Nk_1受体介导的姜辣素抗呕吐作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:生姜作为“呕家圣药”在我国应用历史悠久,可用于妊娠、术后及化疗引起的呕吐。姜辣素是从生姜中提取的活性成分,可对抗顺铂引起的呕吐。本文应用新型水貂呕吐模型,开展对姜辣素抗阿扑吗啡、洛哌丁胺和硫酸铜诱导的呕吐作用及其机制的研究。
     方法:
     1.姜辣素在阿扑吗啡诱导的水貂呕吐模型抗呕吐作用研究
     将雄性水貂随机分为:①空白对照组、②阿扑吗啡组、③姜辣素低、中、高剂量组,每组6只。空白对照组和阿扑吗啡组分别给以生理盐水和1%西黄耆胶5ml·kg-1ig预处理;姜辣素低、中、高剂量组分别予姜辣素20mg·kg-1ig、100mg·kg-1ig、200mg·kg-1ig预处理。除空白对照组外,其余水貂在预处理30min后给予阿扑吗啡0.5mg·kg-1sc,观察水貂在给阿扑吗啡后的呕吐反应,记录呕吐潜伏期,干呕,呕吐次数。2h观察期结束后,处死水貂,取极后区,一部分置4%甲醛中固定,备测SP、c-fos的免疫组化表达;另一部分置于-80℃冰箱中冷冻,备用Western-blot法检测NK1受体表达。
     2.姜辣素在洛哌丁胺诱导的水貂呕吐模型抗呕吐作用研究
     将雄性水貂随机分为:①空白对照组、②洛哌丁胺组、③姜辣素低、中、高剂量组,每组6只。空白对照组和洛哌丁胺组分别给以生理盐水和1%西黄耆胶5ml·kg-1ig预处理;姜辣素低、中、高剂量组分别予以姜辣素50mg·kg-1ig、100mg·kg-1ig、200mg·kg-1ig预处理。除空白对照组外,其余水貂在预处理30min后给予洛哌丁胺0.5mg·kg-1sc,观察水貂在给洛哌丁胺后的呕吐反应,记录呕吐潜伏期,干呕,呕吐次数。观察2h后,处死水貂,取极后区,备测SP、c-fos NK1受体表达。
     3.姜辣素在硫酸铜诱导的水貂呕吐模型抗呕吐作用研究
     将雄性水貂随机分为:①空白对照组、②硫酸铜组、③姜辣素低、中、高剂量组,每组6只。空白对照组和硫酸铜组分别给以生理盐水和1%西黄耆胶5ml·kg-1ig预处理;姜辣素低、中、高剂量组分别用姜辣素50mg·kg-1ig、100mg·kg-1ig、200mg·kg-1ig预处理。除空白对照组外,其余水貂在预处理30min后给予硫酸铜40mg·kg-1ig,2h观察期内记录呕吐潜伏期,干呕,呕吐次数。处死水貂,取极后区和回肠组织,一部分置4%甲醛中,备测SP、c-fos的免疫组化表达;另一部分置于-80。C冰箱中冷冻,备测NK1受体表达及cGMP、cAMP、IP3和DAG/DG的含量。
     结果:1.姜辣素在阿扑吗啡诱导的水貂呕吐模型抗呕吐作用研究表明:
     皮下注射阿扑吗啡后,阿扑吗啡组6只水貂均发生呕吐,呕吐潜伏期短,干呕及呕吐次数均增加;而姜辣素低、中、高剂量组与阿扑吗啡组比较,干呕及呕吐次数减少(26.5±2.1b,15.2±4.3b,9.2±11.7b vs31.7±12.5;3.7±0.5c,3.0±0.6b,2.0±0.9b vs4.7±0.8,bP<0.01,cP0.05),呕吐潜伏期延长(50.7±5.7min vs29.3±3.8b min,bP<0.01),并有量效关系。
     免疫组化结果显示:SP、c-fos免疫反应阳性产物呈现棕黄色颗粒,在阿扑吗啡组极后区阳性颗粒最多,着色最深,随姜辣素剂量增大,阳性反应颗粒减少,着色变浅,表达受到抑制。免疫组化阳性评分结果显示.阿扑吗啡组水貂脑组织极后区中SP、c-fos表达明显增高,与空白对照组比较有差异(4.2±0.9a vs0.7±0.5;4.5±1.2avs1.7±0.7,aP<0.01);姜辣素低、中、高剂量组SP、c-fos表达水平与阿扑吗啡组比较降低(2.8±0.8b,2.3±0.5c,1.5±0.6c vs4.2±0.9;3.8±1.7,2.8±0.7b,2.0±0.9c vs4.5±1.2,bP<0.05,cP<0.01)。
     Western-blot检测结果显示:皮下注射阿扑吗啡会引起水貂极后区NK1受体表达增高,姜辣素低、中、高剂量组均能抑制NK1受体表达,且随剂量增加,抑制作用增强。半定量结果显示:阿扑吗啡组NK1受体表达,与空白对照组比较有差异(0.7±0.08a vs0.20±0.03,aP<0.01);姜辣素低、中、高剂量组NK1受体表达水平,与阿扑吗啡组比较降低(0.46±0.04b,0.39±0.05b,0.27±0.03b vs0.70±0.08,bP<0.01)。
     2.姜辣素在洛哌丁胺诱导的水貂呕吐模型抗呕吐作用研究表明:
     洛哌丁胺可成功复制水貂呕吐模型,皮下注射洛哌丁胺后,洛哌丁胺组6只水貂均发生呕吐,呕吐潜伏期短,干呕及呕吐次数均增加;而姜辣素具有明显的抗呕吐作用,姜辣素组水貂呕吐潜伏期较洛哌丁胺组延长(45.2±12.7b min vs26.9±7.8min,bP<0.01)。0-2h观察期内,姜辣素低、中、高剂量组干呕和呕吐次数较洛哌丁胺组显著减少(30.5±4.3b,25.3±3.0b,200±2.5b vs51.7±13.2;4.5±1.0,3.7±0.5c,2.8±0.7bvs5.3±1.0, bP<0.01,cP<0.05)。
     免疫组化染色显示,SP、c-fos免疫反应阳性产物在洛哌丁胺组极后区阳性颗粒最多,着色最深,而姜辣素组随剂量增大,阳性反应颗粒减少,着色变浅。免疫组化阳性评分结果显示,洛哌丁胺使水貂极后区SP及c-fos表达增加(3.3±0.5a vs0.7±0.5;3.7±0.5a vs0.3±0.5,aP<0.01)姜辣素低、中、高剂量组水貂极后区SP及c-fos表达显著少于洛哌丁胺组(2.3±0.5“,1.7±0.5b,0.8±0.4b vs3.3±0.5;3.2±0.7,2.7±0.5b1.5±0.6b vs3.7±0.5,bP<0.01)
     Western-blot检测结果显示:与空白对照组比,洛哌丁胺组水貂极后区NK1受体表达增高(0.63±0.04a vs0.16±0.04,aP<0.01):姜辣素低、中、高剂量组NK1受体表达水平与洛哌丁胺组比降低(0.39±0.03b,0.32±0.05b,0.24±0.06b vs0.63±0.04, bP<0.01)。
     3.姜辣素在硫酸铜诱导的水貂呕吐模型抗呕吐作用研究表明:
     硫酸铜40mg·kg-1灌胃后水貂有明显的干呕和呕吐反应。与硫酸铜组相比,姜辣素组水貂呕吐潜伏期延长,干呕及呕吐次数减少(22.3±2.1b,18.5±1.4b,7.5±1.5b vs31.5±2.5;4.8±0.7c,4.0±0.6b,2.3±0.8b vs6.3±1.2bP<0.01,cP<0.05)。
     免疫组化方法显示:SP免疫反应阳性产物在硫酸铜组回肠组织和极后区阳性颗粒最多,着色最深,而随姜辣素剂量增大,阳性反应颗粒减少,着色变浅。免疫组化阳性评分结果显示,硫酸铜组水貂回肠组织和极后区SP表达明显增加(3.0±0.6a vs0.7±0.5;2.5±0.5a vs0.5±0.5,aP<0.01),而姜辣素低、中、高剂量组回肠及极后区SP表达水平,与硫酸铜组比较降低(2.3±0.5,1.5±0.5b,1.3±0.5b vs3.0±0.6;2.2±0.4,1.3±0.5b,0.8±0.4b vs2.5±0.5,b P<0.01)。
     免疫组化阳性评分结果显示,硫酸铜组水貂回肠组织和极后区c-fos表达明显增加(3.1±0.7a vs0.7±0.5;2.8±0.8a vs0.5±0.5,aP<0.01),而姜辣素低、中、高剂量组外周及中枢组织中c-fos表达水平,与硫酸铜组比较降低(2.5±0.5,1.7±0.5b,1.4±0.4b vs3.1±0.7;2.4±0.6,1.7±0.8b,1.2±0.4b vs2.8±0.8,bP<0.01)
     Western-blot检测结果显示:硫酸铜组水貂回肠和极后区NK1受体表达明显增高,与空白对照组比较有差异(0.73±0.03a vs0.32±0.04;0.52±0.03a vs0.29±0.02,aP<0.01);姜辣素低、中、高剂量组NKl受体表达水平,与硫酸铜组比较降低(0.55±0.03b,0.42±0.04b,0.32±0.04b vs0.73±0.03:0.47±0.03c,0.36±0.05b,0.31±0.05b vs0.52±0.03,bP<0.01,cP<0.05)
     酶联免疫法实验结果表明:硫酸铜组水貂回肠组织与极后区脑组织中cGMP含量有明显降低,与空白对照组比较有差异(26.82±5.93a vs42.37±10.84;25.60±7.44a vs40.18±12.03,aP<0.01)。姜辣素低、中、高剂量组回肠与极后区cGMP含量较硫酸铜组均升高(35.43±6.26b,37.92±7.23b,40.50±7.25b vs26.82±5.93;32.62±8.55b,35.12±3.76b,39.48±5.93b vs25.60±7.44,bP<0.01)。与空白对照组比较,模型组的cAMP、IP3和DAG/DG没有统计学意义,与硫酸铜组相比,姜辣素组cAMP、IP3和DAG/DG水平未见显著差异。
     结论:在水貂呕吐模型,姜辣素可抑制阿扑吗啡、洛哌丁胺、硫酸铜诱导的呕吐,其机制与抑制了NK1受体的异常表达有关。
Objective:
     Ginger (Zingiber officinale) has been used extensively as a treatment for nausea and vomiting for more than2500years in China. The effectiveness of ginger in emesis due to hyperemesis gravidarum, post-operation and cancer chemotherapy. It was reported that ginerols, the pungent constituents of ginger, inhibited cisplatin-induced emesis in minks possibly by inhibiting central or peripheral increase ofsubstance P and NK1receptors. The present study in minks was designed to investigate the anti-emetic efficacy and the mechanisms of ginerols, inhibiting emesis induced by a wide variety of emetogens such as apomorphine, loperamide and copper sulfate.
     Methods:
     1. Antiemetic effect of ginerols on apomorphine-induced emesis in minks
     30minks were randomly divided into the following five groups (n=6):the blank control group, the apomorphine group, and three ginerols groups. The blank control group were pretreated with sterile saline, the apomorphine group were preadministered with vehicle (1%tragacanth,5ml·kg-1, ig), the ginerols groups were preadminstered with ginerols (50mg·kg-1,100mg·kg-1or200mg·kg-1, ig), which was dissolved in1%tragacanth. Apomorphine (0.25mg·kg-1, sc) was administered30minutes after treatment with the antiemetic agent or its vehicle, except to the blank control group. Following administration of apomorphine, animals were observed continuously for2hours for the emetic responses and the number of both retching and vomiting.
     Animals were sacrificed at2hours after administration of apomorphine. Tissues of the area postrema were removed. The distribution of substance P and c-fos in the area postrema were measured by immunohistochemistry.The levels of NK1receptor expression in the area postrema were measured by western-blot.
     2. Antiemetic effect of ginerols on loperamide-induced emesis in minks
     30minks were randomly divided into the following five groups (n=6):the blank control group, the loperamide group, and three ginerols groups. The blank control group were pretreated with sterile saline, the loperamide group were preadministered with vehicle (1%tragacanth,5ml·kg-1, ig), the ginerols groups were preadminstered with ginerols (50mg·kg-1,100mg·kg-1or200mg·kg-1, ig), which was dissolved in1%tragacanth. Loperamide (0.5mg·kg-1, sc) was administered30minutes after treatment with the antiemetic agent or its vehicle, except to the blank control group. Following administration of loperamide, animals were observed continuously for2hours for the emetic responses and the number of both retching and vomiting.
     Animals were sacrificed at2hours after administration of loperamide. Tissues of the area postrema were removed. The distribution of substance P and c-fos in the area postrema were measured by immunohistochemistry.The levels of NK1receptor expression in the area postrema were measured by western-blot.
     3. Antiemetic effect of ginerols on copper sulfate-induced emesis in minks
     30minks were randomly divided into the following five groups (n=6):the blank control group, the copper sulfate group, and three ginerols groups. The blank control group were pretreated with sterile saline, the copper sulfate group were preadministered with vehicle (1%tragacanth,5ml·kg-1, i.g), the ginerols groups were preadminstered with ginerols (50mg·kg-1,100mg·kg-1or200mg·kg-1, ig), which was dissolved in1%tragacanth. Copper sulfate (40mg·kg-1, ig) was administered30minutes after treatment with the antiemetic agent or its vehicle, except to the blank control group. Following administration of copper sulfate, animals were observed continuously for2hours for the emetic responses and the number of both retching and vomiting.
     Animals were sacrificed at2hours after administration of copper sulfate. Tissues of the area postrema as well as the ileum were removed. The distribution of substance P and c-fos in the area postrema and ileum were measured by immunohistochemistry.The levels of NK] receptor expression in the area postrema and ileum were measured by western-blot. The levels of cGMP、cAMP、IP3、DAG/DG were measured by ELISA.
     Results:
     1. Antiemetic effect of ginerols on apomorphine-induced emesis in minks
     Apomorphine evoked a profound emetic response in minks, pretreatment with gingerols reduced the number of retches and vomits induced by apomorphine in a dose-dependent manner during the2h observation period (26.5±2.1b,15.2±4.3b,9.2±11.7bvs31.7±12.5;3.7±0.5c,3.0±0.6b,2.0±0.9b vs4.7±0.8, bP<0.01, cP<0.05).
     Apomorphine produced a significant increase in SP and c-fos levels in the area postrema of minks (4.2±0.9a vs0.7±0.5;4.5±1.2a vs1.7±0.7, aP<0.01), and this increase was significantly inhibited by gingerols (2.8±0.8b,2.3±0.5c,1.5±0.6c vs4.2±0.9;3.8±1.7,2.8±0.7b,2.0±0.9c vs4.5±1.2, b P<0.05,c P<0.01).
     The expression of NK1receptor was analyzed by western-blot respectively, the expression levels of NK1receptor significantly increased after treatment with apomorphine (0.70±0.08a vs0.20±0.03, a P<0.01), the elevated expression was inhibited by the pretreatment of gingerols in the area postrema (0.46±0.04b,0.39±0.05b0.27±0.03bvs0.70±0.08, bP<0.01).
     2. Antiemetic effect of ginerols on loperamide-induced emesis in minks
     Loperamide evoked a profound emetic response in minks, pretreatment with gingerols reduced the number of retches and vomits induced by loperamide in a dose-dependent manner during the2h observation period (30.5±4.3b,25.3±3.0b20.0±2.5bvs51.7±13.2;4.5±1.0,3.7±0.5c,2.8±0.7b vs5.3±1.0, bP<0.01,cP<0.05).
     Loperamide produced a significant increase in SP and c-fos levels in the area postrema of minks (3.3±0.5a vs0.7±0.5;3.7±0.5a vs0.3±0.5, a P<0.01), and this increase was significantly inhibited by gingerols (2.3±0.5b,1.7±0.5b,0.8±0.4b vs3.3±0.5,3.2±0.7,2.7±0.5b,1.5±0.6b vs3.7±0.5, b P<0.01)
     The expression levels of NK1receptor significantly increased after treatment with loperamide (0.63±0.04a vs0.16±0.04,a P<0.01), the elevated expression was inhibited by the pretreatment of gingerols in the area postrema (0.39±0.03b,0.32±0.05b,0.24±0.06b vs0.63±0.04,b P<0.01).
     3. Antiemetic effect of ginerols on copper sulfate-induced emesis in minks
     The frequency copper sulfate-induced retching and vomiting was significantly reduced by pretreatment with gingerols during observation periods (22.3±2.1b,18.5±1.4b,7.5±1.5b vs31.5±2.5:4.8±0.7c,4.0±0.6b,2.3±0.8b vs6.3±1.2, bP<0.01, cP<0.05).
     The expression of SP were analyzed by immunohistochemistry, the expression levels of SP significantly increased after treatment with copper sulfate (3.0±0.6a vs0.7±0.5;2.5±0.5a vs0.5v0.5, a P<0.01), the elevated expression was inhibited by the pretreatment of gingerols in both the ileum and the area postrema (2.3±0.5,1.5±0.5b,1.3±0.5bvs3.0±0.6;2.2±0.4,1.3±0.5b,0.8±0.4b vs2.5±0.5, bP<0.01).
     The expression of c-fos were analyzed by immunohistochemistry, the expression levels of c-fos significantly increased after treatment with copper sulfate (3.1±0.7a vs0.7±0.5;2.8±0.8a vs0.5±0.5, a P<0.01), the elevated expression was inhibited by the pretreatment of gingerols in both the ileum and the area postrema (2.5±0.5,1.7±0.5b,1.4±0.4bvs3.1±0.7;2.4±0.6,1.7±0.8b,1.2±0.4b vs2.8±0.8. b P<0.01)
     The expression of NK1was analyzed by Western-blot, the expression levels of NK1significantly increased after treatment with copper sulfate(0.73±0.03a vs0.32±0.040.52±0.03a vs0.29±0.02, a P<0.01), the elevated expression was inhibited by the pretreatment of gingerols in both the ileum and area postrema (0.55±0.03,0.42±0.04b, 0.32±0.04bvs0.73±0.03;0.47±0.03c,0.36±0.05b,0.31±0.05b vs0.52±0.03, bP<0.01, cP<0.05).
     The levels of cGMP、cAMP、IP3、DAG/DG were measured by ELISA, the levels of cGMP significantly decreased after treatment with copper sulfate (26.82±5.93a vs42.37±10.84;25.60±7.44a vs40.18±12.03, a P<0.01), the decreased levels were inhibited by the pretreatment of gingerols (35.43±6.26b,37.92±7.23b,40.50±7.25b vs26.82±5.93;32.62±8.55b,35.12±3.76b,39.48±5.93b vs25.60±7.44, b P<0.01). Copper sulfate and gingerols had no significant effect on the level of cAMP、IP3、DAG/DG..
     Conclusions:
     1. Gingerols has good activity against apomorphine-induced emesis of minks possibly by inhibiting central increase of substance P, c-fos and NK1receptors.
     2. Gingerols has good activity against loperamide-induced emesis of minks possibly by inhibiting central increase of substance P, c-fos and NKi receptors.
     3. Gingerols could decrease copper sulfate-induced emesis of minks, this may be related to inhibiting central or peripheral increase of SP, c-fos protein and NK1receptors, the decreased levels of cGMP were inhibited by the pretreatment of gingerols.
引文
1. Andrews PL, Horn CC. Signals for nausea and emesis:Implications for models of upper gastrointestinal diseases [J]. Auton Neurosci,2006,125:100-115.
    2. Ryo Saito, Yukio Takano, Hiro-o Kamiya. Roles of Substance P and NK; Receptor in the Brainstem in the Development of Emesis [J]. J Pharmacol Sci,2003,91:87-94
    3. Hesketh PJ. Potential role of the NK1 receptor antagonists in chemotherapy-induced nausea and vomiting [J]. Support Care Cancer,2001,9:350-354.
    4. Watson JW, Gonsalves SF, Fossa AA, et al. The anti-emetic effects of CP-99,994 in the ferret and the dog:role of the NK1 receptor [J]. Br J Pharmacol,1995,115:84-94
    5. Bountra C., Bunce K., Dale T, et al. Anti-emetic profile of a non-peptide neurokinin NK1 receptor antagonist, CP-99,994 in ferrets [J]. Eur. J. Pharmacol,1993,249:R3-R4.
    6. Gonsalves S, Watson J and Ashton C. Broad spectrum antiemetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets [J]. Eur J Pharmacol,1996,305:181-185
    7. Gardner CJ, Twissell DJ, Dale TJ, et al. The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor antagonist GR203040 [J]. Br J Pharmacol,1995, 116:3158-3163
    8. Gardner CJ, Armour DR, Beattie DT, et al. GR205171:A novel antagonist with high affinity for the tachykinin NK1 receptor and potent broad-spectrum anti-emetic activity [J]. Regul Pept,1996, 65:45-53
    9. Badreldin H. Ali, Gerald Blunden, Musbah O. Tanira, et al. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe):A review of recent research [J]. Food Chem Toxicol,2008,46:409-420
    10. Fischer-Rasmussen, W., Kjaer, S.K., et al. Ginger treatment of hyperemesis gravidarum [J]. Eur. J. Obstet. Gynecol. Reprod. Biol,1990,38:19-24.
    11. Chaiyakunapruk N, Kitikannakorn N, Nathisuwan S, et al. The efficacy of ginger for the prevention of postoperative nausea and vomiting:a meta-analysis [J]. Am J Obstet Gynecol,2006, 194:95-99.
    12. Sharma SS, Kochupillai V, Gupta SK, et al. Antiemetic efficacy of ginger (Zingiber officinale) against cisplatin-induced emesis in dogs [J]. J. Ethnopharmacol,1997,57:93-96.
    13.赵德雪,杨志宏,李明等.生姜对呕吐模型水貂止呕作用的研究[J].中国药事.2006,10:601-604.
    14. Qian QH, Yue W, Wang YX, et al. Ginerols inhibits cisplatin-induced vomiting by down regulating 5-hydroxytryptamine, dopamine and substance P expression in minks [J]. Arch Pharm Res.2009,32(4):565-73.
    15. Qian QHi, Yue W, Chen WH, et al. Effect of ginerols on substance P and NK1 receptor expression in a vomiting model of mink [J].Chin Med J,2010,123 (4):478-484
    16. Holmes AM, Rudd JA, Tattersall FD, et al. Opportunities for the replacement of animals in the study of nausea and vomiting [J]. Brit J Pharmacol,2009,157:865-880
    17. Barnes J H. The physiology and pharmacology of emesis [J]. Molec. Aspects Med,1984,7: 397-508.
    18. Borison HL, Wang SC. Physiology and pharmacology of vomiting [J]. Pharmac. Rev.1953,5:193
    19. TattersallL FD, Rycroft W, Hill RG, et al. Enantioselective Inhibition of Apomorphine-induced Emesis in the Ferret by the Neurokinin, Receptor Antagonist CP-99,994 [J]. Neuropharmacol, 1994,33 (2):259-260
    20. Ariumi H, Satio R, Nago S, et al. The role of tachykinin NK1 receptors in the area postrema of ferrets in emesis [J]. NeurosciLett,2000,286:123-126
    21. Stable R, Andrews PL R, Bailey HE, et al. Antiemetic properties of the 5-HT3 receptor antagonist, GR38032F[J]. Cancer Treat Rev,1987,14:333-336
    22. Minami M, Endo T, Tamakai H, et al. Antiemetic effects of N-3389, a newly synthesized 5-HT3 and 5-HT4 receptor antagonist, in ferrets [J]. Eur J Pharmacol,1997,321:333-342
    23. Ferrier CM, de Witte HH, Straatman H, et al. Comparison of immunohistochemistry with immunoassay (ELISA) for the detection of components of the plasminogen activation system in human tumour tissue [J]. Brit J Cancer,1999,79 (2):1534-154.
    24. Jovanovic-Micic D, Samardzic R, Beleslin DB. The role of alpha-adrenergic mechanisms within the area postrema in dopamine-induced emesis [J]. Eur J Pharmacol,1995,272:21-30
    25. Yoshikawa T, Yoshida N, Hosoki K. Involvement of dopa-mine D3 receptors in the area postrema in R(+)-7-OH-DPATinduced emesis in the ferret [J]. Eur J Pharmacol,1996,301:143-149
    26. d'Allens H, Aubert B, Bons J et al. Ondansetron:a specific 5-HT3 serotonin receptor inhibitor a new antiemetic in oncology [J]. Bull Cancer,1991,78:1139-1146
    27. Lehmann A, Kerrberg L. Effects of N-methyl-D-aspartate receptor antagonists on cisplatin-induced emesis in the ferret [J]. Neuropharmacol,1996,35:475-481
    28. Bhandari P, Bingham S and Andrews PL:The neuropharmacology of loperamide-induced emesis in the ferret:the role of the area postrema, vagus, opiate and 5-HT3 receptors [J]. Neuropharmacol,1992,31:735-742
    29. Watson JW, Gonsalves SF, Fossa AA, et al. The anti-emetic effects of CP-99,994 in the ferret and the dog:role of the NK1 receptor [J]. Br J Pharmacol,1995,115:84-94
    30. Bountra C, Gale JD, Gardner CJ, et al. Towards understanding the aetiology and pathophysiology of the emetic reflex:novel approaches to antiemetic drugs [J]. Oncology 1996,5:102-109
    31. Saito R, Suehiro Y, Ariumi H, et al. Anti-emetic effects of a novel NK-1 receptor antagonist HSP-117 in ferrets [J]. Neurosci Lett,1998,254:169-172
    32. Tattersall FD, Rycroft W, Hill RG et al. Enantioselective inhibition of apomorphine-induced emesis in the ferret by the neurokininl receptor antagonist CP-99,994 [J]. Neuropharmacol,1994,33:259-260
    33. Andrews PL, Okada F, Woods AJ, et al. The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, thehouse musk shrew [J]. Br J Pharmacol,2000, 130:1247-1254
    34. Miller AD, Nonaka S. Mechanisms of vomiting induced by serotonin-3 receptor agonists in the cat:effect of vagotomy, splanchnicectomy or area postrema lesion [J]. J Pharmacol Exp Ther, 1992,260:509-517
    35. Lucot JB, Obach RS, McLean S, et al. The effect of CP-99994 on the responses to provocative motion in the cat [J]. Br J Pharmacol 1997,120:116-120
    36. Von Eulex US, Caddum JH. An unidentified deprdssor substance in certain tissue extracts [J]. Physiol,1931,72:74-89
    37.何舒.化疗止吐药的研究进展[M].国外医学药学分册,2003,30(60):333-337.
    38. Diemunsch P, Grmalot L. Potential of substance P antagonists as antiemetics [J]. Drugs.2000,60 (3):533-546.
    39. Holahan MR, White NM. Amygdala c-Fos induction corresponds to unconditioned and conditioned aversive stimli but not to freezing [J].BehaV Braill Res,2004,152:109-120.
    40. Hess US, Gall CM, Granger R, et al. Differential patterns of c-fos mRNA expression inl amygdala during successive stages of odor discrimination learning [J]. Leam Mem,1997,4:262-283.
    41. Ressler KJ, Paschall G, Zhou X, et al. Regulation of synaptic plasticity genes during consolidation of fear conditioning [J]. J Neurosci,2002,22:7892-7902.
    42. Paul LA, Duncan GE, Kuhn C, et al. Neural adaptation in imipramine-treated rats processed in forced swim test:assessment of time course, handing, rats strain and amline uptake [J]. J Phanmcol Exp Ther,1990,252:997-1005.
    43. Duncan GE, Johnson KB, Breese GR. Topographic patterns of brain activity in response to swim stresss:assessment by 2-de-oxyglucose uptake and expression of Fos-like immunoreactivity [J]. J Neurosci,1993,13 (9):3932-3943
    44. Bonaz B, Tache Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion [J]. Brain Res,1994,652:56-64.
    45. Miller AD, Ruggiero DA. Emetic reflex arc revealed by expression of the immediate-early gene c-fos in the cat [J]. J Neurosci.1994,14 (2):871-88
    46. Billig I, Yates BJ, Rinaman. Plasma hormone levels and central c-Fos expression in ferrets after systemic administration of cholecystokinin. Am J Physiol Regul Integr Comp Physiol [J].2001, 281 (4):R1243-55.
    47.孔哲,季淑梅,高萱,等.腹腔注射顺铂氯氨铂后大鼠中枢神经系统内Fos蛋白的表达[J].神经解剖学杂志,2005,21(3):276-280.
    48. Reynolds DJM, Barber NA, Grahame-Smitb DG, et al. Cisplatin-evoked induction of c-fos protein in the brainstem of the ferret:the effect of cervical vagotomy and the anti-emetic 5-HT3 receptor antagonist granisetron (BRL 43694) [J]. Brain Res,1991,565:231-236.
    49. Horn CC, Ciucci M, Chaudhury A. Brain Fos expression during 48h after cisplatin treatment: neural pathways for acute and delayedvisceral sickness [J]. Auton Neurosci,2007,132:44-51.
    50. Grelot L, Dapzol J, Esteve E, et al. Potent inhibition of both the acute and delayed emetic responses to cisplatinin piglets treatedwit h GR205171, a novel highly selective tachykinin NK1 receptorantagonist [J]. Pharmacol,1998,124 (8):1643-1650.
    51. Huang QR, Iwamoto M, Aoki S, et al. Anti-5-bydroxytryptamine 3 effect of galanolactone, diterpenoid isolated from ginger [J]. Chem. Phann. Bull.1991,39:397-399.
    52. Yamahara J, Rong HQ, Iwamoto M, et al. Active components of ginger exhibiting antiserotinergic action[J]. Phytother Res,1989,3:70-71.
    53. Buhandari P, Bingham S, Andrews PLR. The neuropharmacology of loperamide-induced emesis in the ferret:the role of the area postrema, vagus, opiate and 5-HT3 receptors [J]. Neuropharmaccl. 1992,31:735-742.
    54. Bermudez J, Boyle EA, Miner WD, et al. The antiemetic potential of the 5-hydroxytryptamine 3 receptor antagonist BRL43694 [J]. Brit J Cancer,1988,58:644-650.
    55. King GL. Characterization of radiation-induced emesis in the ferret [J]. Radiat Res,1988,114: 599-612.
    56. Faas H, Feinle C, Enck P, et al. Modulation of gastric motor activity by a centrally acting stimulus, circular vection, in humans. Am J Physiol Gastrointest Liver Physiol,2001,280:G850-857.
    57. Zaman S, Woods AJ, Watson JW, et al. The effect of the NK1 receptor antagonist CP-99,994 on emesis and c-fos protein induction by loperamide in the ferret [J]. Neuropharmacol,2000,39: 316-323
    58. Stefanini E, Clement-Cormier Y. Detection of dopamine receptors in the area postrema [J]. Br J Pharmacol,1981,74:257-260
    59. Barnes JM, Barnes NM, Costall B, et al. Topographical distribution of 5-HT3 receptor recognition sites in the ferret brain stem [J]. Naunyn Schmiedebergs Arch Pharmacol,1990,342:17-21
    60. Jakeman LB, To ZP, Eglen RM, et al. Quantitative autoradiography of 5-HT4 receptors in brains of three species using two structurally distinct radioligands, [3H] GR113808 and [3H]BIMU-1[J]. Neuropharmacol,1994,33:1027-1038
    61. Baude A, Shigemoto R. Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat:a light and electron microscope study [J]. J Comp Neurol,1998,402:181-196
    62. Wang SC, Borison HL. A new concept of organization of the central emetic mechanism:recent studies on the sites of action of apomorphine, copper sulfate and cardiac glycosides [J]. Gastroenterol,1952,22:1-12
    63. Krowicki ZK, Hornby PJ. Substance P in the dorsal motor nucleus of the vagus evokes gastric motor inhibition via neurokinin 1 receptor in rat [J]. J Pharmacol Exp Ther,2000,293:214-221
    64. Shiroshita Y, Koga T, Fukuda H. Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons [J]. Eur J Pharmacol,1997,339:183-192
    65. Saito R, Suehiro Y, Ariumi H, et al. Anti-emetic effects of a novel NK1 receptor antagonist HSP-117 in ferrets [J]. Neurosci Lett,1998,254:169-172
    66. Spina D. PDE4 inhibitors:current status [J]. Br J Pharmacol,2008,155:308-315.
    67. Lee A. Adverse drug reactions.2nd edn. Pharmaceutical Press:2007, London.
    68. Awang DVC. Ginger [J]. Can. Pharm. J,1992,125:309-311.
    69. Wang WH, Wang ZM. Studies of commonly used traditional medicine-ginger [J]. Zhong guo Zhong Yao Za Zhi.2005,30,1569-1573.
    70. Tapsell LC, Hemphill I, Cobiac L, et al. Health benefits of herbs and spices:the past, the present, the future [J]. Med. J,2006,185 (4):S4-S24.
    71.匡芮,匡轩,朱海涛.生姜的功能因子与医疗保健作用[J],中国食物与营养,2007,2:52-53
    72.卢传坚,欧明,王宁生.姜的化学成分分析研究概述[J].中药新药与临床药理,2003,14(5):215-217
    73. Weidner MS, Sigwart K. The safety of a ginger extract in the rat [J]. J. Ethnopharmacol,2000,73: 513-520.
    74. Weidner MS, Sigwart K. Investigation of the teratogenic potential of a Zingiber fficinale extract in the rat [J]. Reprod. Toxicol,2001:1575-1580.
    75. Andrews PLR, Bhandari P. Resiniferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret [J]. Neuropharmacol,1993,32:799-806.
    76. Watson J W,.Gonsalves SF, Fossa AA, et al. The anti-emetic effectsof CP-99,994 in the ferret and the dog role of the NK, receptor [J]. Pharmacol,1995,115 (1):84-94.
    77.岳旺,张芳,王蕾,等.一种新型呕吐动物模型水貂[J].药学学报,2003,38(2):89-91
    78. Saito R, Suehiro Y, Ariumi H, et al. Anti-emetic effects of a novel NK1 receptor antagonist HSP-117 in ferrets [J]. Neurosci. Lett,1998,254:169-172.
    79. Miner WD, Sanger GJ. Inhibition of cisplatin induced vomiting by selective 5HT-M receptor antagonism [J]. Br. J. Pharmacol,1986,88:497-499.
    80. Costall B, Domeney AM, Naylor RJ, et al.5-hydroxytryptamine M receptor antagonism to prevent cisplatin-induced emesis [J]. Neuropharmacol,1986,26:669-677.
    81. Fitzprick LR, Pendley CE, Lambert R, et al. Preclinical pharmacology of RG-12915, an extremely potent serotonin-3 receptor antagonist and blocker of antineoplastic induced emesis [J]. Gastroenterol,1990,98:A494.
    82. Yoshida N, Omoya H, Ito T. DAT-582 a novel serotonin 3 receptor antagonist is a potent and long lasting anti-emetic agent in the ferret and dog [J]. J. Pharmacol. Exp. Ther.,1992,260:1151-1165
    83. Costall B, Domeney AM, Naylor RJ, et al. Fluphenazine, ICS 205,930 and dl-fenfluramine differentially antagonize drug induced emesis in the ferret [J]. Neuropharmacol,1990,29: 453-462.
    84. Bhandari P, Bingham S, Andrews PLR. The neuropharmacology of loperamide-induced emesis in the ferret:The role of the area postrema, vagus, opiate and 5-HT3 receptors [J]. Neuropharmacol, 1992,31:735-742.
    85. Bermudez J, Boyle EA, Miner WD, et al. The anti-emetic potential of the 5-hydroxytryptamine-3 receptor antagonist BRL 43694 [J]. Br. J. Cancer,1989,58:644-651.
    86. Cordts RF, Yochmowitz MG, Hardy KA. Evaluation of domperidone as a modifier of gamma-radiation induced emesis [J]. Int. J. Rad. Oncol. Biol. Phys.,1987,13:1333-1337.
    87. Roylance RR, Andrews RLR, Hawthorn J, et al. The anti-emetic effects of atropine sulfate in the ferret [J]. Br. J. Pharmacol.,1989,96:330P.
    88. Lang IM, Marvig J. Functional localization of specific receptors mediating gastrointestinal motor correlates of vomiting [J]. Am. J. Physiol,1989,256:G92-G99.
    89. Makale MT, King GL. Surgical and pharmacological dissociation of cardiovascular and emetic responses to intragastric CuSO4 [J]. Am. J. Physiol.,1992,263:R284-291.
    1. Andrews PL, Horn CC. Signals for nausea and emesis:Implications for models of upper gastrointestinal diseases [J]. Auton Neurosci,2006,125:100-115.
    2. Hesketh PJ, Kris MG, Grunberg SM, et al. Proposal for classifying the acute emetogenicity of cancer chemotherapy [J]. J Clin Oncol,1997,15:103-109.
    3. Rudd JA, Andrews PL. Mechanisms of acute, delayed and anticipatory vomiting in cancer and cancer treatment. In:Hesketh P (ed). Management of nausea and vomiting in cancer and cancer treatment [M]. Jones and Barlett Publishers Inc.:New York,2004:pp.15-66.
    4. Spina D. PDE4 inhibitors:current status [J]. Br J Pharmacol,2008,155:308-315.
    5. Hoffmann IS, Roa M, Torrico F, et al. Ondansetron and metformin-induced gastrointestinal side effects [J]. Am J Ther 2003,10:447-451.
    6. Nauck MA, Meier JJ. Glucagon-like peptide 1 and its derivatives in the treatment of diabetes [J]. Regul Pept,2005,128:135-148.
    7. Van Sickle MD, Oland LD, Ho W, et al. Cannabinoids inhibit emesis through CB1 receptors in the brainstem of the ferret [J]. Gastroenterol,2001,121:767-774
    8. Chen MC, Wu SV, Reeve JR, et al. Bitter stimuli induce Ca signaling and CCK release in enteroendocrine STC-1 cells:role of L-type voltage-sensitive Ca channels [J]. Am J Physiol Cell Physiol,2006,291:C726-739.
    9. Lee A. Adverse drug reactions.2nd edn. Pharmaceutical Press:London,2007
    10. Hornby PJ. The influence of hyoscine and atropine on apomorphine-induced vomiting in man [J]. Clin Sci (Lond),2001,15:177-182.
    11. Fukuda H, Koga T, Furukawa N, et al. The site of antiemetic action of NK1 receptor [J]. Antiemetic Therapy,2003:33-77.
    12. Yates BJ, Miller AD, Lucot JB. Physiological basis and pharmacology of motion sickness:an update [J]. Brain Res Bull,1998,47:395-406.
    13. Golding JF, Gresty MA. Motion sickness [J]. Curr Opin Neurol 2005,18:29-34.
    14. Pavlov IP. Conditioned reflexes; an investigation of the physiologicalactivity of the cerebral cortex [M]. Dover Publications:New York,1960
    15. Andrews PL, Davis CJ, Bingham S, et al. The abdominal visceral innervation and the emetic reflex: pathways, pharmacology, and plasticity [J]. Can J Physiol Pharmacol,1990,68:325-345.
    16. Parker LA, Limebeer CL. Conditioned gaping in rats:a selectivemeasure of nausea [J]. Auton Neurosci,2006,129:36-41.
    17. Hall G, Symonds M. Over shadowing and latent inhibition of context aversion conditioning in the rat [J]. Auton Neurosci,2006,129:42-49.
    18. Andresen MC, Kunze DL. Nucleus tractus solitarius-gateway to neural circulatory control. Annu Rev Physiol [J],1994,56:93-116.
    19. Loewy AD. Central autonomic pathways. In:Loewy AD, Spyer KM (eds). Central regulations of autonomic functions [M]. Oxford University Press:New York,1990:88-103.
    20. Fukuda H, Koga T, Furukawa N, et al. The site of antiemetic action of NK1 receptor [M]. Antiemetic Therapy,2003:33-77.
    21. Onishi T, Mori T, Yanagihara M, et al. Similarities of the neuronal circuit for the induction of fictive vomiting between ferrets and dogs [J]. Auton Neurosci,2007,136:20-30.
    22. Sanger GJ, Andrews PL. Treatment of nausea and vomiting:gaps in our knowledge [J]. Auton Neurosci,2006,129:3-16.
    23. Gross PM, Wall KM, Pang JJ, et al. Microvascular specializations promoting rapid interstitial solutedispersion in nucleus tractus solitaries [J]. Am J Physiol,1990,259:1131-1138.
    24. Morest DK. A study of the structure of the area postrema withGolgi methods [J]. Am J Anat,1960, 107:291-303.
    25. Richard JG. New agents, new treatment and antiemetic therapy [J]. Semin Oncol,2002,29 (1):119-124.
    26.张魁华,舒斯云.大鼠脑纹状体边缘区内5-HT受体的分布[J].第一军医大学学报,2000,20(3):228-231
    27. Minami M, Endo T, Nemoto M, et al. How do toxic emetic stimuti cause 5-HT release in the gut and the brain.In Reynolds DJ M, Andrews P L R, Davis CJ. (Eds).Serotonin and the Scientific Basis of Anti-Emetic [M].Therapy Oxford clinical communication:Oxford,1995:68-76.
    28. Bradley PB, Engel G, Feniuk W, et al. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine [J]. Neuropharmacol,1986,25:563-576.
    29.隋红,陆杰.5-HT3受体的分型、调节剂及拮抗剂的研究应用[J].国外医学·生理、病理科学与临床分册,2005(25):179-182.
    30. Boess GF, Beroukhim R, Martin IL. Ultrastructure of 5-hydroxytryptamin 3 receptor [J]. Neurochem, 1995,64:1401-1405
    31. Kilpatrick GJ, Jones BJ, Tyers MB. Binding of the 5-HT ligand, [3H]GR65630, to rat area postroma, vagus nerve and the brains of several species [J]. Eur J Phamacol,1989,159:157-164.
    32. Fozard JR. Neuronal 5-HT receptors in the periphery [J].Neuropharmacol,1984,23:1473-1486.
    33. Fratt GD, Bowery NG. The 5-HT3 receptor ligand, [3H]-BRL43694, binds to presynaptic sites in the nucleus tractus solitarius of the rat [J]. Br J Phamacol,1989,97:414-418.
    34.高纯颖,童晓青,徐峰.5-HT3受体拮抗剂抑制化疗致吐的研究进展[J].沈阳药科大学学报,2007,24(4):254-258
    35. Gan TJ. Selective serotonin 5-HT3 recepyor antagonists for postoperative nausea and vomiting:are they all the same?[J]. CNS Drugs,2005,19 (3):225-238.
    36. Tyers MB.5-HT3 receptors [J]. Ann N Y Acad Sci,1990,600:194-202.
    37.于皆平,沈志祥,罗和生主编.实用消化病学[M].北京科学出版社.1999.210.
    38.林,千鹤子.抗癌药物毒副反应的对策[J].日本医学介绍,2001,22(11):491-495.
    39. Elizabet h G R, Etti nger D S.5-HT3 receptor Antagonists for the prevention of chemotherapy-induced nausea and Vomiti ng [J]. Drugs,1998,55 (2):173-189.
    40.何舒.化疗呕吐研究进展[J].宁夏医学杂志,2003,25(3):186-188.
    41. Von Eulex US, Caddum JH. An unidentified deprdssor substance in certain tissue extracts [J]. Physiol,1931,72:74-89
    42.周吕,柯美云.神经胃肠病学与动力[M].北京:科学出版社,2005:182
    43.何舒.化疗止吐药的研究进展[J].国外医学药学分册.2003,30(60):333-337.
    44. Hesketh PJ. Potential role of the NK1 receptor antagonists in chemotherapy-induced nausea and vomiting [J]. Support Care Cancer,2001,9:350-354
    45. Diemunsch P, Grmalot L. Potential of substance P antagonists-antiemetics [J]. Drugs,2000,60 (3):533-546.
    46.仲大铎,王德山.防治化疗呕吐中药复方对神经递质释放的影响[J].实用中医内科杂志,200721(2):73-74
    47. Takeda N, Hasegawa S, Morita M, et al. Pica in rats is analogous to emesis:an animal model in emesis research [J]. Pharmacol Biochem Behav,1993,45:817-821.
    48. Andrews PL, Horn CC. Signals for nausea and emesis:Implications for models of upper gastrointestinal diseases [J]. Auton Neurosci,2006,125:100-115.
    49. De-Jonghe BC, Hom CC. Chemotherapy-induced pica and anorexia are reduced by common hepatic branch vagotomy in the rat [J]. Am J Physiol Regul Integr Comp Physiol,2008,294 (3):756-765.
    50.鞠传霞,岳旺,孙福生,等.塞来昔布抑制顺铂致大鼠迟发性呕吐的作用及机制研究[J],中国药房,2009,20(28):2174-2176
    51.王心慧,杨志宏,赵德雪,等.生姜与辣椒提取物联合抗呕吐作用研究[J].医药导报,2008,27(3):274-277.
    52. Horn CC, Ciucci M, Chaudhury A. Brain Fos expression during 48h after cisplatin treatment:neural pathways for acute and delayedvisceral sickness [J]. Auton Neurosci,2007,132(1/2):44-51.
    53.孔哲,季淑梅,高萱,等.腹腔注射顺铂氯氨铂后大鼠中枢神经系统内Fos蛋白的表达[J].神经解剖学杂志,2005,21(3):276-280.
    54.刘旭东,仲大铎,王德山等.不同致吐物质对大鼠十二指肠组织P物质表达影响的研究[J].吉林中医药,2010,30(1):70-71.
    55. Kurozumi C, Yamagata R, Himi N, et al. Emetic stimulation inhibits the swallowing reflex in deeerebrate rats [J]. Auton Neurosci,2008,140(1/2):24-29.
    56. Saeki M, Sakai M, Satio R, et al. Effects of HSP-117,a novel tachykinin NK1-receptor antagonist on ciplatin-induced pica as a new evaluation of delayed emesis in rats [J]. Jpn J Pharmacol, 2001,86:359-362
    57. Rudd JA, Yamamoto K,Yamatodani A,et al.Differential action of ondansetron and dexamethasone to modify cisplatin-induced actue and delayed kaolin consumption (pica) in rats [J]. Eur J Pharmacol, 2002,454 (1):47-52
    58. Aung HH, Dey L, Mehendale S, et al. Scutellaria baicalensis extract decreases cisplatin-induced pica in rats [J]. Cancer Chemother Pharmacol,2003,52 (6):453-458
    59. Bradner WT, Schurig JE. Toxicology screening in small animals [J]. Cancer Treat Rev,1981:93-102.
    60. Liu YL, Malik N, Sanger GJ, et al. Pica-a model of nausea? Species differences in response to cisplatin [J]. Physiol Behav,2005,85:271-277.
    61.Yamamoto K, Yarnatodani A. An animal model for the study of emesis using rats and mice [J]. Folia Pharmacol Jpn (Nihon Yakurigaku Zasshi).2008,132:83-88.
    62.张再康,韩晓,白建乐等.对顺铂所致家鸽化疗呕吐模型方法的改进[J].中国药理学通报,200218(5):584-585.
    63.何前松,冯泳,孟庆华等.几种致吐药物比较优选顺铂剂量造家鸽化疗呕吐模型[J].辽宁中医药大学学报,2009,2:158-160.
    64. Ueno S, Matsuki N, Saito H.Suncus murinus:a new experimental model in emesis reseach [J]. Life Sci,1987,41 (4):513-518
    65. Matsuki N, Ueno S, Kaji T, et al. Emesis induced by cancer chemotherapeutic agents in the sucus murinus:a new experimental modal [J]. Jpn J Pharmacol,1988,48 (2):303-306
    66. Sam TS, Cheng JT, Johnston KD, et al. Action of 5-HT3 receptors antagonists and dexamethasone to modity cisplatin-induced emesis in suncus murinus (house musk shrew) [J]. Eur J Pharmacol,2003 472(1-2):135-145
    67. Minthorn E, Mencken T, King AG, et al. Pharmacokinetics and brain penetration of casopitant, a potent and selective neurokinin-1 receptor antagonist, in the ferret [J]. Drug Metab Dispos,2008,36: 1846-1852.
    68. Cote B, Frenette R, Prescott S, et al.Substituted aminopyridines as potent and selective phosphodiesterase -4 inhibitors [J]. Bioorg Med Chem Lett,2003,13:741-744.
    69. Robichaud A, Savoie C, Stamatiou PB, Tattersall FD, Chan C. PDE4 inhibitors induce emesis in ferrets via a noradrenergic pathway [J]. Neuropharmacol,2001,40:262-269.
    70. Watanabe Y, Okamoto M, Ishii T, et al. Long-lasting anti-emetic effect of T-2328, a novel NK1 antagonist[J]. J Pharmacol Sci,2008,107:151-158.
    71. Shishido Y, Wakabayashi H, Koike H, et al. Discovery and stereoselective synthesis of the novel isochroman neurokinin-1 receptor antagonist CJ-17,493 [J]. Bioorg Med Chem,2008,16: 7193-7205.
    72. Martin M. The severity and pattern of emesis following different cytotoxic agents [J]. Oncology, 1996,53 (suppl 1):26-31.
    73. Fauser AA, Fellhauer M, Hoffmann M, Link H, Schlimok G, Gralla RJ. Guidelines for anti-emetic therapy:acute emesis [J]. Eur J Cancer,1999,35:361-370.
    -74. Andrews PL. Mechanisms of acute, delayed and anticipatory vomiting in cancer and cancer treatment. In:Hesketh P (ed). Management of nausea and vomiting in cancer and cancer treatment [M]. Jones and Barlett Publishers Inc.:New York,2004:15-66.
    75. Rizk AN, Hesketh PJ. Antiemetics for cancer chemotherapy-induced nausea and vomiting. A review of agents in development [J]. Drugs R D,1999,2:229-235.
    76. Qian QH, Yue W, Wang YX, et al. Ginerols inhibits cisplatin-induced vomiting by down regulating 5-hydroxytryptamine, dopamine and substance P expression in minks [J]. Arch Pharm Res,2009 32 (4):565-573.
    77. Qian QH, Yue W, Chen WH, et al. Effect of ginerols on substance P and NK1 receptor expression in a vomiting model of mink [J].Chin Med J,2010,123 (4):478-484
    78..岳旺,张芳,王蕾等.一种新型呕吐动物模型水貂[J].药学学报,2003,38(2):89-91
    79. Zhang F, Wang L, Yang ZH, et al. Value of mink vomit model in study of anti-emetic drugs [J]. World J Gastroenterol,2006,12 (8):1300-1302.
    80. Klein RL, Militello TE, Ballinger CM. Antiemetic effect of metoclopramide evaluation in humans [J]. Anesth Analg,1968,47:259-264.
    81. Shields KG, Ballinger CM, Hathaway BN. Antiemetic effectiveness of haloperidol in human volunteers challenged with apomorphine [J]. Anesth Analg,1971,50:1017-1024.
    82. Isaacs B, Macarthur JG. Influence of chlorpromazine and promethazine on vomiting induced with apomorphine in man [J]. Lancet,1954,267:570-572.
    83. Isaacs B. The influence of hyoscine and atropine on apomorphine-induced vomiting in man [J]. Clin Sci(Lond),1956,15:177-182.
    84. Proctor JD, Chremos AN, Evans EF, Wasserman AJ. An apomorphine-induced vomiting model for antiemetic studies in man [J]. J Clin Pharmacol,1978,18:95-99.
    85. Brizzee KR, Neal LM, Williams PM. The chemoreceptor trigger zone for emesis in the monkey [J]. Am J Physiol,1955,180:659-662.
    86. Costall B, Domeney AM, Naylor RJ. A model of nausea and emesis in the common marmoset [J]. Br J Pharmacol,1986,88:375.
    87. Parrott RF, Ebenezer IS, Baldwin BA, et al. Hormonal effects of apomorphine and cholecystokinin in pigs:modification of the response to cholecystokinin by a dopamine antagonist (metoclopramide) and a kappa opioid agonist (PD117302) [J]. Acta Endocrinol (Copenh),1991,125:420-426.
    88. Niemegeers CJ. Antiemetic specificity of dopamine antagonists [J]. Psychopharmacol (Berl),1982, 78:210-213.
    89. Niemegeers CJ. The apomorphine antagonism test in dogs. Experimental evidence and critical considerations on specific methodological criteria [J]. Pharmacol,1971,6:353-364.
    90. Harding RK, Hugenholtz H, Kucharczyk J, et al. Central mechanisms for apomorphine-induced emesis in the dog [J]. Eur J Pharmacol,1987,144:61-65.
    91. Borison HL, Hebertson LM. Role of medullary emetic chemoreceptor trigger zone (CT zone) in postnephrectomy vomiting in dogs [J]. Am J Physiol,1959,197:850-852.
    92. Share NN, Chai CY, Wang SC. Emesis Induced by Intracerebroventricular Injections of Apomorphine and Deslanoside in Normal and Chemoreceptive Trigger Zone Ablated Dogs[J]. J Pharmacol Exp Ther,1965,147:416-421
    93. Laffan RJ, Borison HL. Emetic action of nicotine and lobeline [J]. J Pharmacol Exp Ther,1957,121: 468-476.
    94. Andrews PL, Davis CJ, Bingham S, Davidson HI, Hawthorn J, Maskell L. The abdominal visceral innervation and the emetic reflex:pathways, pharmacology, and plasticity [J]. Can J Physiol Pharmacol,1990,68:325-345.
    95. Wang Y, Lavond DG, Chambers KC. The effects of cooling the area postrema of male rats on conditioned taste aversions induced by LiCl and apomorphine [J]. Behav Brain Res 1997,82:149-158.
    96. Takeda N, Hasegawa S, Morita M,et al. Pica in rats is analogous to emesis:an animal model in emesis research [J]. Pharmacol Biochem Behav 1993,45:817-821.
    97. Andrews PL, Horn CC.Singals for nausea and emesis:Implication for models of upper gastrointestinal disease [J].Auto Neurosci,2006,125:100-115
    98. Magee LA, Mazzotta P, Koren G. Evidence-based view of safety and effectiveness of pharmacologic therapy for nausea and vomiting of pregnancy [J]. Am J Obstet Gynecol,2002,186 (5):S256
    99. Schwartz JC. Histarninergic transmission in the mammaliam brain[J]. Physiot Rev,1991,71:1
    100.林梅英.昂丹司琼和苯海拉明在肿瘤化疗中镇吐作用的临床观察[J].临床医药实践杂志,2006,15(6):452-453.
    101.陆益龙,黄非,朱彦等.血液系肿瘤化疗性呕吐治疗的临床研究[J].镇江医学院学报,2000,10(3):457-459
    102. King TL, Murphy PA. Evidence-Based Approaches to Managing Nausea and Vomiting in Early Pregnancy [J]. J Midwifery Wom Heal,2009,54 (6):430-444.
    103. Seto A, Einarson T, Koren G. Pregnancy outcome following first trimester exposure to antihistamines:Meta-analysis [J]. Am J Perinatol,1997,14):119-124.
    104. Mi nami M, Ogawa T, Endo T, et al.Cyclophosphami de i ncrease 5-hydroxytryptami ne release from the isolated ileum of the rat [J]. Res Commun Pat hol Phar macol.,1997,97:13-24.
    105.王德山,单德红,王宏等.旋复代赭汤加味防治化疗诱发呕吐作用机制的研究[J].中国实验方剂学杂志,2001,7(3):47
    106. Minami M, Endo T, Hamau N, et al.Serotonin and anticancer drug induced emesis [J]. Yakugaku Zasshi,2004,124 (8):491
    107.袁静.拮抗剂抑制化疗止吐作用的评价[M].国外医学药学分册,1998,25(5):279-283
    108. Karim F, Roerig SC, Saphied D. Role of 5-hydroxytryptamine 3 antagonists in the prevention of emesis caused by anticancer therapy [J]. Biochem pharmacol,1996,52:685-692
    109. Locatelli MC. Cisplatinum based chemotherapy:role of the antiserotoninergic ondansetron in prevention of emesis [J]. J Chemother,1993,5 (3):197-206.
    110.马廉,王家勤,林丽敏,等.国产昂丹司琼和枢复宁预防白血病化疗呕吐的疗效比较[J].实用儿科临床杂志,2000,15(5):293-294
    111.王钢莲,陈本川.5-HT3受体拮抗剂预防化疗引起的恶心和呕吐-药理和临床疗效的比较[M].国外医药-合成药、生化药、制剂分册,1999,20(1):40-45
    112. Fukunaka N, Sagae S, Kudo R, et al. Effects of granisetron and its combination with examethasone on cisplatin-induced delayed emesis in the ferret [J].Gen pharmacol,1998,31 (5):775-781
    113. Jantunen IT, Kataja VV, Johanson RT, et al. Ondansetron and tropisetron with dexamethasone in the prophylaxis of acute vomiting induced by noncisplatin-containing chemotherapy [J]. Acta Oncol, 1992,31 (5):573-575
    114. Wolf H. Preclinical and clinical pharmacology of the 5-HT3 receptor antagonists [J]. Scand J Rheumatol,2000,29 (4):37-45.
    115. Leslie RA, Reynolds DJM, Andrews PLR, et al. Evidence for 5-HT3 recogniton sites on vagal a fferent terminals in the brainstem of the ferret [J]. J Neurosci,1990,38:667-673
    116. Kuryshev YA, Brown AM, Wang L, et al. Interactions of the 5-hydroxytryptamine 3 antagonist class of antiemetic drugs with human cardiac ion channels [J]. Pharmacol Exp Ther,2000,259 (2):614-620
    117.肖志华,于丁,邓华帮,等.思密达在预防顺铂所致迟发性恶心呕吐反应中的作用[J].癌症,2000,19(8):799-801
    118.王肇炎,肿瘤药物治疗[M].北京:人民卫生出版社,1997:133
    119. Singh L, Field MJ, Hughes J et al. The tachykinin NKi receptor antagonist PD154075 blocks cisplatin-induced delayed emesis in the ferret [J]. Eur Pharmacol,1997,321 (2):209-216.
    120. Tattersall FD, Rycroft W, Francis B, et al. Tachykinin NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets [J]. Neuropharmacol,1996, 35(8):1121-1129.
    121. Rudd J A, Jordan C C, Naylor R J. The action of the NK1 tachykinin receptor antagonist CP-99,994 in antagonizing the acute and delayed emesis induced by cisplatin in the ferret [J].. Br J Pharmacol, 1996,119:931.
    122. Tattersall F D. The novel NK; receptor antagonist MK-0869 (L-754,030) and its water soluble phosphoryl prodrug,L-758298 inhibit acute and delayed cisplatin-induced emesis in ferrest [J].Neuropharmacol,2000,39 (4):6542-663.
    123. Hesketh PJ, Van Belle S, Aapro M, et al. Differential involvement of neurotransmitters through the time course of cisplatin-induced emesis as revealed by therapy with specific, receptor antagonists [J]. Eur J Cancer,2003,39 (8):1074-1080.
    124. Grelot L, Dapzol J. Esteve E, et al. Potent inhibition of both t he acute and delayed emetic responses to cisplatin in piglets treated with GR205171, a novel highly selective tachykinin NK, receptorantagonist [J]. Pharmacol,1998,124 (8):1643-1650.
    125. Ariumi H, Satio R,Nago S, et al. The role of tachykinin NK-1 receptors i n t he area postrema of efrrets i n emesis [J]. Neurosci Let,2000,286 (2):123-126.
    126. Gardner CJ, Twissell DJ, Dale TJ, Gale TJ, et al. The broad-spectrum anti-emetic activity of the novel non-petide tachykinin NK1 receptor antagonist GR20304 [J]. Brit J Pharmacol,1995, 116:3158-3163.
    127. Saito R, Ari umi H, Kubota H, et al. The role of tachyki ni n NK-lreceptors i n emetic action i n t he area postrema of ferrets [J]. Ni pponyakurigaku Zasshi,1999,114 (1):209-214.
    128. Watson J W, Gonsalves SF, Fossa AA, et al. The anti-emetic effectsof CP-99,994 in the ferret and t he dog role oft he NK, receptor [J]. Phar macol,1995,115 (1):84-94.
    129. Zaman S, Woods S J,Waston J W, et al. The effect of the NK1 receptor antagonist CP-99,994 on emesis and c-fos protein induction by loperamide in the ferret [J]. Neuropharmacol,2000,39:316.
    130. Grelot L, Dapzol J, Esteve E, et al. Potent inhibition of both the acute and delayed emetic responses to cisplatin in piglets treated with GR205171, a novel highly selective tachykinin NK1 receptorantagonist [J]. Phar macol,1998,124 (8):1643-1650.
    131. Navari RM, Rei nhardt RR, Gralla RJ, et al. Reduction of cisplati n-i nduced emesis by a selective neurokinin-1-receptor antagonist [J]. N Engl J Med,1999,340):190-195.
    132. Hesketh P J. Potential role of the NK1 receptor antagonists in chemotherapy-induced nausea and vomiting [J]. Support Care Cancer,2001,9 (5):350.
    133. Campos D, Pereira JR, Reinhardt RR, et al. Prevention of cisplatin-induced emesis by the oral neurokinin-1 antagonist,MK-869, in combination with granisetron and dexamethasone or with dexamethasonealone[J]. J Clin Oncol,2001,19:1759.
    134. Cocquyt V,Van Belle S,Reinhardt R R,et al. Comparison of L-758298 a prodrug for the selective' neurokinin-1 antagonist L-754030 with ondansetron for the prevention of cisplatin-induced emesis [J]. Eur J Cancer,2001,37:835.
    135. Hesketh PJ, Grunberg SM, Gralla RJ, et al. The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting:a multinational, randomized, double-blind, placebo-controlled trial in patients receiving hish-dose cisplatin--tile Aprepitant Protocol 052 Study Group [J]. J Clin Oncol,2003,21 (22):4112-4119.
    136. Lasseter KC, Gambale J, Jin B, et al. Tolerability of Fosaprepitant and Bioequivalency to Aprepitant in Healthy Subjects [J]. J Clin Pharmacol,2007,47:834-840.
    137. Andrews P.L.R., Rudd JA. The role of tachykinins and the tachykinin NK1 receptor in nausea and emesis [M]. Handbook of Experimental Pharmacoogy. Springer, Tachykinins,2004:359-440.
    138. Diemunsch P, Josh GP, Brichant JF. Neurokinin-1 receptor antagonists in the prevention of postoperative nausea and vomiting [J]. Br J Anaesth,2009,103:7-11
    139.肿瘤化疗止吐药物的合理应用[J].新华药讯,1992,81(2):13-18.
    140. Ioannidis JP, Hesketh-PJ, Lau J. Contribution of dexamethasone to control of chemotherapy-induced nausea and vomiting: a meta-analysis of randomized evidence [J]. J Clin Oncol,2000 18(19):3409-3422.
    141. Ho CM, Ho ST, Wang JJ. Dexamethasone has a central antiemetic mechanism in decerebrated cats [J]. Anesth Analg,2004,99:734-739.
    142. Apfel CC, Korttila K, Abdalla M, et al. Afactorial trial of six interventions for the prevention of postoperative nausea and vomiting [J]. N Engl J Med,2004,350:2441-2451.
    143.Inoue A, Yamada Y, Matsumura Y et al. Randomized study of dexamethasone treatment for delayed emesis, anorexia and fatigue induced by irinotecan [J]. Support Care Cancer,2003,11:528-532.
    144.杨从荣,周咏梅,徐涛.甲泼尼龙的临床应用[J].继续医学教育,2006,20(33):61-64.
    145.陈军,陆建伟,甲基强的松龙联合格拉司琼治疗化疗引起的顽固性呕吐反应[J].河南肿瘤学杂志,2000,13(4):278-279
    146.温善禄,李斌,王丽辉,郑晓方.化疗诱发恶心呕吐的机制及护理[J].国外医学1998,17(4):165