation of a nearly ideal graphene band structure. Physical Review Letters 2009 103 226803
    [31]L.Y. Jiao, L. Zhang, X.R. Wang, et al. Narrow graphene nanoribbonsfrom carbon nanotubes. Nature 2009 458 877
    [32]X. Wang, Y. Ouyang, X. Li, et al. Room temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett.2008 100 206803
    [33]D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009 458 872
    [34]C. Valles, C. Drummond, H. Saadaoui, et al. Solutions of negatively charged graphene sheets and ribbons. Am.Chem.Soc.2008 130 15802
    [35]B. Vigolo, A. Penicaud, C. Coulon, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000 290 1331
    [36]X.Y. Yang, X. Dou, A. Rouhanipour, et al. Two-dimensional graphene nanoribbons. J.Am.Chem.Soc.2008 130 4216
    [37]W.S. Hummers, R.E. Offeman. Preparation of graphitic oxide. J.Am.Chem.Soc. 1958 80 1339
    [38]D.A. Dikin, S. Stankovich, E.J. Zimney, et al. Preparation and charaeterization of graphene oxide Paper. Nature 2007 448 457
    [39]D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, et al. Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Seience 2009 323 610
    [40]J. Zhou, Q. Wang, Q. Sun, et al. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett.2009 9 3867
    [41]J. Chattopadhyay, A. Mukherjee, C.E. Hamilton, et al. Graphite epoxide. J. Am. Chem. Soc.2008 130 5414
    [42]D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009 458 872
    [43]B. Vigolo, A. Penicaud, C. Coulon, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000 290 1331
    [44]L. Y. Jiao, L. Zhang, X. R.Wang, et al. Narrow graphene nanoribbonsfrom carbon nanotubes. Nature 2009 458 877
    [45]C.N.R. Rao, A.K.. Sood, K.S. Subrahmanyam, et al. Graphene:The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. [J] 2009 48 7752
    [46]P.V. Kamat. Graphene based nanoarchitectures:Anchoring semiconductor and metalnanoparticles on a two dimensional carbon support. J.Phys.Chem.Lett.2009 1 520
    [47]S. Stankovich, D.A. Dikin, G.H.B. Dommett, et al. Graphene-based composite materials. Nature 2006 442 282
    [48]T. Ramanathan, A.A. Abdala, S. Stankovich, et al. Functionalized graphene sheets for polymer nanocomposites. Nat.Nanotechology.2008 3 327
    [49]A.K. Geim, A.H. MacDonald. Graphene:exploring carbon flatland. Physics Today, 2007 8 35
    [50]A.K. Geim. Graphene:status and prospects. Science 2009 324 1530
    [51]R.E. Peierls. Quelques proprietes typiques descorpses solides. Ann. I. H. Poincare 1935 5 177
    [52]L.D. Landau. Zur Theorie der phasenumwandlungen Ⅱ. Phys. Z. Sowjetunion 1937 11 26
    [53]L.D. Landau, E. M. Lifshitz. Statistical Physics, Part I Pergamon, Oxford 1980
    [54]N.D. Mermin. Crystalline order in two dimensions. Phys. Rev.1968 176 250
    [55]J.A.Venables, G.D.T Spiller, M. Hanbucken. Nucleation and growth of thin films. Rep. Prog. Phys.1984 47 399
    [56]J.W. Evans, P.A.Th iel, M.C. Bartelt. Morphological evolution during epitaxial thin film growth:Formation of 2D islands and 3D mounds.2006 Surf. Sci. Rep.61 1
    [57]M. Zinkeallmang, L.C. Feldman, M.H.Grabow. Clustering on surfaces. Surf. Sci. Rep.1992 16 377
    [58]N.D. Mermin, H.Wagner. Absence of ferromagnetism or Antiferromagnetism in One-or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett.196617 1133
    [59]Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, et al, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008 321 385
    [60]I.W. Frank, D.M. Tanenbaum, A.M. Van der Zanda, et al. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007,25,2558
    [61]F. Scarpa, S. Adhikari, A.S. Phani, Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 2009,20,065709
    [62]R. Faccio, P.A. Denis, H. Pardo, et al. Mechanical properties of graphene nanoribbons. J.Phys. Condens. Matter 2009,21,285304
    [63]Alexander A. Balandin, Suchismita Ghos, Wenzhong Bao, et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett.2008 8 902
    [64]Philip R. Wallace. The Band Theory of Graphite. Phys. Rev.71 1947 662
    [65]G.W. Semenoff, Condensed-Matter Simulation of a Three-Dimensional Anomaly. Physical Review Letters.1984 53 2449
    [66]L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, et al. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008 320 356
    [67]Yuanbo Zhang, Victor W. Brar, Caglar Girit, et al. Origin of spatial charge inhomogeneity in graphene. Nature Physics 2009 5 722
    [68]P. Neugebauer, M. Orlita, C. Faugeras. et al. Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene. Phys. Rev. Lett.2008 101 267601
    [69]K.S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci.2005 102 10451
    [70]G.Eda, G. Fanchini, M. Chhowalla. Large-area ultrathin films of reduecd graphene oxide as a transparent and flexible electronic material. Nat.Nanotechnol.20083270
    [71]K.A. Ritter, J.W. Lyding. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat. Mater.2009 8 235
    [72]M. Y. Han, B. Ozyilmaz, Yuanbo Zhang, et al. Energy Band Gap Engineering of Graphene Nanoribbons. Phys. Rev. Lett,2007 98 206805
    [73]L. Ci, Z.Xu, L. Wang, et al. Controlled nanocutting of graphene. Nano. Res.2008 1 116
    [74]Wang W L, Meng S, Kaxiras E. Graphene Nanoflakes with large spin. Nano. Lett., 2008 8 241
    [75]Nakada, K., Fujita, M., Dresselhaus, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B.1996 54 24 17954
    [76]F. Schedin, A.K. Geim, S.V. Morozov, et al. Detection of Individual Gas Molecules Adsorbed on Graphene. Nature Mater.2007 6 652
    [77]K.S. Novoselov, Z. Jiang, Y. Zhang, et al. Room-Temperature Quantum Hall Effect in Graphene. Science 2007 315 1379
    [78]A. Calogeracos, N. Dombey. History and physics of the Klein paradox.Contemp Phys 1999 40 313
    [79]C. Itzykson, J.-B. Zuber. Quantum Field Thoery 2006 (Dover, New York)
    [80]K.S. Novoselov, D. Jiang, F. Schedin, et al. Two-dimensional atomic crystal. PNAS 2005 102 10451
    [81]S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, et al. Strong Suppression of Weak Localization in Graphene Phys. Rev. Lett.2006 97 016801
    [82]P. Recher, B. Trauzettel, A. Rycerz, et al. Aharonov-Bohm effect and broken valley degeneracy in graphene rings. Phys Rev B 2007 76 235404
    [83]S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, et al. Giant Intrinsic Carrier Mobilities Graphene and Its Bilayer. Phys. Rev. Lett.2008 100 016602
    [84]J. Moser, A. Barreiro, A. Bachtold. Current-induced cleaning of graphene. Applied Physics Letters 2007 91 163513
    [85]Frank Schwierz. Graphene Transistors. Nature nanotechnology 2010 5 487
    [86]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008 320 1308
    [87]Yan Wang, Zhiqiang Shi, Yi Huang, et al. Supercapacitor deviees based on graphene materials. J.Phys.Chem.C 2009 113 13103
    [88]Hee K. Chae, Diana Y. Siberio-Perez, Jaheon Kim, et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004 427 523
    [89]C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, et al. Graphene:The new two-dimensional nanomaterial. Angewandte Chemie International Edition.2009 48 7752
    [90]H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, et al. Bipolar supercurrent in graphene. Nature 2007 446 56
    [91]Matthew Mecklenburg, B.C. Regan. Spin and the Honeycomb Lattice:Lessons from Graphene. Phys. Revi. Lett.2011 106 116803
    [92]Antonio H. Castro Neto. Another Spin on Graphene. Science 2011 332 315
    [93]D.A. Abanin, S.V. Morozov, L.A. Ponomarenko, et al. Giant Nonlocality near the Dirac Point in Graphene. Science 2011 332 328
    [94]Wei Han, K. Pi, K. M. McCreary, et al. Tunneling Spin Injection into Single Layer Graphene. Phys. Rev. Lett.2010 105 167202
    [95]N. Tombros, S. Tanabe, A. Veligura. Anisotropic spin relaxation in graphene. Phys. Rev. Lett.,2008 101 046601
    [96]B. Trauzettel, A.N. Jordan, C.W.J.Beenakker, et al. Parity meter for charge qubits: an efficient quantum entangler Phys. Rev. B 2006 73 235331
    [97]Thomas Mueller, Fengnian Xia, Phaedon Avouris. Graphene photodetectors for high-speed optical communications. Nature Photonics 2010 4 297
    [98]Y.B. Zhang, J.P. Small, W.V. Pontius,et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett.2005 86 073104
    [99]Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, et al. Operation of graphene transistors at gigahertz frequencies. NanoLett.2008 9 422
    [100]D.B. Farmer, H.-Y. Chiu, Y.-M. Lin, et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett.2009 9 4474
    [101]Y.-M. Lin, H.-Y. Chiu, K. Jenkins, et al. Dual-gate graphene fets with fT of 50 GHz. IEEE Electron. Device Lett.2010 31 68
    [102]A. Das, S. Pisana, B. Chakraborty, et al. Monitoring dopants by raman scattering in an electrochemically topgated graphene transistor. Nat. Nanotechnol.2008 3 210
    [103]S. Pisana, M. Lazzeri, C. Casiraghi, et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene, Nat. Mater.2007 6 198
    [104]J. Yan, Y. Zhang, P. Kim, et al. Electric field effect tuning of electron-phonon coupling in graphene, Phys. Rev. Lett.2007 98 166802
    [105]N. Stander, B. Huard, D. Goldhaber-Gordon. Evidence for Klein tunneling in graphene p-n junctions, Phys. Rev. Lett.2009 102 026807
    [106]G.Tsoukleri, J. Parthenios, K. Papagelis, et al. Subjecting a graphene monolayer to tension and compression. Small 2009 5 21 2397
    [107]T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, et al. Uniaxial strain in graphene by Raman spectroscopy:g peak splitting, gruneisen parameters, and sample orientation. Phys. Rev. B 2009 79 205433
    [108]T. Yu, Z. Ni, C. Du, et al. Raman mapping investigation of graphene on transparent flexible substrate:The strain effect, J. Phys. Chem. C.2008 112 12602
    [109]K.S. Kim, Y. Zhao, H. Jang, et al. Large-scale pattern growth of graphene films for stretehable transparent eleetrodes. Nature 2009 457 706
    [110]Y.S. Dedkov, A.M. Shikin, V.K. Adamchuk, et al. Intercalation of copper underneath a monolayer of raphite on Ni (111). Phys. Rev. B 2001 64 035405
    [111]A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, et al. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008 78 073401
    [112]Q. Yu, J. Lian, S. Siriponglert, et al. Graphene segregated on ni surfaces and transferred to insulators. Appl. Phys. Lett.2008 93 113103
    [113]A.T. Diaye, S. Bleikamp, P.J. Feibelman, et al. Two-dimensional'Ir cluster lattice on a graphene moire on Ir(111). Phys. Rev. Lett.2006 97 215501
    [114]J. Coraux, A. T. N'Diaye, M. Engler, et al. Growth of graphene on Ir (111). New J. Phys.2009 11 023006
    [115]P.W. Sutter, J.I. Flege, E.A. Sutter. Epitaxial graphene on ruthenium. Nat. mater., 2008,7406
    [116]H. Ueta, M. Saida, C. Nakai, et al. Highly oriented monolayer graphite formation on Pt (111) by a supersonic methane beam. Surf. Sci.2004 560 183
    [117]T.A. Land, T. Michely, R.J. Behm, et al. STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition. Surf. Sci.1992 2643261
    [118]A. Reina, X.T. Jia, J. Ho, et al. large area few-layer graphene films on arbitrary substrates by chemieal vapor deposition. Nano. Lett.2009 9 30
    [119]L.G.De Aero, Y. Zhang, A. Kumar, et al. Synthesis transfer, and devices of single-and few-layer graphene by chemieal vapor deposition. IEEE Trans. Nanotech. 2009 8 135
    [120]Sukang Bae, Hyeongkeun Kim, Youngbin Lee, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010 5 574
    [121]Q. Yu, J. Lian, S. Siriponglert, et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett.2008 93 113103
    [122]H.Y. He, J.K linowski, M. Forster, et al. A new structural model for graphite oxide. Chemical Physics Letters 1998 287 53266
    [123]S. Stankovich, R.D. Piner, S.T. Nguyen, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006 44 3342
    [124]S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nature Nanotechnol 2009 4 217
    [125]C. Berger, Z.M. Zong, T.B. Li, et al. Ultrathin Epitaxial Graphite:2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B 2004 108 19912
    [126]Allal H. Macdonald, Rafi Bistritzer. Graphene moire mystery solved? 2011 Nature 474453
    [127]M. Choucair, P. Thordarson, J. A. Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotech 2009 4 30
    [128]L. Zhi, K. Klaus Mullen. A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater.Chem.2008 18 1472
    [129]K.S. Subrahmanyam, S.R. C. Vivekchand, A.Govindaraj, et al. A study of graphenes prepared by different methods:characterization, properties and solubilization. J.Mater.Chem.2008 18 1517
    [130]O.E. Andersson, B.L.A. Prasad, H. Sato, et al. Structure and electronic properties of graphite nanoparticles. Phys.Rev.B 1998 58 16387
    [131]C. Valles, C. Drummond, H. Saadaoui, et al. solutions of negatively charged graphene sheets and ribbons. J. Am. Chem.Soc.2008 30 15802
    [132]L. M. Viculis, J. J. Mack, O. M. Mayer, et al. Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem.2005 15 974
    [133]S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, et al., Substrate-induced bandgap opening in epitaxial graphene. Nature Materials 2007 6 770
    [134]L.Brey, H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B 2006 73 235411
    [135]Y. Son, M.L. Cohen, S.G. Louie. Energy gaps in graphene nanoribbons. Physical Review Letters 2006 97 216803
    [136]A.J. Van Bommel, J.E. Crombeen, A.van Tooren. LEED and Auger Electron Observations of the SiC (0001). Surf. Sci.1975 48 463
    [137]I. Forbeaux, J-M. Themlin, J-M. Debever. Heteroepitaxial Graphite on 6H-SiC (0001):Interface Formation Through Conduction-Band Electronic Structure. Phys. Rev. B 1998 58 16396
    [138]J. Nilsson, A. H. Castro Neto, N. M. R. Peres, et al. Electron-electron interactions and the phase diagram of a graphene bilayer. Phys. Rev. B 2006 73 214418
    [139]R.G. Behrens, G.H. Rinehart. Vapor Pressure and Sublimation Enthalpy of Elemental Technetium. Journal of the Less Common Metals.1980 75 241
    [140]I. Forbeaux, J-M. Themlin, A. Charrier, et al. Solid-State Graphitization Mechanisms of Silicon Carbide 6H-SiC Polar Faces. Appl.Surf. Sci.2000 162 406
    [141]J. Drowart, G D. Maria, M. G. Inghram. Thermodynamic Study of SiC Utilizing A Mass Spectrometer. J. Chem. Phys.,1958 29 1015
    [142]R. E. Honing, D. A. Kramer. Vapor Pressure Data for the Solid and Liquid Element. RCA Review 1969 30 285
    [143]L. Muehlhoff, W.J. Choyke, M.J. Bozack, et al. Comparative electron spectroscopic studies of surface segregation on SiC (0001) and Sic(0001).J. Appl. Phys.1986 60 2842
    [144]P.Baumgartner, K.Brunner, G Abstreiter, et al. Fabrication of in-plane-gate transistor structures by focused laser beam-induced Zn doping of modulation-doped GaAs/AlGaAs quantum wells. Applied Physics Letters 1994 64 592
    [145]A. Itoh, H. Matsunami, C.R.C. Critical Rev. Solid state and Mater.1997 22 111
    [146]J.C. Meyer, A.K. Geim, M.I. Katsnelson.The structure of suspended graphene sheets Nature 2007 446 60
    [147]J. Drowart, G. De Maria, G. Inghram. Thermodynamic study of SiC utilizing a mass spectrometer. J. Chem. Phys.1958 29 1015
    [148]Luxmi, N. Srivastava, Guowei He, et al. Comparison of graphene formation on C-face and Si-face SiC{0001} surfaces. Physical Review B 2010 82 1
    [149]L.M. Malard, M.A. Pimenta, G. Dresselhaus, et al. Raman spectroscopy in graphene. Physics Reports,2009 473 51
    [150]C. Faugeras, A. Nerriere, M. Potemski, et al. Few-layer graphene on SiC, pyrolitic graphite, and graphene:A Raman scattering study. Appl. Phys. Lett.2008 92 011914
    [151]M. Orlita, C. Faugeras, P. Plochocka, et al. Approaching the Dirac point in high mobility multi-layer epitaxial graphene. Phys. Rev.Lett.2008 101 267601
    [152]U. Starke, C. Riedl. Epitaxial graphene on SiC (0001) and SiC:from surface reconstructions to carbon electronics. J. Phys.:Condens. Matter.2009 21 134016
    [153]B. Premlal, M. Cranney, F. Vonau, et al. Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett.2009 94 263115
    [154]1. Gierz, T Suzuki, R. T. Weitz, et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B,2010 81 235408
    [155]吴孝松.碳化硅表面的外延Graphene物理200938409
    [156]E. Rollingsa, G H.Gweona, W. A.de Heer, et al. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006 672172
    [157]M.L. Sadowski, G. Martinez, W. A.de Heer, et al. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett.2006 97 266405
    [158]A.N. Hattori, T. Okamoto, S. Sadakuni, et al. Formation of wide and atomically flat graphene layers on ultraprecision-figured 4H-SiC (0001) surfaces. Surf. Sci.2011 605 597
    [159]K.V. Emtsev, A. Bostwick, K. Horn, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 2009 8 203
    [160]Luxmi,N. Srivastava, R. M. Feenstra, et al. Formation of epitaxial graphene on SiC (0001) using vacuum or Argon Environment. J. Vac. Sci. Technol. B 2010 28 C5C1
    [161]R.M. Tromp, J.B. Hannon. Thermodynamics and Kinetics of Graphene Growth on SiC (0001). Phys. Riev. Lett.2009 102 106104
    [162]C. Hallin, F. Owman, P. Martensson, et al. In situ substrate preparation for high-quality SiC chemical vapour deposition. Journal Of Crystal Growth.1997 181 241
    [163]S. Nakamura, T. Kimoto, H. Matsunami, et al. Formation of periodic steps with a unit-cell height on 6H-SiC (0001) surface by h-2 etching. Applied Physics Letters.2000 76 3412
    [164]J.A. Powell, D. J. Larkin. Process-induced morphological defects in epitaxial CVD silicon carbide. Physica Status Solidi B-Basic Research.1997 202 529
    [165]V. M. Torres, J. L. Edwards, B. J. Wilkens, et al. Influence of 6H-SiC (0001) substrate surface morphology on the growth of aln epitaxial layers. Applied Physics Letters.1999 74 985
    [166]Z. Y. Xie, C. H. Wei, L. Y. Li, et al. Gaseous etching of 6H-SiC at relatively low temperatures. Journal of Crystal Growth.2000 217 115
    [167]Q. Z. Xue, Q. K. Xue, Y. Hasegawa, et al. Two-step preparation of 6H-SiC (0001) surface for epitaxial growth of gan thin film. Applied Physics Letters.1999 74 2468
    [168]R. Yakimova, A.L. Hylen, M. Tuominen, et al. Preferential etching of SiC crystals. Diamond and Related Materials.1997 6 1456
    [169]Xuebin Li. Epitaxial Graphene Films on SiC:Growth, Characterization, and Devices. Georgia Institute of Technology. PHD.2008.28-32
    [170]Jakub Kedzierski, Pei-Lan Hsu, Paul Healey, et al. Epitaxial Graphene Transistors on SiC Substrates. IEEE transactions on electron devices.2008 55 2078
    [171]U. Starke, J. Bernhardt, J. Schardt, et al. SiC surface reconstruction:Relevancy of atomic structure for growth technology, Surface Review and Letters.1999 6 1129
    [172]Nikhil Sharma. Microscopic and Spectroscopic Studies of Growth and Electronic Structure of Epitaxial Graphene. Geogia Institute of Technology. PHD.2009.
    [173]N. Srivastava, G.W. He, P.C. Mende, et al. Graphene formed on SiC under various environments:Comparison of Si-face and C-face. Journal of Physics D:Applied Physics.2012 45 154001
    [174]Shoji Ushio, Arata Yoshii, Naoto Tamai. Wide-range temperature dependence of epitaxial graphene growth on 4H-SiC(0001):A study of ridge structures formation dynamics associated with temperature. Journal of Crystal Growth.2011 318 590
    [175]J. Hass, F. Varchon J. E. Millan-Otoya, et al. Why Multilayer Graphene on 4H-SiC Behaves Like a Single Sheet of Graphene. Phys. Rev. Lett.2008 100 125504
    [176]Kusunoki et al. Observation of Nanosized Cap Structures on 6H-SiC Substrates by Ultrahigh-vacuum Scanning Tunneling Microscopy. J.J.A.P. Part 12006 372
    [177]M.L. Bolen. Exploration of Epitaxial Graphene on Silicon Carbide. Prudue University. PHD.2010
    [178]Brenda L. VanMil, Rachael L. Myers-Ward, Joseph L. Tedesco. et al. Graphene formation on SiC substrates. Material Science Forum 2009 615
    [179]C. Virojanadara, M. Syvajarvi, R. Yakimova, et al. Homogeneous large-area graphene layer growth on 6H-SiC(0001). Physical Review B 2008 78 245403
    [180]Christian Riedl. Epitaxial Graphene on Silicon Carbide Surfaces:Growth, Characterization, Doping and Hydrogen Intercalation. Friedrich Alexander University Erlangen Nurnberg. PHD.
    [181]E. Stolyarova, K. T. Rim, S. Ryu, et al. Proc. Natl. Acad. Sci.2007 104 9209
    [182]P. Lauffer, K.V. Emtsev, R. Graupner, et al. Atomic and electronic structure of few-layer graphene on SiC (0001) studied with scanning tunneling microscopy and spectroscopy. Physical Review B 2008 77 155426
    [183]Andrea C. Ferrari. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Comm.2007 14347
    [184]C. Thomsen, S. Reich. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett.2000 85 5214
    [185]Anthony W. Musumeci, Eric R.Waclawik, Ray L. Frost. A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 2008 71 140
    [186]Zhenhua Ni, Yingying Wang, Ting Yu, et al. Raman Spectroscopy and Imaging of Graphene. Nano Res 2008 1 273
    [187]Narula, Rohit. Double resonance Raman spectra of graphene:a full 2D calculation. Massachusetts Institute of Technology. PHD.
    [188]C. Casiraghi, A. Hartschuh, E. Lidorikis, et al. Rayleigh Imaging of Graphene and Graphene Layers. Nano. Lett.2007 7 2711
    [189]C.Casiraghi, S. Pisana, K. S. Novoselov, et al. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett.2007 91 233108
    [190]Simone Pisana, Michele Lazzeri, Cinzia Casiraghi, et al. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nature Materials 2007 6 198
    [191]S. Piscanec, M. Lazzeri, Francesco Mauri, et al.Kohn Anomalies and Electron-Phonon Interactions in Graphite. Phys. Rev. Lett.93 2004 185503
    [192]C. Casiraghi, A. Hartschuh, H. Qian, et al. Raman Spectroscopy of Graphene Edges. Nano Lett.2009 9 1433
    [193]A. Das, S. Pisana, B. Chakraborty, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nano.20083210
    [194]A. Das, B. Chakraborty, S. Piscanec, et al. Ferrari. Phonon renormalization in doped bilayer graphene. Phys. Rev. B 2009 79 155417
    [195]T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, et al. Uniaxial strain in graphene by Raman spectroscopy:G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 2009 79 205433
    [196]Jun Yan, Yuanbo Zhang, Philip Kim, et al. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett.2007 98 166802
    [197]D. Graf, F. Molitor, K. Ensslin, et al. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett.2007 7 238
    [198]A. C. Ferrari, J. Robertson. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000 61 14095
    [199]A. C. Ferrari, J. Robertson. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001 64 075414
    [200]D. M. Basko, S. Piscanec, A. C. Ferrari. Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys Rev B 2009 80 165413
    [201]Fred Schedin, Elefterios Lidorikis, Antonio Lombardo, et al. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 2010 4 5617
    [202]Ying ying Wang, Zhen hua Ni, Ting Yu, et al. Raman Studies of Monolayer Graphene:The Substrate Effect. J. Phys. Chem. C 2008 112 10637
    [203]A. Gupta, G. Chen, P. Joshi, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett.2006 6 2667
    [204]P. Poncharal, A. Ayari, T. Michel, et al. Raman spectra of misoriented bilayer graphene. Phys. Rev. B 2008 78 113407
    [205]L. G.Cancado, A. Reina, J. Kong, et al. Geometrical approach for the study of G' band in the Raman spectrum of monolayer graphene, bilayer graphene, and bulk graphite. Phys. Rev. B 2008 77 245408
    [206]Z. Y. Juang, C. Y. Wu, C..W. Lo, et al. Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 2009 47 2026
    [207]L. G. Cancado, K. Takai, T. Enoki, et al. General equation for the determination of the crystallite size of nanographite by Raman spectroscopy. Appl. Phys. Lett.2006 88 163106
    [208]C. N. R. Rao, Kanishka Biswas, K. S. Subrahmanyam et al. Graphene, the new nanocarbon. Journal of Materials Chemistry.2009,19,2457
    [209]J. C. Burton, L. Sun, M. Pophristic, S.J. Lukacs, F. H. Long. Spatial characterization of doped SiC wafers by Raman spectroscopy. Journal of Applied Physics 1998 84 6268
    [210]N. Camara, G.Rius, J.-R. Huntzinger, et al. Selective epitaxial growth of graphene on SiC. Applied physics letters 2008 93 123503
    [211]J.C. Burton, L. Sun, F.H. Long, et al. First- and second-order Raman scattering from semi-insulating 4H-SiC. Phys. Rev. B 1999 59 7282
    [212]M.A. Pimenta, G.Dresselhaus, M.S. Dresselhaus, et al. Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chem.and Chemical Phys 2007 9 1276
    [213]S. Watcharotone, D.A. Dikin,S. Stankovich, et al.Graphene-Silica Composite Thin Films as Transparent Conductors. Nano Lett.,2007 7 1888
    [214]Handbook of X-Ray Photoelectron Spectroscopy, ed. G.E. Muilenberg (Eden Prairie, MN:Perkin-Elmer Co.,1979)
    [215]B.K. Tay, X. Shi, H.S. Tan, et al. Investigation of tetrahedral amorphous carbon films using x-ray photoelectron and Raman spectroscopy. Surface Interface Anal.1999 28231
    [216]L.I. Johansson, P.-A. Glans, N. Hellgren, et al. A core level and valence band photoemission study 6H-SiC(0001). Surf. Sci 1998 405 288
    [217]S. Shivaraman, M.V.S Chandrashekhar, J.J. Boeckl, et al. Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity.2009 J. Electron. Mater 6 725
    [218]H.K. Jeong, Y.P. Lee, R.J.W.E Lahaye, et al. Evidence of Graphitic AB Stacking Order of Graphite Oxides.2008 J. Am. Chem. Soc.130 1362
    [219]S.S. Piner, X.Q. Chen, N.Q. Wu, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate)2006 J. Mater. Chem.16 155
    [220]K.V. Emtsev, Th. Seyller, F. Speck, et al. Initial stages of the graphite-SiC(0001) interface formation studied by photoelectron spectroscopy. Mater. Sci. Forum 2007556 525
    [221]Wang Dang-Chao, Zhang Yu-Ming, Zhang Yi-Men, et al. Comparison of the Formation Process and Properties of Epitaxial Graphene on Si-and C-face 6H-SiC Substrates. Chinese physics B 2012 3 038102
    [222]Wang Dang-Chao, Zhang Yu-Ming, Zhang Yi-Men, Lei Tian-Min, Guo Hui, Wang Yue-Hu, Tang Xiao-Yan, Wang Hang. Raman Analysis of Epitaxial Graphene Grown on 4H-SiC(0001) Substrate under Low Pressure Condition. Chinese physics B 2011 12 128101
    [223]Wang Dangchao, Zhang Yuming, Zhang Yimen, et al Raman Analysis of Epitaxial Graphene on 6H-SiC (000-1) Substrates under Low Pressure Environment. Journal of semiconductors:2011 11 113003
    [224]Z.H. Ni, W. Chen, X.F. Fan, et al. Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 2008 77 115416
    [225]J.L. Tedesco, G.G.Jernigan, J.C. Culbertson, et al. Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Appl. Phys. Lett.2010 96 222103
    [226]G F. Sun, Y. Liu, S. H. Rhim, et al. Si diffusion path for pit-free graphene growth on SiC (0001). Physical Review B 2011 84 195455
    [227]W. Lu, W.C. Mitchel, C.A. Thornton, et al. carbon structural transitions and ohmic contacts on 4H-SiC. Journal of electronic materials 2003 32 426
    [228]B.K. Tay, X. Shi, H.S. Tan, et al. Investigation of tetrahedral amorphous carbon films using x-ray photoelectron and Raman spectroscopy. Surf. Interface Anal.1999 28 231
    [229]L.I. Johansson, P.-A. Glans, N. Hellgren et al. A core level and valence band photoemission study 6H-SiC (0001). Surf. Sci 1998 405 288
    [230]W. Chen, X. N. Xie, H. Xu, et al. Atomic Scale Oxidation of Silicon Nanoclusters on Silicon Carbide Surfaces. J. Phys. Chem. B.107,11597 (2003)
    [231]U. Starke, J. Schardt, M. Franke. Morphology, bond saturation and reconstruction of hexagonal SiC surfaces. Appl. Phys. A.199765,587