五子衍宗丸对肿瘤相关性疲劳小鼠的影响及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     乳腺癌是全球最常见的肿瘤之一,排在女性肿瘤的首位,也是导致妇女死亡的主要原因。随着社会经济的发展、我国人们对乳腺的自我保健意识的加强以及乳腺癌的诊疗技术的进步,乳腺癌的死亡率正逐渐下降。但是,经历过乳腺癌的人却越来越多。肿瘤相关性疲劳(Cancer-related fatigue, CRF)是乳腺癌患者经历的最常见的不适之一。因此,如何提高这部分日益增多的人群的生活质量就变的越来越重要、越来越有意义。
     目前,国内外大批学者及临床医师对CRF进行了大量的研究,但CRF发生的病理生理学机制仍然不是很清楚。临床上也缺乏广泛认可、确切有效的干预手段。而中医药治疗作为中国传统特色疗法,在肿瘤综合治疗中的作用逐渐被大家认识。CRF的中医发病机制中最主要的是正气不足,气血阴阳亏损。肾中精气既可化生元气,还促进脾胃化生水谷精微,进而奉心化赤为血,又可与血互化,即精血同源也。因此,中医药干预CRF最重要应当是补肾固本。目前,国内对五子衍宗丸的研究及临床应用主要集中在泌尿生殖方面。而我们在临床中发现,五子衍宗丸不仅在泌尿生殖方面有非常好的效果,还发现其能提高人的生活质量。
     因此,本论文选择补肾方药为五子衍宗丸,用其在乳腺癌小鼠模型上进行干预CRF的相关实验研究,以期为临床运用五子衍宗丸干预CRF提供实验依据,并揭示其作用的代谢机制。
     目的
     通过建立乳腺癌小鼠CRF模型,评价中药复方五子衍宗丸对由肿瘤本身及肿瘤化疗所引起的乳腺癌小鼠CRF的作用,并明确中药复方五子衍宗丸缓解CRF的代谢组学机制。
     方法
     实验前,将所有雌性BALB/c小鼠置于游泳箱适应性游泳训练2天,5min/天,水温25℃±1℃。剔除游泳时间过长和过短的小鼠以及过于兴奋和过于安静的小鼠。然后,随机抽取10小鼠作为正常对照(NS, po,20ml/kg, qd)组,剩余小鼠为待制备乳腺癌小鼠CRF模型组。将1×105cells/ml的4T1乳腺癌细胞接种于小鼠右侧腹壁第4对乳房脂肪垫区域的皮下,制备乳腺癌小鼠CRF模型。当瘤块长到50mm3~100mm3(接种后第7天)的时候,按瘤体积随机分为4组,每组10只,分别为肿瘤对照(NS, po,20ml/kg, qd)组、紫杉醇(PTX, ip,10mg/kg, q2d)组、五子衍宗丸(WZYZ, po,1.5g/kg, qd)组、五子衍宗丸+紫杉醇(WZYZ, po,1.5g/kg, qd;PTX, ip,10mg/kg, q2d)组。上述5组小鼠分别进行以下几个方面的实验:
     (1)五子衍宗丸对荷瘤小鼠的一般情况的影响:观察实验过程中各组小鼠的体重、精神状态、活动情况、饮食以及皮毛外观变化。每周对上述小鼠的-般情况进行一次评价。
     (2)五子衍宗丸对荷瘤小鼠的行为学影响:给药的第12天对所有小鼠进行旷场实验。主要观察小鼠在实验箱内的总运动距离、外周格运动距离、中央格运动距离、理毛次数、爬壁次数、大便粒数。于末次给药后30mmin,观察小鼠6min内的悬尾不动时间。
     (3)五子衍宗丸的对荷瘤小鼠的生存时间的影响:末次药后,不再给予任何干预措施,动态观察荷瘤小鼠生存时间,并计算各组小鼠的中位生存时间、平均生存时间及生命延长率。
     (4)五子衍宗丸对荷瘤小鼠的抗疲劳作用:于开始给药前、给药后的第10天、第20天,用7%体重的铅坠系于小鼠尾部,将小鼠放入水温25℃±1℃的游泳箱中进行力竭游泳测试,并记录力竭游泳时间。
     (5)五子衍宗丸对荷瘤小鼠肿瘤生长的抑制作用:另取上述5组小鼠,各组小鼠自接受治疗开始,每3天测量肿瘤体积。在末次给药1小时后,摘眼球采血,分离血浆,置-80℃保存,用于代谢组学研究。并剥离瘤块并称重、计算抑瘤率。
     (6)五子衍宗丸对荷瘤小鼠脏器指数的影响:取前一实验中分离并称重的脾脏、胸腺、肾上腺等器官,按对应的每只小鼠的体重计算脏器指数。
     (7)五子衍宗丸对乳腺癌小鼠CRF血浆代谢组学的研究:应用核磁共振氢谱(1H-NMR)技术获取前面实验中小鼠血浆中的原始代谢指纹图谱信息,通过数据采集处理获得各样本数据信息,采用多元数据统计方法(PCA、PLS-DA、 OPLS-DA)模式识别等方法进行数据处理,得到5组小鼠血浆代谢概况,并进行组间两两比较(NC组与TC组、TC组与PTX组、过TC组与WZYZ组、TC组与WZYZ+PTX组、PTX组与WZYZ+PTX组、WZYZ组与WZYZ+PTX组)。最后结合模型VIP值、归一化积分值筛选出NC组与TC组、TC组与PTX组、过TC组与WZYZ组、TC组与WZYZ+PTX组、PTX组与WZYZ+PTX组、WZYZ组与WZYZ+PTX组组间小鼠血浆有差异的代谢物(潜在分子标志物),结合数据库和文献进行代谢物鉴定,并分析相关代谢途径变化,揭示乳腺癌小鼠CRF的发生机制、WZYZ缓解乳腺癌小鼠CRF的作用机制。
     结果
     (1)五子衍宗丸对荷瘤小鼠的一般情况的影响:给药干预前,5组小鼠之间的精神状态、活动情况、饮食以及皮毛外观等一般情况未见有显著差别。各组小鼠均活泼好动,皮毛光洁整齐,眼睛有神,对食物敏感,逃避反应快。整个实验过程中,NC组小鼠的上述情况未有显著变化。与NC组的小鼠比较,其余4组荷瘤小鼠均逐渐出现毛发稀疏、聚集、不活泼、行动迟缓和进食减少等现象。实验结束时,TC组、PTX组、WZYZ组和WZYZ+PTX组4组小鼠的一般情况从差到相对较好依次为PTX组、TC组、WZYZ组、WZYZ+PTX组。干预前,各组小鼠的体重无显著差别(P>0.05)。干预1周时,NC组小鼠的体重较干预前显著增加(P<0.01),且体重显著重于PTX组小鼠(P<0.01)。干预2周时,NC组小鼠的体重较干预前显著增加(P<0.01),但较干预1周时无显著增加(P>0.05)。TC组、WZYZ组和WZYZ+PTX组小鼠的体重较干预前无显著差异(P>0.05),但较干预1周时有显著差异(P<0.05)。PTX组小鼠的体重较干预前、干预1周时均有显著差异(P<0.01)。与NC组小鼠体重比较,TC组、PTX组、WZYZ组、WZYZ+PTX组的小鼠体重均分别有显著差异(P<0.01)。与TC组小鼠体重比较,NC组和PTX组小鼠的体重分别有显著差异(P<0.01)。与PTX组小鼠体重比较,NC组、TC组、WZYZ组、WZYZ+PTX组的小鼠体重均分别有显著差异(P<0.01)。干预3周时,各组小鼠的体重维持在第2周水平。
     (2)五子衍宗丸对荷瘤小鼠的行为学影响:①旷场实验结果:总运动距离最远的是NC组小鼠,PTX组最少。与NC组比较,TC组、PTX组小鼠的总运动距离均有显著差异(P<0.05~0.01)。外周格运动距离最远的是NC组小鼠,TC组最少。与NC组比较,TC组、PTX组、WZYZ组、WZYZ+PTX组小鼠的外周格运动距离均有显著差异(P<0.05~0.01)。与TC组比较,NC组、WZYZ+PTX组的外周格运动距离均有显著差异(P<0.01)。中央格运动距离最远的是TC组小鼠,NC组最少。与NC组比较,TC组、WZYZ组小鼠的中央格运动距离均有显著差异(P<0.01)。与TC组比较,NC组、WZYZ+PTX组的中央格运动距离均有显著差异(P<0.05~0.01)。大便粒数,与NC组比较,TC组、WZYZ组小鼠的大便粒数显著增多(P<0.05),而PTX组小鼠的大便粒数显著减少(P<0.01)。与TC组比较,NC组、PTX组、WZYZ+PTX组的大便粒数均显著减少(P<0.05~0.01)。与PTX组比较,NC组、TC组、WZYZ组、WZYZ+PTX组小鼠的大便粒数均显著增多(P<0.01)。爬壁次数,NC组小鼠的爬壁次数最多,而WZYZ组小鼠最少。与NC组比较,WZYZ组和WZYZ+PTX组小鼠的爬壁次数显著减少(P<0.05~0.01)。理毛次数,PTX组和WZYZ+PTX组小鼠的理毛次数相对较多,其次是正常组,TC组最少。与NC组比较,TC组和WZYZ组小鼠的理毛次数显著减少(P<0.05~0.01)。与TC组比较,NC组、PTX组和WZYZ+PTX组小鼠的理毛次数显著增多(P<0.01)。与PTX组比较,TC组、WZYZ组小鼠的理毛次数显著减少(P<0.01)。②悬尾实验结果:与NC组小鼠相比,TC组小鼠的不动时间有所延长,但无显著差异(P>0.05)。与TC组小鼠比较,WZYZ组、WZYZ+PTX组小鼠的不动时间显著缩短(P<0.05~0.01)。
     (3)五子衍宗丸的对荷瘤小鼠的生存时间的影响:与TC组比较,PTX组、WZYZ组、WZYZ+PTX组小鼠的中位生存时间及平均生存时间均显著延长(P<0.05~0.01)。与PTX组比较,TC组小鼠的中位生存时间及平均生存时间均显著缩短(P<0.01)。WZYZ+PTX组小鼠的中位生存时间及平均生存时间均显著延长(P<0.05)。与TC组小鼠相比,WZYZ+PTX组、WZYZ组和PTX组3组小鼠的生命延长率分别为26.07%、8.02%和13.03%。
     (4)五子衍宗丸对荷瘤小鼠的抗疲劳作用:①同一时间点各组小鼠力竭游泳时间的比较:干预前,5组小鼠的力竭游泳时间无显著差异(P>0.05)。干预第10天时,与NC组比较,TC组、PTX组、WZYZ+PTX组小鼠的力竭游泳时间显著减少(P<0.01)。与TC组比较,NC组小鼠的力竭游泳时间显著延长(P<0.01),而PTX组、WZYZ组、WZYZ+PTX组的游泳时间无显著差异(P>0.05)。与PTX组比较,NC组、WZYZ组小鼠的力竭游泳时间显著延长(P<0.05~0.01)。干预20天时,与NC组比较,TC组、PTX组、、WZYZ组(P<0.01)和WZYZ+PTX组小鼠的力竭游泳时间显著减少(P<0.01)。与TC组比较,NC组小鼠的力竭游泳时间显著延长(P<0.01),而PTX组、WZYZ组、WZYZ+PTX组的游泳时间无显著差异(P>0.05)。与PTX组比较,NC组、WZYZ组、WZYZ+PTX组小鼠的力竭游泳时间显著延长(P<0.05~0.01)。②不同时间点的同组小鼠力竭游泳时间比较:对于NC组小鼠而言,与干预前比较,干预第10天、干预第20天的游泳时间显著延长(P<0.05-0.01);与干预第10天比较,干预第20天时小鼠的游泳能力无显著变化(P>0.05)。对于TC组小鼠而言,与干预前比较,干预第10天游泳时间有下降趋势,但无显著差异(P>0.05),而干预第20天的游泳时间显著下降(P<0.01);与干预第10天比较,干预第20天时小鼠的游泳能力显著下降(P<0.05)。对于PTX组小鼠而言,与干预前比较,干预第10天、干预第20天的游泳时间显著下降(P<0.01);与干预第10天比较,干预第20天时小鼠的游泳能力显著下降(P<0.01)。对于WZYZ组小鼠而言,与干预前比较,干预第10天时小鼠的游泳能力无显著变化(P>0.05),干预第20天时小鼠的游泳能力显著下降(P<0.05);与干预第10天比较,干预第20天时小鼠的游泳能力显著下降(P<0.01)。对于WZYZ+PTX组小鼠而言,与干预前比较,干预第10天、干预第20天时小鼠的游泳能力显著下降(P<0.05-0.01);与干预第10天比较,干预第20天时小鼠的游泳能力无显著变化(P>0.05)。
     (5)五子衍宗丸对荷瘤小鼠肿瘤生长的抑制作用:实验结束时,与TC组比较,WZYZ+PTX组、PTX组的瘤重均显著减轻(P<0.01);与TC组比较,WZYZ+PTX组的肿瘤体积显著变小(P<0.05)。WZYZ+PTX组、WZYZ组和PTX组3组小鼠的抑瘤率分别为33.66%、20.65%和7.16%。
     (6)五子衍宗丸对荷瘤小鼠脏器指数的影响:①脾指数:与NC组比较,TC组、PTX组、WZYZ组和WZYZ+PTX组的脾指数均显著升高(P<0.01)。与TC组比较,PTX组、WZYZ组、WZYZ+PTX组的脾指数无显著差异(P>0.05)。与PTX组比较,WZYZ组、WZYZ+PTX组的脾指数无显著差异(P>0.05)。②胸腺指数:NC组小鼠的胸腺指数最高,PTX组最小。与NC组比较,TC组、PTX组、WZYZ组和WZYZ+PTX组的胸腺指数显著下降(P<0.01)。与TC组比较,PTX组的胸腺指数显著下降(P<0.01),而WZYZ组、WZYZ+PTX组小鼠的胸腺指数无显著差异(P>0.05)。与PTX组比较,WZYZ组、WZYZ+PTX组小鼠的胸腺指数显著升高(P<0.01)。③肾上腺指数:与NC组比较,TC组、PTX组的肾上腺指数显著升高(P<0.01)。与TC组比较,WZYZ+PTX组小鼠的肾上腺指数显著降低(P<0.05)。与PTX组比较,WZYZ组、WZYZ+PTX组小鼠的肾上腺指数无显著差异(P>0.05)。
     (7)五子衍宗丸对乳腺癌小鼠CRF血浆代谢组学的研究:①五组小鼠之间血浆NMR的分析:用PLS-DA模型,最终计算出5组小鼠血浆样本共有4个主成分,5组之间基本分离,且各组相关集中,组间可基本区分。②NC组与TC组组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,TC组和NC组各自集中,两组可完全区分。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,分类效果更好。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到18个有统计学意义的变量(P<0.05-0.01)。与NC组小鼠比较,TC组小鼠血浆中的异亮氨酸、丙氨酸、谷氨酸、谷氨酰胺、乳酸、精胺、精氨琥珀酸、甘油磷酸酯、3-羟基丁酸水平升高,3-羟基月桂酸、3-羟基异戊酸、甲基丙二酸、天冬氨酸、神经酸水平下降。这些化合物与脂肪酸代谢、三羧酸循环、氨基酸代谢、丙酮酸代谢、糖异生、葡萄糖-丙氨酸循环、β-丙氨酸代谢、线粒体电子传递链、苹果酸-天冬氨酸穿梭等多个代谢通路相关。③TC组与PTX组小鼠组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,TC组和PTX组各自集中,两组可完全区分。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,两组小鼠两组样本之间显著区分,但PTX组样本之间较TC组分散。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到14个有统计学意义的变量(P<0.05~0.01)。与TC组小鼠比较,PTX组小鼠血浆中的亚精胺、二羟基丙酮、磷酸胆碱、肌醇、瓜氨酸水平升高,甘油磷酸酯、丙酰甘氨酸、谷氨酰胺、天冬氨酸、丝氨酸、葡萄糖-6-磷酸、赤藓糖、神经酸水平下降。这些化合物与丙酮酸代谢、氨基酸代谢、亚精胺和精胺代谢、脂肪酸代谢、半乳糖代谢、肌醇代谢、甘油磷酸穿梭等多个代谢通路相关。④TC组与WZYZ组组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,TC组和WZYZ组各自集中,两组可完全区分。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,分类效果更好。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到2个有统计学意义的变量(P<0.05~0.01)。与TC组小鼠比较,WZYZ组小鼠血浆中的甘油磷酸酯水平升高,肌醇水平下降。这2个化合物与肌醇代谢、甘油脂质代谢、甘油磷酸穿梭、线粒体电子传递链等多个代谢通路相关。⑤TC组与WZYZ+PTX组组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,TC组和WZYZ+PTX组各自集中,两组可完全区分。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,分类效果更好。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到17个有统计学意义的变量(P<0.05~0.01)。与TC组小鼠比较,WZYZ+PTX组小鼠血浆中的2-羟基丁酸、异亮氨酸、皮质酮、瓜氨酸、丙酰甘氨酸水平升高,谷氨酸、丙酮酸、亚精胺、丙二酸、二羟基丙酮、β-丙氨酸、磷酸胆碱、肌醇、天冬氨酸、丝氨酸3-羟基丁酸水平下降。这些化合物与三羧酸循环、脂肪酸代谢、丙酸代谢、亚精胺和精胺代谢、氨基酸代谢、糖异生、葡萄糖-丙氨酸循环、甘氨酸和丝氨酸代谢、糖酵解、丙酮酸代谢、肌醇代谢、甘油磷酸穿梭、线粒体电子传递链、苹果酸-天冬氨酸穿梭、磷脂的合成等多个代谢通路相关。⑥PTX组与WZYZ+PTX组组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,PTX组和WZYZ+PTX组各自集中,两组可完全区分。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,分类效果更好。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到3个有统计学意义的变量(P<0.05~0.01)。与PTX组小鼠比较,WZYZ+PTX组小鼠血浆中的赤藓糖、神经酸、磷酸烯醇丙酮酸水平升高。这3个化合物主要与磷酸戊糖途径、糖酵解、丙酮酸代谢、氨基酸代谢、脂肪酸代谢等多个代谢通路相关。⑦WZYZ组与WZYZ+PTX组组间两两比较:采用PCA、PLS-DA方法进行数据处理和模式识别后,WZYZ组和WZYZ+PTX组两组分离趋势增强,但仍存在一定的重叠,两组尚未能完全区分开来。进一步用OPLS-DA模型处理数据后,两组样本集中趋势更显著,分类效果更好。综合载荷矩阵图、S图、VIP值、归一化积分值共筛选得到8个有统计学意义的变量(P<0.05~0.01)。与WZYZ组小鼠比较,WZYZ+PTX组小鼠血浆中的2-羟基丁酸、异亮氨酸、辛酰甘氨酸、皮质酮、磷酸胆碱、甘油磷酸酯、瓜氨酸、丙酰甘氨酸水平升高。这些化合物与三羧酸循环、脂肪酸代谢、丙酸代谢、线粒体电子传递链、氨基酸代谢、类固醇合成、甘油磷酸穿梭、甘油脂质代谢、线粒体电子传递链、磷脂的合成等多个代谢通路相关。
     结论
     1、在4TI乳腺癌细胞接种于右侧腹壁第4对乳房脂肪垫区域的皮下制备的乳腺癌小鼠模型存在CRF,且CRF的程度随肿瘤的生长而加重。乳腺癌小鼠CRF的发生机制可能与肿瘤本身的增殖所导致的脂肪酸代谢、三羧酸循环、氨基酸代谢、丙酮酸代谢、糖异生、葡萄糖-丙氨酸循环、β-丙氨酸代谢、线粒体电子传递链、苹果酸-天冬氨酸穿梭等多个代谢通路紊乱有关。
     2、应用PTX对乳腺癌小鼠化疗能加重乳腺癌小鼠的CRF,且CRF的程度随化疗的时间延长而加重。PTX加重乳腺癌小鼠的CRF的发生机制可能与PTX引起小鼠丙酮酸代谢、氨基酸代谢、亚精胺和精胺代谢、脂肪酸代谢、半乳糖代谢、肌醇代谢、甘油磷酸穿梭等多个代谢通路紊乱有关。
     3、单独应用WZYZ能显著改善荷瘤小鼠的一般情况、延长小鼠生存时间,实验过程中有缓解乳腺癌小鼠CRF的作用的趋势,但无统计学差异。WZYZ对乳腺癌小鼠CRF的影响可能是通过调节肌醇代谢、甘油脂质代谢、甘油磷酸穿梭、线粒体电子传递链等多个代谢通路有关。
     4、WZYZ和PTX联合应用能显著改善由肿瘤本身及肿瘤化疗所引起的CRF,且效果比单独应用WZYZ好。WZYZ和PTX联合应用缓解乳腺癌小鼠的CRF作用机制可能是通过调节三羧酸循环、脂肪酸代谢、丙酸代谢、亚精胺和精胺代谢、氨基酸代谢、糖异生、葡萄糖-丙氨酸循环、甘氨酸和丝氨酸代谢、糖酵解、丙酮酸代谢、肌醇代谢、甘油磷酸穿梭、线粒体电子传递链、苹果酸-天冬氨酸穿梭、磷脂的合成等多个代谢通路有关。
Objective
     To evaluate effect of WZYZ alleviates CRF which caused by the tumor and the chemotherapy of paclitaxel (PTX) in breast cancer mice CRF model. Reveal the metabolism mechanism of WZYZ alleviates CRF.
     Methods
     Before the experiment, all female BALB/c mice were trained in the swimming tank (25℃±℃) for2days (5min/day). Then, exclude the mice which the swimming time is too long or too short and too excited or too quiet. Randomly selected10mice as normal controls (NS, po,20ml/kg, qd) mice, and the rest mice were prepared for breast cancer cell inoculation.4TI breast cancer cells were inoculated in subcutaneous of the fourth pair breast fat pad region of mouse right side of the abdominal wall to prepare the mouse model of CRF. Each mouse was injected0.1ml4T1breast cancer cells (1×106cells/ml). When the tumor grows to50mm3and100mm3(about day7after inoculation), the mice were divided in to four groups (10mice/group) according to the tumor volume. The four groups are tumor control (NS, po,20ml/kg, qd) group, PTX (PTX, ip,10mg/kg, q2d) group, WZYZ (WZYZ, po,1.5g/kg, qd) group and WZYZ+PTX (WZYZ, po,1.5g/kg qd; PTX, ip,10 mg/kg, q2d) group. Then the following aspects of the experiment were carried out on the5groups of mice (NC group, TC group, PTX group, WZYZ group and WZYZ+PTX):
     (1) The effect of WZYZ on the general situation of the tumor-bearing mice:The Weight, mental state, activity, diet, and fur appearance changes of mice in each group were observed during the experiment. The general situation of the mice was evaluated for each week.
     (2) The effect of WZYZ on the behavior of the tumor-bearing mice:All mice were conducted open field test at the12th day after administration. The total movement distance, the distance of peripheral lattice, the distance of central lattice, frequency of grooming, climbing frequency and stool amount of mice in the experimental tank were observed.30min after the last administration, observe the immobility time of all mice by the TS-200tail suspension test instrument.
     (3) The effect of WZYZ on the survival time of tumor-bearing mice:Observe the survival time of mice in the behavior experiment without any interventions. When all mice were died in this experiment, calculate the median survival time, mean survival time and the life extension rate of mice in each group.
     (4) The effect of WZYZ on the anti-fatigue effects of the tumor-bearing mice: Take another of the5groups of mice. Then observe the exhaustive swimming time of all mice in the weight-loaded swimming test. A tin wire (7%of body weight) was loaded on the tail root of each mouse. The mice were tested three times (0d,10d and20d after administration).
     (5) The effect of WZYZ on the tumor growth inhibition of the tumor-bearing mice:Take another of the5groups of mice. Two-dimensional measurements were taken with calipers every three days and calculate the tumor volume. After the last administration, all mice were sacrificed, collected the blood and separate the plasma, stored at-80℃for metabolomics research. Then peel the tumor tissue and weighted. And the tumor inhibitory rate was calculated.
     (6) The effect of WZYZ on the organs index of the tumor-bearing mice: weighted the spleen, thymus and adrenal gland take from the previous experiment, and calculate the organs index.
     (7) The effect of WZYZ on the plasma metabolomics of CRF mice model: Metabolomic finger printing was acquired by1H-NMR. Multivariate data statistic (PCA,PLS-DA,OPLS-DA) was used to pattern recognition. Then we got the5groups of mice plasma metabolic profiles. Then we compare the data group between group (NC group and TC group, TC group and PTX group. TC group and WZYZ group, TC group and WZYZ+PTX group, PTX group and WZYZ+PTX group, WZYZ group and WZYZ+PTX group). Then chosen the VIP and normalized integral value filter out the differences metabolites (potential molecular markers) in plasma between groups. The endogenous metabolites were assayed by HMBD data base and other document. Then, analyze the changed metabolic pathways. At last, reveal the mechanism of CRF and how WZYZ alleviates the CRF.
     Results
     (1) The effect of WZYZ on the general situation of the tumor-bearing mice: Before the administration, the general mental state, activity, diet, and fur appearance of mice between the5groups had no significant difference. Mice in each group were lively. Their for was bright, clean and tidy. Their eyes were bright. All mice were sensitive to food and escape quickly. The situation of mice in the NC group keeps the same during the experiment. Compared with NC group mice, the other4groups mice's hair were gradually sparse, and they gradually inactive, move slowly and eating less. At the end of the experiment, the general situation of mice in this4groups from the poor to relatively good order were TC group, PTX group, WZYZ group and WZYZ+PTX group. Before administration the body weight of mice in each group had no significant difference (P>0.05). However, after1week administration, body weight in NC group were significantly increased compared to the previous (P<0.01), and significantly heavier than PTX (P<0.01). After2weeks administration, body weight in NC group were significantly increased compared to the beginning (P<0.01), but there had no significant increase compared with intervention1st week (P>0.05). The body weight of mice in NC group were significantly heavier than other4groups (P<0.01). The body weight of mice in TC group, WZYZ group and WZYZ+PTX group had no significant changes to the beginning (P>0.05), but significant changes to the1st week (P<0.05). The body weight of mice in PTX group had significant changes to the beginning and1st week (P<0.01). Compared with TC group mice, the body weight of mice in PTX group had significantly changes (P<0.01). Compared with PTX group mice, the body weight of mice in WZYZ group and WZYZ+PTX group had significant changes (P<0.01). After3weeks administration, the body weight of mice in each group maintain at the level of the2week.
     (2) The effect of WZYZ on the behavior of the tumor-bearing mice:(a) open-field experimental results:The farthest total movement distances were the mice in NC group, and PTX group were the least. Compared with mice in NC group, the total movement distance of mice in TC group and PTX group were significantly differences (P<0.05-0.01). The farthest distance of peripheral lattice was mice in NC group, and TC group were the least. Compared with mice in NC group, the distance of peripheral lattice of TC group, PTX group and WZYZ group of mice were significantly reduced (P<0.01), and had no significant difference in WZYZ+PTX group(P>0.05). Compared with mice in TC group, the distance of peripheral lattice of mice in NC group and WZYZ+PTX group were significant increase (P<0.01). The farthest distances of central lattice were the mice in TC group, and NC group were the least. Compared with mice in NC group, the distance of central lattice of TC group and WZYZ group were significantly increased (P<0.01). Compared with mice in TC group, the distance of central lattice of NC group and WZYZ+PTX group were significantly decreased (P<0.05-0.01). The stool amount in NC group, TC group and WZYZ group were significantly increased (P<0.05), and significantly decreased in PTX group (P<0.01). Compared with mice in TC group, the stool amount in NC group, PTX group and WZYZ+PTX group were significantly decreased (P<0.05-0.01). Compared with mice in PTX group, the stool amount in NC group, TC group, WZYZ Group and WZYZ+PTX group were significantly increased (P<0.05-0.01). The frequencies of climbing of mice in NC group were the most, and least in WZYZ group. Compared with mice in NC group, the frequencies of climbing of mice in WZYZ group and WZYZ+PTX group were significantly decreased (P<0.05-0.01). The mice in PTX group and WZYZ+PTX group had higher frequencies of grooming than other groups, the mice in TC group had the least. Compared with mice in NC group, the frequency of grooming of mice in TC group and WZYZ group were significantly decreased (P<0.05-0.01). Compared with mice in TC group, the frequency of grooming of mice in NC group, PTX group and WZYZ+PTX group were significantly increased (P<0.01). Compared with mice in PTX group, the frequency of grooming of mice in TC group and WZYZ group were significantly decreased (P<0.05-0.01).(b) Tail suspension test results:The immobility time of mice in TC group were longer than NC group, but there was no significant difference between the two groups (P>0.05). Compared with mice in TC group, the immobility time of mice in WZYZ group and WZYZ+PTX group were significantly shorter (P<0.05-0.01).
     (3) The effect of WZYZ on the survival time of tumor-bearing mice:Compared with mice in TC group, the median survival time and the average survival time in other3groups were significantly prolonged (P<0.05-0.01). Compared with mice in PTX group, the median survival time and the average survival time in WZYZ+PTX group were significantly prolonged (P<0.05), and significantly decreased in TC group (P<0.01). Compared with mice in TC group, the survival time of WZYZ+PTX group, WZYZ group and PTX group were prolonged26.07%,8.02%and13.03%, respectively.
     (4) The effect of WZYZ on the anti-fatigue effects of the tumor-bearing mice:(a) Swimming time between the groups at same time points:There were no significant differences between the5groups (P>0.05) at the beginning. At10th day after administration, the swimming ability of mice in NC group were significantly longer than TC group, PTX group and WZYZ+PTX group (P<0.01). Compared with mice in TC group, the swimming time in PTX group, WZYZ group and WZYZ+PTX group had no significant differences (P>0.05). Compared with mice in PTX group, the swimming ability of mice in NC group and WZYZ group were significantly prolonged (P<0.05-0.01). At20th day after administration, the swimming ability of mice in NC group were significantly longer than other4groups (P<0.01). Compared with mice in TC group, the swimming time of mice in PTX group, WZYZ group and WZYZ+PTX group had no significant differences (P>0.05). Compared with mice in PTX group, the swimming ability of mice in WZYZ+PTX group and WZYZ group were significantly prolonged (P<0.01).(b) Swimming time at different time points of each group mice:With the intervention time increased, the swimming ability of mice in NC group showed a gradual increase trend, and a gradual decrease trend in TC group, PTX group and WZYZ+PTX group. Compared with the mice in NC group at0day, the swimming ability was significantly increased at10th day and20th day (P<0.05-0.01). Compared with the mice in TC group at0day, the swimming ability had no significantly changes at10th day (P>0.05), but was significantly decreased at20th day (P<0.01). Compared with the mice in PTX group at0day, the swimming ability was significantly decreased at10th day and20th day (P<0.01). Compared with the mice in WZYZ group at0day, the swimming ability had no significantly changes at10th day (P>0.05), but was significantly decreased at20th day (P<0.05). Compared with the mice in WZYZ+PTX group at0day, the swimming ability was significantly decreased at10th day and20th day (P<0.05-0.01).
     (5) The effect of WZYZ on the tumor growth inhibition of the tumor-bearing mice:Compared with mice in TC group, the tumor weight in WZYZ+PTX group and PTX group were significantly lighter (P<0.01). Compared with mice in TC group, the tumor volume in WZYZ+PTX group were significantly smaller (P<0.05). The tumor inhibition rates of WZYZ+PTX group, WZYZ group and PTX group were33.66%,20.65%and7.16%, respectively.
     (6) The effect of WZYZ on the organs index of the tumor-bearing mice:(a) Spleen index:Compared with mice in NC group, the spleen index in tumor bearing mice (TC group, PTX group, WZYZ group and WZYZ+PTX group) were significantly increased (P<0.01). Compared with mice in TC group, the spleen index in PTX group, WZYZ group and WZYZ+PTX group have no difference (P>0.05). Compared with mice in PTX group, the spleen index in WZYZ group and WZYZ+PTX group have no difference (P>0.05).(b) Thymus index:The thymus index of mice in NC group was higher than other groups, and the least was in PTX group. Compared with mice in NC group, the thymus index of mice in tumor bearing mice (TC group, PTX group, WZYZ group and WZYZ+PTX group) were significantly decreased (P<0.01). Compared with mice in TC group, the thymus index of mice of PTX group were significantly decreased (P<0.01). Compared with mice in PTX group, the thymus index of mice in WZYZ group and WZYZ+PTX group were significantly increased (P<0.01).(c) Adrenal index:Compared with mice in NC group, the adrenal index of mice in TC group and PTX group were significantly increased (P<0.01). Compared with mice in TC group, the adrenal index of mice in WZYZ+PTX group were significantly decreased (P<0.05). Compared with mice in PTX group, the adrenal index of mice in WZYZ group and WZYZ+PTX group had no difference (P>0.05).
     (7) The effect of WZYZ on the plasma metabolomics of CRF mice model:(a) The5groups1H-NMR-based plasma analysis of CRF mice:The samples of5groups were divided by the PLS-DA model, and calculated4principal components.(b) Compare between NC group and TC group:The PCA and PLS-DA model can divided the samples of NC group and TC group. And the OPLS-DA model was divided better. Then, found18significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value (P<0.05~0.01). Compared with mice in NC group, the levels of isoleucine, alanine, glutamic acid, glutamine, lactic acid, spermine, argininosuccinic acid, glycerol3-phosphate and3-hydroxybutyric acid were increased in TC group, and the levels of3-hydroxylauric acid,3-hydroxyisovaleric acid, methylmalonic acid, aspartic acid and nerve acid were decreased in TC group. These compounds were related to metabolic pathways of fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, pyruvate metabolism, gluconeogenesis, glucose alanine cycle,β-alanyl acid metabolism, mitochondrial electron transport chain and malate-aspartate shuttle.(c) Compare between TC group and PTX group:The PCA and PLS-DA model were divided the samples of TC group and PTX group. And the OPLS-DA model was divided better. Then, found14significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value (P<0.05-0.01). Compared with mice in TC group, the levels of Spermidine,1,3-dihydroxyacetone, phosphorylcholine, inositol and citrulline were increased in PTX group, and the levels of glycerol3-phosphate, propionylglycine, glutamine, aspartic acid, serine, glucose6-phosphate, erythrose and nerve acid were decreased in PTX group. These compounds were related to metabolic pathways of pyruvate metabolism, amino acid metabolism, spermidine and spermine metabolism, fatty acid metabolism, galactose metabolism, inositol metabolism and glycerol phosphate shuttle,(d) Compare between TC group and WZYZ group:The PCA and PLS-DA model can divided the samples of TC group and WZYZ group. And the OPLS-DA model was divided better. Then, found2significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value (P<0.05-0.01). Compared with mice in TC group, the level of glycerol3-phosphate was increased in WZYZ group, and the level of myoinositol was decreased in'WZYZ group. These compounds were related to metabolic pathways of inositol metabolism, glycerol lipid metabolism, glycerol phosphate shuttle and mitochondrial electron transport chain.(e) Compare between TC group and WZYZ+PTX group:The PCA and PLS-DA model were divided the samples of TC group and WZYZ+PTX group. And the OPLS-DA model was divided better. Then, found17significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value (P<0.05-0.01). Compared with mice in TC group, the levels of2-hydroxybutyric acid, isoleucine, corticosterone, citrulline, ropiponylglycine were increased in WZYZ+PTX group, and the levels of glutamic acid, pyruvic acid, spermidine, malonic acid,1,3-dihydrox, β-alanine, phosphorylcholine, myoinositol, aspartic acid, serine and3-hydroxybutyric acid were decreased in WZYZ+PTX group. These compounds were related to metabolic pathways of tricarboxylic acid cycle, fatty acid metabolism, propionic acid metabolism, spermidine and spermine metabolism, amino acid metabolism, gluconeogenesis, glucose-alanine cycle, glycine and serine metabolism, glycolysis, pyruvate metabolism, inositol metabolism, glycerol phosphate shuttle, the mitochondrial electron transport chain, malic acid-aspartate shuttle and phospholipid synthesis.(f) Compare between PTX group and WZYZ+PTX group:The PCA and PLS-DA model were divided the samples of PTX group and WZYZ+PTX group. And the OPLS-DA model was divided better. Then, found3significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value (P<0.05-0.01). Compared with mice in PTX group, the levels of erythrose, nervonic acid and phosphoenolpyruvic acid were increased in WZYZ+PTX group. These compounds were related to metabolic pathways of pentose phosphate pathway, glycolysis, pyruvate metabolism, amino acid metabolism and fatty acid metabolism.(g) Compare between WZYZ group and WZYZ+PTX group:The PCA and PLS-DA model were divided the samples of PTX group and WZYZ+PTX group, but here are still some overlap between the two groups. And the OPLS-DA model was divided better. Then, found8significant metabolites by the load scatter plot, S-plot, VIP value and normalized integral value(P<0.05-0.01). Compared with mice in WZYZ group, the levels of2-hydroxybutyric acid, isoleucine, capryloylglycine, corticosterone, phosphorylcholine, glycerol3-phosphate and propionylglycine were increased in WZYZ+PTX group. These compounds were related to metabolic pathways of tricarboxylic acid cycle, fatty acid metabolism, propionic acid metabolism, mitochondrial electron transport chain, amino acid metabolism, steroid synthesis, glycerol phosphate shuttle, glycerol lipid metabolism, mitochondrial electron transport chain and phospholipid synthesis.
     Conclusion
     (1) The mouse inoculation with4TI breast cancer cells at the breast fat pad region of the right side of the abdominal wall subcutaneous exist CRF. The degrees of CRF were related to the tumor growth. The occurrence of CRF might related to the disturbance of the metabolic pathways of fatty acid metabolism, tricarboxylic acid cycle, amino acid metabolism, pyruvate metabolism, gluconeogenesis, glucose alanine cycle, β-alanyl acid metabolism, mitochondrial electron transport chain and malate-aspartate shuttle.
     (2) PTX can aggravated CRF, and the degrees of CRF were aggravated according to the chemotherapy period prolonged. The mechanism of PTX aggravated CRF might related to the disturbance of the metabolic pathways of pyruvate metabolism, amino acid metabolism, spermidine and spermine metabolism, fatty acid metabolism, galactose metabolism, inositol metabolism and glycerol phosphate shuttle.
     (3) WZYZ can improve the general situation of the tumor-bearing mice, prolong the survival time. WZYZ can't alleviate CRF. Thoes effect of WZYZ might related to the function of regulated the metabolic pathways of inositol metabolism, glycerol lipid metabolism, glycerol phosphate shuttle and mitochondrial electron transport chain.
     (4) The combination therapy of WZYZ and PTX can significantly alleviate CRF which caused by the breast cancer and the chemotherapy of PTX. The effect of alleviate CRF of the combination therapy of WZYZ and PTX was better than only use WZYZ. The mechanism of combination therapy of WZYZ and PTX alleviate CRF might related to the function of regulated the metabolic pathways of tricarboxylic acid cycle, fatty acid metabolism, propionic acid metabolism, spermidine and spermine metabolism, amino acid metabolism, gluconeogenesis, glucose-alanine cycle, glycine and serine metabolism, glycolysis, pyruvate metabolism, inositol metabolism, glycerol phosphate shuttle, the mitochondrial electron transport chain, malic acid-aspartate shuttle and phospholipid synthesis.
引文
[1]Ferlay J, Shin H R, Bray F, et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J]. Int J Cancer,2010,127(12):2893-2917.
    [2]Gupta D, Lis C G, Grutsch J F. The relationship between cancer-related fatigue and patient satisfaction with quality of life in cancer[J]. J Pain Symptom Manage,2007,34(1):40-47.
    [3]Stone P, Richardson A, Ream E, et al. Cancer-related fatigue:inevitable, unimportant and untreatable? Results of a multi-centre patient survey. Cancer Fatigue Forum[J]. Ann Oncol,2000,11(8):971-975.
    [4]Ahlberg K, Ekman T, Gaston-Johansson F, et al. Assessment and management of cancer-related fatigue in adults[J]. Lancet,2003,362(9384):640-650.
    [5]Cella D. The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale:a new tool for the assessment of outcomes in cancer anemia and fatigue[J]. Semin Hematol,1997,34(3 Suppl 2):13-19.
    [6]Collins J J, Devine T D, Dick G S, et al. The measurement of symptoms in young children with cancer:the validation of the Memorial Symptom Assessment Scale in children aged 7-12[J]. J Pain Symptom Manage,2002,23(1):10-16.
    [7]Dean G E, Spears L, Ferrell B R, et al. Fatigue in patients with cancer receiving interferon alpha[J]. Cancer Pract,1995,3(3):164-172.
    [8]Hann D M, Garovoy N, Finkelstein B, et al. Fatigue and quality of life in breast cancer patients undergoing autologous stem cell transplantation:a longitudinal comparative study[J]. J Pain Symptom Manage,1999,17(5):311-319.
    [9]Irvine D, Vincent L, Graydon J E, et al. The prevalence and correlates of fatigue in patients receiving treatment with chemotherapy and radiotherapy. A comparison with the fatigue experienced by healthy indivi duals [J]. Cancer Nurs,1994,17(5):367-378.
    [10]Jacobsen P B, Hann D M, Azzarello L M, et al. Fatigue in women receiving adjuvant chemotherapy for breast cancer:characteristics, course, and correlates[J]. J Pain Symptom Manage,1999,18(4):233-242.
    [11]Longman A J, Braden C J, Mishel M H. Side-effects burden, psychological adjustment, and life quality in women with breast cancer:pattern of association over time[J]. Oncol Nurs Forum,1999,26(5):909-915.
    [12]Sitzia J, Huggins L. Side effects of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) chemotherapy for breast cancer [J]. Cancer Pract,1998,6(1):13-21.
    [13]Wagner L I, Cella D. Fatigue and cancer:causes, prevalence and treatment approaches[J]. Br J Cancer,2004,91(5):822-828.
    [14]郁仁存,王笑民.21世纪中西医结合肿瘤研究前瞻[J].中医杂志,2001(1):50-52.
    [1]Jemal A, Bray F, Center M M, et al. Global cancer statistics[J]. CA Cancer J Clin,2011,61(2):69-90.
    [2]Gupta D, Lis C G, Grutsch J F. The relationship between cancer-related fatigue and patient satisfaction with quality of life in cancer[J]. J Pain Symptom Manage;2007,34(l):40-47.
    [3]National Comprehensive Cancer Network. Practice guidelines in oncology v.1.(2012) Cancer-related fatigue[J]. http:www.nccn.org/professionals/physician_gls/PDF/fatigue.pdf.
    [4]Stone P, Richardson A, Ream E, et al. Cancer-related fatigue:inevitable, unimportant and untreatable? Results of a multi-centre patient survey. Cancer Fatigue Forum[J]. Ann Oncol,2000,11(8):971-975.
    [5]Ahlberg K, Ekman T, Gaston-Johansson F, et al. Assessment and management of cancer-related fatigue in adults[J]. Lancet,2003,362(9384):640-650.
    [6]Cella D. The Functional Assessment of Cancer Therapy-Anemia (FACT-An) Scale:a new tool for the assessment of outcomes in cancer anemia and fatigue[J]. Semin Hematol,1997,34(3 Suppl 2):13-19.
    [7]Collins J J, Devine T D, Dick G S, et al. The measurement of symptoms in young children with cancer:the validation of the Memorial Symptom Assessment Scale in children aged 7-12[J]. J Pain Symptom Manage,2002,23(1):10-16.
    [8]Dean G E, Spears L, Ferrell B R, et al. Fatigue in patients with cancer receiving interferon alpha[J]. Cancer Pract,1995,3(3):164-172.
    [9]Hann D M, Garovoy N, Finkelstein B, et al. Fatigue and quality of life in breast cancer patients undergoing autologous stem cell transplantation:a longitudinal comparative study[J]. J Pain Symptom Manage,1999,17(5):311-319.
    [10]Irvine D, Vincent L, Graydon J E, et al. The prevalence and correlates of fatigue in patients receiving treatment with chemotherapy and radiotherapy. A comparison with the fatigue experienced by healthy individuals[J]. Cancer Nurs,1994,17(5):367-378.
    [11]Jacobsen P B, Hann D M, Azzarello L M, et al. Fatigue in women receiving adjuvant chemotherapy for breast cancer:characteristics, course, and correlates[J]. J Pain Symptom Manage,1999,18(4):233-242.
    [12]Longman A J, Braden C J, Mishel M H. Side-effects burden, psychological adjustment, and life quality in women with breast cancer:pattern of association over time[J]. Oncol Nurs Forum,1999,26(5):909-915.
    [13]Sitzia J, Huggins L. Side effects of cyclophosphamide, methotrexate, and 5-fluorouracil (CMF) chemotherapy for breast cancer[J]. Cancer Pract,1998,6(1):13-21.
    [14]Wagner L I, Cella D. Fatigue and cancer:causes, prevalence and treatment approaches[J]. Br J Cancer,2004,91(5):822-828.
    [15]Goldstein D, Bennett B, Friedlander M, et al. Fatigue states after cancer treatment occur both in association with, and independent of, mood disorder:a longitudinal study [J]. BMC Cancer,2006,6:240.
    [16]Lis C G, Rodeghier M, Grutsch J F, et al. Distribution and determinants of patient satisfaction in oncology with a focus on health related quality of life[J]. BMC Health Serv Res,2009,9:190.
    [17]Campos M P, Hassan B J, Riechelmann R, et al. Cancer-related fatigue:a review[J]. Rev Assoc Med Bras,2011,57(2):211-219.
    [18]尚修娟,李晓峰.肿瘤相关性疲劳[J].医学综述,2008(7):1021-1023.
    [19]Portenoy R K, Itri L M. Cancer-related fatigue:guidelines for evaluation and management[J]. Oncologist,1999,4(1):1-10.
    [20]Henry D H, Viswanathan H N, Elkin E P, et al. Symptoms and treatment burden associated with cancer treatment:results from a cross-sectional national survey in the U.S[J]. Support Care Cancer,2008,16(7):791-801.
    [21]Hofman M, Ryan J L, Figueroa-Moseley C D, et al. Cancer-related fatigue:the scale of the problem[J]. Oncologist,2007,12 Suppl 1:4-10.
    [22]Andrykowski M A, Curran S L, Lightner R. Off-treatment fatigue in breast cancer survivors:a controlled comparison[J]. J Behav Med,1998,21(1):1-18.
    [23]Andrykowski M A, Donovan K A, Laronga C, et al. Prevalence, predictors, and characteristics of off-treatment fatigue in breast cancer survivors[J]. Cancer,2010,116(24):5740-5748.
    [24]Bower J E, Ganz P A, Aziz N, et al. T-cell homeostasis in breast cancer survivors with persistent fatigue[J]. J Natl Cancer Inst,2003,95(15):1165-1168.
    [25]Bower J E, Ganz P A, Desmond K A, et al. Fatigue in breast cancer survivors: occurrence, correlates, and impact on quality of life[J]. J Clin Oncol,2000,18(4):743-753.
    [26]Broeckel J A, Jacobsen P B, Horton J, et al. Characteristics and correlates of fatigue after adjuvant chemotherapy for breast cancer[J]. J Clin Oncol,1998,16(5):1689-1696.
    [27]Crom D B, Hinds P S, Gattuso J S, et al. Creating the basis for a breast health program for female survivors of Hodgkin disease using a participatory research approach[J]. Oncol Nurs Forum,2005,32(6):1131-1141.
    [28]Fossa S D, Dahl A A, Loge J H. Fatigue, anxiety, and depression in long-term survivors of testicular cancer[J]. J Clin Oncol,2003,21(7):1249-1254.
    [29]Haghighat S, Akbari M E, Holakouei K, et al. Factors predicting fatigue in breast cancer patients[J]. Support Care Cancer,2003,11(8):533-538.
    [30]Ruffer J U, Flechtner H, Tralls P, et al. Fatigue in long-term survivors of Hodgkin's lymphoma; a report from the German Hodgkin Lymphoma Study Group (GHSG)[J]. Eur J Cancer,2003,39(15):2179-2186.
    [31]Servaes P, Verhagen S, Bleijenberg G. Determinants of chronic fatigue in disease-free breast cancer patients:a cross-sectional study [J]. Ann Oncol,2002,13(4):589-598.
    [32]Servaes P, Verhagen S, Schreuder H W, et al. Fatigue after treatment for malignant and benign bone and soft tissue tumors[J]. J Pain Symptom Manage,2003,26(6):1113-1122.
    [33]Cella D, Davis K, Breitbart W, et al. Cancer-related fatigue:prevalence of proposed diagnostic criteria in a United States sample of cancer survivors[J]. J Clin Oncol,2001,19(14):3385-3391.
    [34]Knobel H, Havard L J, Brit L M, et al. Late medical complications and fatigue in Hodgkin's disease survivors[J]. J Clin Oncol,2001,19(13):3226-3233.
    [35]Stone P, Hardy J. Broadley K, et al. Fatigue in advanced cancer:a prospective controlled cross-sectional study [J]. Br J Cancer,1999,79(9-10):1479-1486.
    [36]Glaus A, Crow R, Hammond S. A qualitative study to explore the concept of fatigue/tiredness in cancer patients and in healthy individuals[J]. Eur J Cancer Care (Engl),1996,5(2 Suppl):8-23.
    [37]刘寒青,江志伟,姜军,等.癌性恶液质病人机体组成成分的研究[J].中国实用外科杂志,2002(11).
    [38]Winningham M L, Nail L M, Burke M B, et al. Fatigue and the cancer experience:the state of the knowledge[J]. Oncol Nurs Forum,1994,21(1):23-36.
    [39]Ahlberg K, Ekman T, Gaston-Johansson F, et al. Assessment and management of cancer-related fatigue in adults[J]. Lancet,2003,362(9384):640-650.
    [40]Hick ok J T, Morrow G R, Mcdonald S, et al. Frequency and correlates of fatigue in lung cancer patients receiving radiation therapy:implications for management[J]. J Pain Symptom Manage,1996,11(6):370-377.
    [41]Piper B F, Rieger P T, Brophy L, et al. Recent advances in the management of biotherapy-related side effects:fatigue[J]. Oncol Nurs Forum,1989,16(6 Suppl):27-34.
    [42]Robinson K D, Posner J D. Patterns of self-care needs and interventions related to biologic response modifier therapy:fatigue as a model[J]. Semin Oncol Nurs,1992,8(4 Suppl1):17-22.
    [43]Fawcett T N, Dean A. The causes of cancer-related fatigue and approaches to its treatment[J]. Prof Nurse,2004,19(9):503-507.
    [44]Gabrilove J L, Cleeland C S, Livingston R B, et al. Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients:improvements in hemoglobin and quality of life are similar to three-times-weekly dosing[J]. J Clin Oncol,2001,19(11):2875-2882.
    [45]Demetri G D, Kris M, Wade J, et al. Quality-of-life benefit in chemotherapy patients treated with epoetin alfa is independent of disease response or tumor type:results from a prospective community oncology study. Procrit Study Group[J]. J Clin Oncol,1998,16(10):3412-3425.
    [46]张莉.癌因性疲乏的护理研究进展(综述)[J].天津护理,2006(5):290-292.
    [47]Bower J E, Ganz P A, Aziz N, et al. Fatigue and proinflammatory cytokine activity in breast cancer survivors[J]. Psychosom Med,2002,64(4):604-611.
    [48]Derogatis L R, Morrow G R, Fetting J, et al. The prevalence of psychiatric disorders among cancer patients[J]. JAMA,1983,249(6):751-757.
    [49]Gelinas C, Fillion L. Factors related to persistent fatigue following completion of breast cancer treatment[J]. Oncol Nurs Forum,2004.31(2):269-278.
    [50]Bruera E. Valero V. Driver L, et al. Patient-controlled methylphenidate for cancer fatigue:a double-blind, randomized, placebo-controlled trial[J]. J Clin Oncol,2006,24(13):2073-2078.
    [51]Glaus A, Boehme C, Thurlimann B, et al. Fatigue and menopausal symptoms in women with breast cancer undergoing hormonal cancer treatment[J]. Ann Oncol,2006,17(5):801-806.
    [52]Howell S J, Radford J A, Smets E M, et al. Fatigue, sexual function and mood following treatment for haematological malignancy:the impact of mild Ley dig cell dysfunction[J]. Br J Cancer,2000,82(4):789-793.
    [53]Morant R. Asthenia:an important symptom in cancer patients[J]. Cancer Treat Rev,1996,22 Suppl A:117-122.
    [54]Bower J E. Cancer-related fatigue:links with inflammation in cancer patients and survivors[J]. Brain Behav Immun,2007,21(7):863-871.
    [55]Schubert C, Hong S, Natarajan L, et al. The association between fatigue and inflammatory marker levels in cancer patients:a quantitative review[J]. Brain Behav Immun;2007,21(4):413-427.
    [56]Miller A H, Ancoli-Israel S, Bower J E, et al. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer[J]. J Clin Oncol,2008,26(6):971-982.
    [57]Wood L J, Nail L M, Gilster A, et al. Cancer chemotherapy-related symptoms: evidence to suggest a role for proinflammatory cytokines[J]. Oncol Nurs Forum;2006,33(3):535-542.
    [58]Argiles J M, Busquets S, Toledo M, et al. The role of cytokines in cancer cachexia[J]. Curr Opin Support Palliat Care,2009,3(4):263-268.
    [59]马慧利,申维玺,刘玉梅,等.胃癌细胞因子变化规律与肿瘤相关性乏力关系研究[J].医学研究杂志,2007(7):23-25.
    [60]Bower J E, Ganz P A, Aziz N. Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue[J]. Psychosom Med,2005,67(2):277-280.
    [61]Berger A M, Wielgus K, Hertzog M, et al. Patterns of circadian activity rhythms and their relationships with fatigue and anxiety/depression in women treated with breast cancer adjuvant chemotherapy[J]. Support Care Cancer.2009.
    [62]Payne J K. Altered circadian rhythms and cancer-related fatigue outcomes[J]. Integr Cancer Ther,2011,10(3):221-233.
    [63]Van Gelder R N. Recent insights into mammalian circadian rhythms[J]. Sleep,2004,27(1):166-171.
    [64]Dijk D J, von Schantz M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators[J]. J Biol Rhythms,2005,20(4):279-290.
    [65]Roscoe J A, Morrow G R, Hickok J T, et al. Temporal interrelationships among fatigue, circadian rhythm and depression in breast cancer patients undergoing chemotherapy treatment[J]. Support Care Cancer,2002,10(4):329-336.
    [66]Dzaja A, Arber S, Hislop J, et al. Women's sleep in health and disease[J]. J Psychiatr Res,2005,39(1):55-76.
    [67]Al-Majid S, Mccarthy D O. Cancer-induced fatigue and skeletal muscle wasting:the role of exercise[J]. Biol Res Nurs,2001,2(3):186-197.
    [68]Alt C A. Gore E M, Montagnini M L, et al. Muscle endurance, cancer-related fatigue, and radiotherapy in prostate cancer survivors[J]. Muscle Nerve,2011,43(3):415-424.
    [69]Al-Majid S, Gray D P. A biobehavioral model for the study of exercise interventions in cancer-related fatigue[J]. Biol Res Nurs,2009,10(4):381-391.
    [70]Ng A V. The underrecognized role of impaired muscle function in cancer-related fatigue[J]. J Support Oncol,2010,8(4):177-178.
    [71]Kilgour R D, Vigano A, Trutschnigg B, et al. Cancer-related fatigue:the impact of skeletal muscle mass and strength in patients with advanced cancer [J]. J Cachexia Sarcopenia Muscle,2010,1(2):177-185.
    [72]Rich T A. Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis[J]. J Support Oncol,2007,5(4):167-174, 176-177.
    [73]Reyes-Gibby C C, Wu X, Spitz M, et al. Molecular epidemiology, cancer-related symptoms, and cytokines pathway[J]. Lancet Oncol,2008,9(8):777-785.
    [74]Reyes-Gibby C C, Spitz M, Wu X, et al. Cytokine genes and pain severity in lung cancer:exploring the influence of TNF-alpha-308 G/A IL6-174G/C and IL8-251T/A[J]. Cancer Epidemiol Biomarkers Prev,2007,16(12):2745-2751.
    [75]Irwin M R, Miller A H. Depressive disorders and immunity:20 years of progress and discovery[J]. Brain Behav Immun,2007,21(4):374-383.
    [76]Collado-Hidalgo A, Bower J E, Ganz P A, et al. Cytokine gene polymorphisms and fatigue in breast cancer survivors:early findings[J]. Brain Behav Immun,2008,22(8):1197-1200.
    [77]Mendoza T R, Wang X S, Cleeland C S, et al. The rapid assessment of fatigue severity in cancer patients:use of the Brief Fatigue Inventory[J]. Cancer,1999,85(5):1186-1196.
    [78]Piper B F, Dibble S L, Dodd M J, et al. The revised Piper Fatigue Scale: psychometric evaluation in women with breast cancer[J]. Oncol Nurs Forum,1998,25(4):677-684.
    [79]Borneman T, Piper B F, Koczywas M, et al. A qualitative analysis of cancer-related fatigue in ambulatory oncology [J]. Clin J Oncol Nurs,2012,16(1):E26-E32.
    [80]So W K, Dodgson J, Tai J W. Fatigue and quality of life among Chinese patients with hematologic malignancy after bone marrow transplantation[J]. Cancer Nurs,2003,26(3):211-219,220-221.
    [81]Cella D. Factors influencing quality of life in cancer patients:anemia and fatigue[J]. Semin Oncol,1998,25(3 Suppl 7):43-46.
    [82]Stein K D, Martin S C, Hann D M, et al. A multidimensional measure of fatigue for use with cancer patients[J]. Cancer Pract,1998,6(3):143-152.
    [83]Stein K D, Jacobsen P B, Blanchard C M, et al. Further validation of the multidimensional fatigue symptom inventory-short form[J]. J Pain Symptom Manage,2004,27(1):14-23.
    [84]Pien L C, Chu H, Chen W C, et al. Reliability and validity of a Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C)[J]. J Clin Nurs,2011,20(15-16):2224-2232.
    [85]Cella D, Peterman A, Passik S, et al. Progress toward guidelines for the management of fatigue[J]. Oncology (Williston Park),1998,12(11A):369-377.
    [86]Barsevick A M, Whitmer K, Sweeney C, et al. A pilot study examining energy conservation for cancer treatment-related fatigue[J]. Cancer Nurs,2002,25(5):333-341.
    [87]Barsevick A M, Dudley W, Beck S, et al. A randomized clinical trial of energy conservation for patients with cancer-related fatigue[J]. Cancer,2004,100(6):1302-1310.
    [88]Graydon J E, Bubela N, Irvine D, et al. Fatigue-reducing strategies used by patients receiving treatment for cancer[J]. Cancer Nurs,1995,18(1):23-28.
    [89]Richardson A, Ream E K. Self-care behaviours initiated by chemotherapy patients in response to fatigue[J]. Int J Nurs Stud,1997,34(1):35-43.
    [90]Dimeo F C, Stieglitz R D, Novelli-Fischer U, et al. Effects of physical activity on the fatigue and psychologic status of cancer patients during chemotherapy [J]. Cancer,1999,85(10):2273-2277.
    [91]Mock V, Frangakis C, Davidson N E, et al. Exercise manages fatigue during breast cancer treatment:a randomized controlled trial[J]. Psychooncology,2005,14(6):464-477.
    [92]Courneya K S, Friedenreich C M, Sela R A, et al. The group psychotherapy and home-based physical exercise (group-hope) trial in cancer survivors:physical fitness and quality of life outcomes[J]. Psychooncology,2003,12(4):357-374.
    [93]Courneya K S, Mackey J R, Bell G J, et al. Randomized controlled trial of exercise training in postmenopausal breast cancer survivors:cardiopulmonary and quality of life outcomes[J]. J Clin Oncol,2003,21(9):1660-1668.
    [94]Lavie C J, Milani R V. Effects of cardiac rehabilitation and exercise training on peak aerobic capacity and work efficiency in obese patients with coronary artery disease[J]. Am J Cardiol,1999,83(10):1477-1480, A7.
    [95]Schwartz A L, Mori M, Gao R, et al. Exercise reduces daily fatigue in women with breast cancer receiving chemotherapy [J]. Med Sci Sports Exerc,2001,33(5):718-723.
    [96]Segal R J, Reid R D, Courneya K S, et al. Resistance exercise in men receiving androgen deprivation therapy for prostate cancer[J]. J Clin Oncol,2003,21(9):1653-1659.
    [97]李向青,李向英,尚菊战.低强度有氧运动干预对癌因性疲乏的影响[J].全科护理,2009(1).
    [98]Stark D, Kiely M, Smith A, et al. Anxiety disorders in cancer patients:their nature, associations, and relation to quality of life[J]. J Clin Oncol,2002,20(14):3137-3148.
    [99]Duijts S F, Faber M M, Oldenburg H S, et al. Effectiveness of behavioral techniques and physical exercise on psychosocial functioning and health-related quality of life in breast cancer patients and survivors--a meta-analysis[J]. Psychooncology,2011,20(2):115-126.
    [100]Brown J K. A systematic review of the evidence on symptom management of cancer-related anorexia and cachexia[J]. Oncol Nurs Forum,2002,29(3):517-532.
    [101]Owen D C, Parker K P, Mcguire D B. Comparison of subjective sleep quality in patients with cancer and healthy subjects[J]. Oncol Nurs Forum,1999,26(10):1649-1651.
    [102]Page M S, Berger A M, Johnson L B. Putting evidence into practice: evidence-based interventions for sleep-wake disturbances[J]. Clin J Oncol Nurs,2006,10(6):753-767.
    [103]Berger A M, Vonessen S, Khun B R, et al. Feasibilty of a sleep intervention during adjuvant breast cancer chemotherapy [J]. Oncol Nurs Forum,2002,29(10):1431-1441.
    [104]Morin C E C. Insomnia:A clinical guide to assessment and treatment[M]. New York:Kluwer Academic,2003.
    [105]Bootzin Rr E D W J. Stimulus control instructions[M]. New York, NY:Plenum Press,1991.19-28.
    [106]Post-White J, Kinney M E, Savik K, et al. Therapeutic massage and healing touch improve symptoms in cancer[J]. Integr Cancer Ther,2003,2(4):332-344.
    [107]Cassileth B R, Vickers A J. Massage therapy for symptom control:outcome study at a major cancer center[J]. J Pain Symptom Manage,2004,28(3):244-249.
    [108]Ahles T A, Tope D M, Pinkson B, et al. Massage therapy for patients undergoing autologous bone marrow transplantation[J]. J Pain Symptom Manage,1999,18(3):157-163.
    [109]Cohen L, Warneke C, Fouladi R T, et al. Psychological adjustment and sleep quality in a randomized trial of the effects of a Tibetan yoga intervention in patients with lymphoma[J]. Cancer,2004,100(10):2253-2260.
    [110]Kim S D, Kim H S. Effects of a relaxation breathing exercise on fatigue in haemopoietic stem cell transplantation patients[J]. J Clin Nurs,2005,14(1):51-55.
    [111]Kim S D, Kim H S. Effects of a relaxation breathing exercise on anxiety, depression, and leukocyte in hemopoietic stem cell transplantation patients[J]. Cancer Nurs,2005,28(1):79-83.
    [112]Schwartz A L, Thompson J A, Masood N. Interferon-induced fatigue in patients with melanoma:a pilot study of exercise and methylphenidate[J]. Oncol Nurs Forum,2002,29(7):E85-E90.
    [113]Butler J J, Case L D, Atkins J, et al. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy[J]. Int J Radiat Oncol Biol Phys,2007,69(5):1496-1501.
    [114]Moraska A R, Sood A, Dakhil S R, et al. Phase III, randomized, double-blind, placebo-controlled study of long-acting methylphenidate for cancer-related fatigue:North Central Cancer Treatment Group NCCTG-N05C7 trial[J]. J Clin Oncol,2010,28(23):3673-3679.
    [115]Jean-Pierre P, Morrow G R, Roscoe J A, et al. A phase 3 randomized, placebo-controlled, double-blind, clinical trial of the effect of modafmil on cancer-related fatigue among 631 patients receiving chemotherapy:a University of Rochester Cancer Center Community Clinical Oncology Program Research base study[J]. Cancer,2010,116(14):3513-3520.
    [116]Littlewood T J, Bajetta E, Nortier J W, et al. Effects of epoetin alfa on hematologic parameters and quality of life in cancer patients receiving nonplatinum chemotherapy:results of a randomized, double-blind, placebo-controlled trial [J]. J Clin Oncol,2001,19(11):2865-2874.
    [117]Morrow G R, Hickok J T, Roscoe J A, et al. Differential effects of paroxetine on fatigue and depression:a randomized, double-blind trial from the University of Rochester Cancer Center Community Clinical Oncology Program[J]. J Clin Oncol,2003,21(24):4635-4641.
    [118]Roscoe J A, Morrow G R, Hickok J T, et al. Effect of paroxetine hydrochloride (Paxil) on fatigue and depression in breast cancer patients receiving chemotherapy [J]. Breast Cancer Res Treat,2005,89(3):243-249.
    [119]章璐,曹勇.癌因性疲乏的中医辨证论治[J].四川中医,2009(2):41-42.
    [120]Jeong J S, Ryu B H, Kim J S, et al. Bojungikki-tang for cancer-related fatigue: a pilot randomized clinical trial[J]. Integr Cancer Ther,2010,9(4):331-338.
    [121]李红晨,李丽.参附注射液对肺癌患者化疗后癌因性疲乏的疗效观察[J].中国药房,,2011(48):4570-4571.
    [122]顾叶春,许虹波,姜阳贵,等.参芪扶正注射液治疗癌因性疲乏的临床疗效观察[J].中国中西医结合杂志,2009(4):363-365.
    [123]Sood A, Barton D L, Bauer B A, et al. A critical review of complementary therapies for cancer-related fatigue[J]. Integr Cancer Ther,2007,6(1):8-13.
    [124]Balk J, Day R, Rosenzweig M, et al. Pilot, randomized, modified, double-blind, placebo-controlled trial of acupuncture for cancer-related fatigue[J]. J Soc Integr Oncol,2009,7(1):4-11.
    [125]Mao J J, Styles T, Cheville A, et al. Acupuncture for nonpalliative radiation therapy-related fatigue:feasibility study [J]. J Soc Integr Oncol,2009,7(2):52-58.
    [126]Molassiotis A, Sylt P, Diggins H. The management of cancer-related fatigue after chemotherapy with acupuncture and acupressure:a randomised controlled trial[J]. Complement Ther Med,2007;15(4):228-237.
    [127]Vickers A J, Straus D J, Fearon B, et al. Acupuncture for postchemotherapy fatigue:a phase Ⅱ study [J]. J Clin Oncol,2004,22(9):1731-1735.
    [128]Post-White J, Kinney M E, Savik K, et al. Therapeutic massage and healing touch improve symptoms in cancer[J]. Integr Cancer Ther,2003,2(4):332-344.
    [129]Cassileth B R, Vickers A J. Massage therapy for symptom control:outcome study at a major cancer center[J]. J Pain Symptom Manage,2004,28(3):244-249.
    [130]Berndt E, Kallich J, Mcdermott A, et al. Reductions in anaemia and fatigue are associated with improvements in productivity in cancer patients receiving chemotherapy [J]. Pharmacoeconomics,2005,23(5):505-514.
    [1]孔令青,李鸣镝.中医方剂“五子衍宗丸”组方的历史源流[J].中国中医基础医学杂志,2009(1):67-68.
    [2]蒋平,文永盛,吴艳辉,等.五子衍宗丸中五味子乙素的含量测定[J].中国药师,2006(1):9-10.
    [3]蔡俊安.五子衍宗丸中甜菜碱含量的HPLC测定[J].中国中医药信息杂志,2011(3):57-58.
    [4]李敏芳,李慧,王学美,等.高效液相色谱法测定五子衍宗丸中金丝桃苷的含量[J].中国实验方剂学杂志,2008(2):1-3.
    [5]李敏芳,李慧,王学美,等.高效液相色谱法测定加味五子衍宗丸中淫羊藿苷含量[J].中国中医药信息杂志,2008(3):51-52.
    [6]栾晓静,苑冬敏,康廷国.五子衍宗丸中枸杞子的显微定量研究[J].辽宁中医杂志,2007(5):646-647.
    [7]楼云雁,石婷婷,陈立兵,等.运用UV-Vis考察五子衍宗丸物质组释放特征[J].中华中医药学刊,2011(7).
    [8]燕宪涛,路新国.枸杞多糖生物活性的研究进展[J].中国食物与营养,2011(11):73-75.
    [9]于宏.枸杞子的化学成分与生物活性[J].国外医药(植物药分册),2007(2):51-54.
    [10]钱彦丛,宇文萍.枸杞子的化学成分及药理研究新进展[J].中医药学报,2000(4):33-35.
    [11]Cheng D, Kong H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats[J]. Molecules.2011,16(3):2542-2550.
    [12]Wang J, Hu Y, Wang D, et al. Lycium barbarum polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast[J]. Int J Biol Macromol,2010,46(2):212-216.
    [13]朱燕飞.枸杞子药理作用概述[J].浙江中西医结合杂志,2005(5):322-323.
    [14]沈学英,蒋亚生.枸杞子药理研究进展[J].时珍国医国药,1999(10):798-799.
    [15]刘秀英,孙世成,王英淑,等.枸杞子的临床应用[J].邯郸医学高等专科学校学报,2004(6):518-519.
    [16]李建平,王静,张跃文,等.菟丝子的研究进展[J].中国医药导报,,2009(23):5-6.
    [17]吴春艳,刘峰,张雪玲.菟丝子的现代研究[J].中国实用医药,2009(14):243-244.
    [18]潘文灏,许志超,赵余庆.菟丝子的生物活性与临床应用研究进展[J].亚太传统医药,2008(4):47-51.
    [19]谢一辉,苗菊茹,刘文琴.覆盆子化学成分的研究[J].中药材,2005(2):99-100.
    [20]苗菊茹,谢一辉,刘红宁.覆盆子的研究进展[J].江西中医药,2004(1):54-55.
    [21]徐洪水,黄湘,虞金宝.覆盆子的药理和临床应用进展[J].实用中西医结合临床,2003(6):58-59.
    [22]史琳,王志成,冯叙桥.五味子化学成分及药理作用的研究进展[J].药物评价研究,2011(3):208-212.
    [23]张云凤.五味子的临床应用[J].中国社区医师(医学专业半月刊),2008(21):18.
    [24]王劭华,罗光明,曾金祥,等.中药车前子的化学成分及药理学研究进展[J].亚太传统医药,,2008(9):133-135.
    [25]黄桂芳,罗杰英.复方五子衍宗丸的升白作用及雄性激素样作用研究[J].中 成药,1992(2):27.
    [26]王秋萍,王桐生,龙子江,等.五子衍宗丸对少弱精症模型大鼠精子质量及睾丸组织的影响[J].中成药,2011(10):1796-1797.
    [27]陈佐龙,杨若娅,王汇莹.五子衍宗加味液对肥胖SD雄性大鼠性器官发育影响的实验研究[J].中医药信息,2011(3):23-24.
    [28]杨阿民,刘保兴,张圣强,等.五子衍宗丸改善肾精亏虚大鼠支持细胞功能的机理研究[J].北京中医药大学学报,2010(6).
    [29]张长城,贾亮亮,许佳,等.五子衍宗汤对环磷酰胺致小鼠生精障碍保护作用的研究[J].中国中医基础医学杂志,2010(7):570-571.
    [30]宋焱鑫,刘保兴,韩东,等.五子衍宗丸含药血清对活性氧致大鼠精子鞭毛超微结构损伤的保护作用[J].中华中医药学刊,2010(6):1293-1295.
    [31]刘保兴,张圣强,谢春雨,等.五子衍宗丸含药血清对活性氧致大鼠精子活力下降的保护作用[J].北京中医药大学学报(中医临床版),2010(1).
    [32]张树成,贺斌,王尚明,等.五子衍宗丸和金匮肾气丸对动物生精功能影响的比较研究[J].中国计划生育学杂志,2009(7):401-404.
    [33]戈士文,高元法,邓占元,等.五子衍宗浓缩丸主要药效学的实验研究[J].中医研究,2003(5):19-20.
    [34]Wang B, Wang X M, Fu H, et al. Protective effects of Wu-Zi-Yan-Zong-Fang on amyloid beta-induced damage in vivo and in vitro[J]. Yakugaku Zasshi,2009,129(8):941-948.
    [35]Wang X M, Fu H, Liu G X, et al. Effect of modified wuzi yanzong granule on patients with mild cognitive impairment from oxidative damage aspect[J]. Chin J Integr Med,2007,13(4):258-263.
    [36]金龙,葛争艳,刘建勋.五子衍宗丸对小鼠记忆力、免疫功能、耐缺氧及耐疲劳的影响[J].中国实验方剂学杂志,2010(16).
    [37]李娌,蔡浩然,李琳,等.加味五子衍宗方总黄酮对大鼠海马锥体细胞VGCC通道的影响[J].中国中药杂志,2009(15):1975-1978.
    [38]黄桂芳,罗杰英.复方五子衍宗丸的抗氧的自由基和免疫增强作用[J].中成药,1990(6):27-28.
    [39]王学美,富宏,刘庚信.五子衍宗丸及其拆方对老年大鼠心脑线粒体DNA缺失、线粒体呼吸链酶复合体及ATP合成的影响[J].中国中西医结合杂志,2001(6).
    [40]陈迁,陈孟莉,叶兆波.五子衍宗复方总多糖抗细胞氧化应激损伤和细胞凋亡的研究[J].解放军药学学报,2011(5):413-416.
    [41]李成武,庄曾渊,张守康,等.五子衍宗汤治疗Leber遗传性视神经病变的临床研究[J].中国中西医结合杂志,2009(12):1078-1080.
    [42]张守康,李成武,庄曾渊,等.五子衍宗汤对Leber遗传性视神经病变患者线粒体基因突变比率的影响[J].中国中医眼科杂志,2009(4).
    [43]李成武,庄曾渊,张守康,等.五子衍宗汤对Leber遗传性视神经病变患者线粒体膜电位的影响[J].中国中医眼科杂志,2009(1):12-15.
    [44]李育浩,吴清和,韩坚,等.五子衍宗丸对小鼠免疫功能的影响[J].广州中医学院学报.
    [45]王洪武,贾亮亮,徐媛青,等.五子衍宗汤对环磷酰胺致免疫低下小鼠的免疫调节作用[J].中国实验方剂学杂志,2011(4):144-146.
    [46]李育浩,吴清和,赵文昌,等.五子衍宗丸药理研究 Ⅱ、对正常小鼠血糖和四氧嘧啶糖尿病小鼠的影响[J].中药药理与临床,1992(5):10-12.
    [47]陈淑英,李育浩,吴清和,等.五子衍宗丸对链脲佐菌素所致糖尿病大鼠的影响[J].新中医,1992(11):54-56.
    [48]徐继建,丁志勇,吴依娜,等.五子衍宗丸长期毒性实验研究[J].湖南中医药导报,2001(6):333-335.
    [49]林应华,黄宝英,丁建新,等.五子衍宗汤加味治疗精液异常不育症120例[J].福建中医药,2009(3).
    [50]李轩,白勇,钟树怀,等.五子衍宗丸对不育患者附睾功能和精子活力的影响[J].光明中医,2009(7).
    [51]刘绍斌.针药结合治疗阳痿36例[J].陕西中医.1990(5):203.
    [52]周志军.刘复兴治疗前列腺炎经验[J].新疆中医药,2003(2):37.
    [53]庞玉琴.五子衍宗丸治疗子宫发育不良症100例[J].河南中医药学刊,1995(6):4344.
    [54]权玉郁.五子衍宗丸在妇科病中应用[J].陕西中医,2002(5):459460.
    [55]范栋贤.五子衍宗丸加减治疗黄体功能不健性不孕[J].河南中医,,2003(10):77.
    [56]张春英.五子衍宗丸加味治疗肾病综合征38例[J].青海医药杂志,,2010(6):87-88.
    [57]董秀丽,于秀芹.中西医结合治疗早期糖尿病肾病40例[J].中国民间疗法,2007(6):8-9.
    [58]金伟民,包晓星.五子衍宗丸治疗慢性肾炎12例[J].实用中医药杂志,2004(11):627.
    [59]张子久.五子衍宗丸加减治疗小儿遗尿82例[J].中国民间疗法,2002(6):52.
    [60]孟宪兰.五子衍宗汤加减治疗小儿神经性尿频42例[J].上海中医药杂志,1997(8):34.
    [61]赵良倩,路振华,王广霞.五子衍宗丸妇科新用[J].天津中医药,2003(1):78.
    [62]俞传芳.从肾虚气陷论治尿道综合征32例[J].上海中医药杂志,2004(4).
    [63]欧琴,何坚.加味五子衍宗汤治疗脂肪肝82例[J].陕西中医,2003(7).
    [64]孙贺营,许红,许巍.五子衍宗丸合甘麦大枣汤治疗原发性血小板减少性紫癜60例[J].河南中医,,2009(1):65-66.
    [65]黄春荣.五子衍宗汤加味治疗斑秃60例[J].实用中医药杂志,2000(4):16.
    [66]刘洪义,徐润芝.五子衍宗丸治疗复发性口腔溃疡50例疗效观察[J].河北中医,1999(4):227.
    [67]王学美,谢竹藩.补肾益精对老年脑功能的临床研究[J].中医杂志,1993(6):347-348.
    [68]苌云玉.五子衍宗丸治汤Ⅱ型糖尿病疗效观察[J].安徽中医临床杂 志,1994(3):51-53.
    [69]程桂芹,孙巍巍,李宏.生脉散合五子衍宗丸治疗更年期综合征的临床观察[J].中国妇幼保健,2002(7):33.
    [70]黄春荣.加味五子衍宗汤治疗腰肌劳损疗效观察[J].光明中医,2006(10):86.
    [1]Luo T, Wang J, Yin Y, et al. (-)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma[J]. Breast Cancer Res,2010,12(1):R8.
    [2]李仪奎.中药药理实验方法学第二版[M].上海:上海科学技术出版社,2006.119.
    [3]徐叔云,卞如廉,陈修.药理实验方法学[M].第3版.北京:人民卫生出版社,2001.2020-2024.
    [4]王维刚,刘震泽,吴文婷,等.小鼠动物实验方法系列专题(七)旷场实验在小鼠行为分析中的应用[J].中国细胞生物学学报,2011(11):1191-1196.
    [5]Alstott J, Timberlake W. Effects of rat sex differences and lighting on locomotor exploration of a circular open field with free-standing central corners and without peripheral walls[J]. Behav Brain Res,2009,196(2):214-219.
    [6]Steru L, Chermat R, Thierry B, et al. The tail suspension test:a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl),1985,85(3):367-370.
    [7]Steru L, Chermat R, Thierry B, et al. The tail suspension test:a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl),1985,85(3):367-370.
    [8]Porsolt R D, Bertin A, Jalfre M. Behavioral despair in mice:a primary screening test for antidepressants[J]. Arch Int Pharmacodyn Ther,1977,229(2):327-336.
    [9]郁仁存,王笑民.21世纪中西医结合肿瘤研究前瞻[J].中医杂志,2001(1):50-52.
    [10]Jeong J S, Ryu B H, Kim J S, et al. Bojungikki-tang for cancer-related fatigue:a pilot randomized clinical trial[J]. Integr Cancer Ther,2010,9(4):331-338.
    [11]李红晨,李丽.参附注射液对肺癌患者化疗后癌因性疲乏的疗效观察[J].中国药房,2011(48):4570-4571.
    [12]顾叶春,许虹波,姜阳贵,等.参芪扶正注射液治疗癌因性疲乏的临床疗效观察[J].中国中西医结合杂志,009(4):363-365.
    [13]Balk J, Day R, Rosenzweig M, et al. Pilot, randomized, modified, double-blind, placebo-controlled trial of acupuncture for cancer-related fatigue[J]. J Soc Integr Oncol,2009,7(1):4-11.
    [14]Mao J J, Styles T, Cheville A, et al. Acupuncture for nonpalliative radiation therapy-related fatigue:feasibility study[J]. J Soc Integr Oncol,2009,7(2):52-58.
    [15]Molassiotis A, Sylt P, Diggins H. The management of cancer-related fatigue after chemotherapy with acupuncture and acupressure:a randomised controlled trial [J]. Complement Ther Med,2007,15(4):228-237.
    [16]Vickers A J, Straus D J, Fearon B, et al. Acupuncture for postchemotherapy fatigue:a phase Ⅱ study[J]. J Clin Oncol,2004,22(9):1731-1735.
    [17]Sood A, Barton D L, Bauer B A, et al. A critical review of complementary therapies for cancer-related fatigue[J]. Integr Cancer Ther,2007,6(1):8-13.
    [18]Post-White J, Kinney M E, Savik K, et al. Therapeutic massage and healing touch improve symptoms in cancer[J]. Integr Cancer Ther,2003,2(4):332-344.
    [19]Cassileth B R, Vickers A J. Massage therapy for symptom control:outcome study at a major cancer center[J]. J Pain Symptom Manage,2004,28(3):244-249.
    [20]冀鹏.初探S180肿瘤小鼠游泳力竭时间及生存规律[J].邯郸职业技术学院学报,2008(2):54-56.
    [21]李岩,辛念,李玉娟,等.核桃楸树皮提取物抗肿瘤及免疫调节作用的研究[J].北京理工大学学报,2011(5).
    [22]于硕,赵晓东,张丽莉,等.参芪扶正注射液在癌因性疲乏中作用的研究[J].中成药,2011(5):874-879.
    [23]于淼,李辉,刘卫东.抗肿瘤药紫杉醇的不良反应及临床合理用药分析[J].医学理论与实践,2010(8):1022-1023.
    [24]夏晓冬.紫杉醇不良反应分析[J].白求恩军医学院学报,,2011(2):141-142.
    [25]Ray M A, Trammell R A, Verhulst S, et al. Development of a mouse model for assessing fatigue during chemotherapy[J]. Comp Med,2011,61(2):119-130.
    [26]刘寒青,江志伟,姜军,等.癌性恶液质病人机体组成成分的研究[J].中国实用外科杂志,2002(11).
    [27]Wood L J, Nail L M, Gilster A, et al. Cancer chemotherapy-related symptoms:evidence to suggest a role for proinflammatory cytokines[J]. Oncol Nurs Forum,2006,33(3):535-542.
    [28]Winningham M L, Nail L M, Burke M B, et al. Fatigue and the cancer experience:the state of the knowledge[J]. Oncol Nurs Forum,1994,21(1):23-36.
    [29]Ahlberg K, Ekman T, Gaston-Johansson F, et al. Assessment and management of cancer-related fatigue in adults[J]. Lancet,2003,362(9384):640-650.
    [30]Hickok J T, Morrow G R, Mcdonald S, et al. Frequency and correlates of fatigue in lung cancer patients receiving radiation therapy:implications for management[J]. J Pain Symptom Manage,1996,11(6):370-377.
    [31]Piper B F, Rieger P T, Brophy L, et al. Recent advances in the management of biotherapy-related side effects:fatigue[J]. Oncol Nurs Forum,1989,16(6 Suppl):27-34.
    [32]Robinson K D, Posner J D. Patterns of self-care needs and interventions related to biologic response modifier therapy:fatigue as a model[J]. Semin Oncol Nurs,1992,8(4 Suppl 1):17-22.
    [33]Fawcett T N, Dean A. The causes of cancer-related fatigue and approaches to its treatment[J]. Prof Nurse,2004,19(9):503-507.
    [34]Gabrilove J L, Cleeland C S, Livingston R B, et al. Clinical evaluation of once-weekly dosing of epoetin alfa in chemotherapy patients:improvements in hemoglobin and quality of life are similar to three-times-weekly dosing[J]. J Clin Oncol,2001,19(11):2875-2882.
    [35]Demetri G D, Kris M, Wade J, et al. Quality-of-life benefit in chemotherapy patients treated with epoetin alfa is independent of disease response or tumor type:results from a prospective community oncology study. Procrit Study Group[J]. J Clin Oncol,1998,16(10):3412-3425.
    [36]张莉.癌因性疲乏的护理研究进展(综述)[J].天津护理,2006(5):290-292.
    [37]Bower J E, Ganz P A, Aziz N, et al. Fatigue and proinflammatory cytokine activity in breast cancer survivors[J]. Psychosom Med,2002,64(4):604-611.
    [38]Derogatis L R, Morrow G R, Fetting J, et al. The prevalence of psychiatric disorders among cancer patients[J].JAMA,1983,249(6):751-757.
    [39]Gelinas C, Fillion L. Factors related to persistent fatigue following completion of breast cancer treatment[J]. Oncol Nurs Forum,2004,31(2):269-278.
    [40]Bruera E, Valero V, Driver L, et al. Patient-controlled methylphenidate for cancer fatigue:a double-blind, randomized, placebo-controlled trial [J]. J Clin Oncol,2006,24(13):2073-2078.
    [41]Glaus A, Boehme C, Thurlimann B, et al. Fatigue and menopausal symptoms in women with breast cancer undergoing hormonal cancer treatment[J]. Ann Oncol,2006,17(5):801-806.
    [42]Howell S J, Radford J A, Smets E M, et al. Fatigue, sexual function and mood following treatment for haematological malignancy:the impact of mild Leydig cell dysfunction[J]. Br J Cancer.2000,82(4):789-793.
    [43]Morant R. Asthenia:an important symptom in cancer patients[J]. Cancer Treat Rev,1996,22 Suppl A:117-122.
    [44]Blackburn G L, Holland J F, Heber D, et al. Nutritional oncology[M]. San Diego:Academic Press,1999.537-546.
    [45]Lee J C, Chen M J, Chang C H, et al. Plasma amino acid levels in patients with colorectal cancers and liver cirrhosis with hepatocellular carcinoma[J]. Hepatogastroenterology,2003,50(53):1269-1273.
    [46]何来英,严卫星,楼密密,等.保健食品抗疲劳作用试验方法研究[J].中国食品卫生杂志,1997(4):3-8.
    [47]Mizuno K, Tanaka M, Yamaguti K, et al. Mental fatigue caused by prolonged cognitive load associated with sympathetic hyperactivity[J]. Behav Brain Funct,2011,7:17.
    [48]张俐,刘波.心理疲劳的研究进展[J].当代医学,2011(7):31-32.
    [49]Lorist M M, Boksem M A, Ridderinkhof K R. Impaired cognitive control and reduced cingulate activity during mental fatigue[J]. Brain Res Cogn Brain Res,2005,24(2):199-205.
    [50]Cook D B, O'Connor P J, Lange G, et al. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls[J]. Neuroimage,2007,36(1):108-122.
    [51]Piper B F, Dibble S L, Dodd M J, et al. The revised Piper Fatigue Scale:psychometric evaluation in women with breast cancer[J]. Oncol Nurs Forum,1998,25(4):677-684.
    [52]Borneman T, Piper B F, Koczywas M, et al. A qualitative analysis of cancer-related fatigue in ambulatory oncology[J]. Clin J Oncol Nurs,2012,16(1):E26-E32.
    [53]So W K, Dodgson J, Tai J W. Fatigue and quality of life among Chinese patients with hematologic malignancy after bone marrow transplantation[J]. Cancer Nurs,2003,26(3):211-219, 220-221.
    [54]Cella D. Factors influencing quality of life in cancer patients:anemia and fatigue[J]. Semin Oncol,1998,25(3 Suppl 7):43-46.
    [55]Stein K D, Martin S C, Hann D M, et al. A multidimensional measure of fatigue for use with cancer patients[J]. Cancer Pract,1998,6(3):143-152.
    [56]Stein K D, Jacobsen P B, Blanchard C M, et al. Further validation of the multidimensional fatigue symptom inventory-short form[J]. J Pain Symptom Manage,2004,27(1):14-23.
    [57]Pien L C, Chu H, Chen W C, et al. Reliability and validity of a Chinese version of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF-C)[J]. J Clin Nurs,2011,20(15-16):2224-2232.
    [58]Shin J, Gireesh G, Kim S W, et al. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors[J]. J Neurosci,2009,29(49):15375-15385.
    [59]王天芳,陈易新,季绍良,等.慢性束缚致慢性疲劳动物模型的研制及其行为学观察[J].中国中医基础医学杂志,1999(5):26-30.
    [60]陈兴华,杨海涛,唐纯志,等.艾灸五脏背俞穴对慢性疲劳模型大鼠行为学的影响[J].四川中医,2009(8).
    [61]徐建芬.慢性疲劳综合症的神经内分泌免疫研究进展[J].浙江教育学院学报,2007(2):59-61.
    [62]党凯,秦玲.过度疲劳对小鼠免疫系统影响的研究[J].医学信息(中旬刊),2011(8):3881-3882.
    [63]王淑斐,许金成,程明刚.亚健康状态老年人血白细胞介素18和白细胞介素10水平变化及意义[J].实用老年医学,2011(5).
    [1]Nicholson J K, Lindon J C, Holmes E.'Metabonomics':understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica,1999,29(11):1181-1189.
    [2]Lindon J C, Holmes E, Nicholson J K. Metabonomics:systems biology in pharmaceutical research and development[J]. Curr Opin Mol Ther,2004,6(3):265-272.
    [3]Nicholls A W, Holmes E, Lindon J C, et al. Metabonomic investigations into hydrazine toxicity in the rat[J]. Chem Res Toxicol,2001,14(8):975-987.
    [4]Lindon J C, Nicholson J K, Holmes E, et al. Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project[J]. Toxicol Appl Pharmacol,2003,187(3):137-146.
    [5]Fernie A R, Trethewey R N, Krotzky A J, et al. Metabolite profiling:from diagnostics to systems biology[J]. Nat Rev Mol Cell Biol,2004,5(9):763-769.
    [6]Nicholson J K, Foxall P J, Spraul M, et al.750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma[J]. Anal Chem,1995,67(5):793-811.
    [7]Taylor J, King R D, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics,2002,18 Suppl 2:S241-S248.
    [8]Mayr M, Chung Y L, Mayr U, et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism[J]. Arterioscler Thromb Vasc Biol,2005,25(10):2135-2142.
    [9]Ryan D, Robards K. Metabolomics:The greatest omics of them all?[J]. Anal Chem,2006,78(23):7954-7958.
    [10]Dunn W B, Bailey N J, Johnson H E. Measuring the metabolome:current analytical technologies[J]. Analyst,2005,130(5):606-625.
    [11]Roessner U, Luedemann A, Brust D, et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems[J]. Plant Cell,2001,13(1):11-29.
    [12]Boros L G, Lerner M R, Morgan D L, et al. [1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats[J]. Pancreas,2005,31(4):337-343.
    [13]Fossel E T, Carr J M, Mcdonagh J. Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma[J]. N Engl J Med,1986,315(22):1369-1376.
    [14]Serkova N J, Spratlin J L, Eckhardt S G. NMR-based metabolomics: translational application and treatment of cancer[J]. Curr Opin Mol Ther,2007,9(6):572-585.
    [15]Glunde K, Serkova N J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism[J]. Pharmacogenomics,2006,7(7):1109-1123.
    [16]Serkova N J, Niemann C U. Pattern recognition and biomarker validation using quantitative 1H-NMR-based metabolomics[J]. Expert Rev Mol Diagn,2006,6(5):717-731.
    [17]Denkert C, Budczies J, Kind T, et al. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors[J]. Cancer Res,2006,66(22):10795-10804.
    [18]Odunsi K. Wollman R M, Ambrosone C B, et al. Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics[J]. Int J Cancer,2005,113(5):782-788.
    [19]Howe F A, Barton S J, Cudlip S A, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy [J]. Magn Reson Med,2003,49(2):223-232.
    [20]Bathen T F, Jensen L R, Sitter B, et al. MR-determined metabolic phenotype of breast cancer in prediction of lymphatic spread, grade, and hormone status[J]. Breast Cancer Res Treat,2007,104(2):181-189.
    [21]Kline E E, Treat E G. Averna T A, et al. Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection[J]. J Urol,2006,176(5):2274-2279.
    [22]Morvan D, Demidem A. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways[J]. Cancer Res,2007,67(5):2150-2159.
    [23]Claudino W M, Goncalves P H, di Leo A, et al. Metabolomics in cancer:A bench-to-bedside intersection[J]. Crit Rev Oncol Hematol,2012.
    [24]Bu Q, Huang Y, Yan G, et al. Metabolomics:a revolution for novel cancer marker identification[J]. Comb Chem High Throughput Screen;2012,15(3):266-275.
    [25]Millis K, Weybright P. Campbell N, et al. Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy[J]. Magn Reson Med,1999,41(2):257-267.
    [26]Chiang K P, Niessen S, Saghatelian A, et al. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling[J]. Chem Biol,2006,13(10):1041-1050.
    [27]Vermeer L S, Fruhwirth G O, Pandya P, et al. NMR metabolomics of MTLn3E breast cancer cells identifies a role for CXCR4 in lipid and choline regulation[J]. J Proteome Res,2012.
    [28]Weljie A M, Bondareva A, Zang P, et al. (1)H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system[J].J Biomol NMR,2011,49(3-4):185-193.
    [29]Borgan E, Sitter B, Lingjaerde O C, et al. Merging transcriptomics and metabolomics--advances in breast cancer profiling[J]. BMC Cancer,2010,10:628.
    [30]Gu H, Pan Z, Xi B, et al. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics:application to the detection of breast cancer[J]. Anal Chim Acta,2011,686(1-2):57-63.
    [31]Sugimoto M, Wong D T, Hirayama A, et al. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles[J]. Metabolomics,2010,6(1):78-95.
    [32]Giskeodegard G F, Grinde M T, Sitter B, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics[J]. J Proteome Res,2010,9(2):972-979.
    [33]Nam H, Chung B C, Kim Y, et al. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification[J]. Bioinformatics,2009,25(23):3151-3157.
    [34]Claudino W M, Quattrone A, Biganzoli L, et al. Metabolomics:available results, current research projects in breast cancer, and future applications[J]. J Clin Oncol,2007,25(19):2840-2846.
    [35]Dunn W B, Bailey N J, Johnson H E. Measuring the metabolome:current analytical technologies[J]. Analyst,2005,130(5):606-625.
    [36]Duran A L, Yang J, Wang L, et al. Metabolomics spectral formatting, alignment and conversion tools (MSFACTs)[J]. Bioinformatics,2003,19(17):2283-2293.
    [37]许国旺.代谢组学方法与应用[M].科学出版社,2008.3-10.
    [38]Plumb R S, Stumpf C L, Granger J H, et al. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids[J]. Rapid Commun Mass Spectrom,2003,17(23):2632-2638.
    [39]Plumb R S, Stumpf C L, Gorenstein M V, et al. Metabonomics:the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development[J]. Rapid Commun Mass Spectrom,2002,16(20):1991-1996.
    [40]Trygg J, Holmes E, Lundstedt T. Chemometrics in metabonomics[J]. J Proteome Res,2007,6(2):469-479.
    [41]Robertson D G. Metabonomics in toxicology:a review[J]. Toxicol Sci,2005,85(2):809-822.
    [42]Lindon J C, Holmes E, Nicholson J K. Metabonomics techniques and applications to pharmaceutical research & development[J]. Pharm Res,2006,23(6):1075-1088.
    [43]Urbanczyk-Wochniak E, Luedemann A, Kopka J, et al. Parallel analysis of transcript and metabolic profiles:a new approach in systems biology [J]. EMBO Rep,2003,4(10):989-993.
    [44]Rantalainen M, Cloarec O, Beckonert O, et al. Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice[J]. J Proteome Res,2006;5(10):2642-2655.
    [45]Wiklund S, Johansson E, Sjostrom L, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models[J]. Anal Chem,2008,80(1):115-122.
    [46]Miyagi Y, Higashiyama M, Gochi A, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection[J]. PLoS One,2011,6(9):e24143.
    [47]Proenza A M, Oliver J, Palou A, et al. Breast and lung cancer are associated with a decrease in blood cell amino acid content[J]. J Nutr Biochem,2003,14(3):133-138.
    [48]Cascino A, Muscaritoli M, Cangiano C, et al. Plasma amino acid imbalance in patients with lung and breast cancer[J]. Anticancer Res,1995,15(2):507-510.
    [49]Lai H S, Lee J C, Lee P H, et al. Plasma free amino acid profile in cancer patients[J]. Semin Cancer Biol,2005,15(4):267-276.
    [50]Singh P, Kapil U, Shukla N, et al. Association of overweight and obesity with breast cancer in India[J]. Indian J Community Med,2011,36(4):259-262.
    [51]Byers T. Nutritional risk factors for breast cancer[J]. Cancer,1994,74(1 Suppl):288-295.
    [52]Michels K B. The contribution of the environment (especially diet) to breast cancer risk [J]. Breast Cancer Res,2002,4(2):58-61.
    [53]Giskeodegard G F, Lundgren S, Sitter B, et al. Lactate and gly cine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers[J]. NMR Biomed,2012.
    [54]Yotnda P, Wu D, Swanson A M. Hypoxic tumors and their effect on immune cells and cancer therapy [J]. Methods Mol Biol,2010,651:1-29.
    [55]Lu X, Kang Y. Hypoxia and hypoxia-inducible factors:master regulators of metastasis[J]. Clin Cancer Res,2010,16(24):5928-5935.
    [56]Mathupala S P, Colen C B, Parajuli P, et al. Lactate and malignant tumors:a therapeutic target at the end stage of glycolysis[J]. J Bioenerg Biomembr,2007,39(1):73-77.
    [57]Warburg O. On the origin of cancer cells[J]. Science,1956,123(3191):309-314.
    [58]Vander H M, Cantley L C, Thompson C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation[J]. Science.2009,324(5930):1029-1033.
    [59]Rivenzon-Segal D, Boldin-Adamsky S, Seger D, et al. Glycolysis and glucose transporter 1 as markers of response to hormonal therapy in breast cancer[J]. Int J Cancer,2003,107(2):177-182.
    [60]Walenta S, Wetterling M. Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers[J]. Cancer Res,2000,60(4):916-921.
    [61]Yokota H, Guo J. Matoba M, et al. Lactate, choline, and creatine levels measured by vitro 1H-MRS as prognostic parameters in patients with non-small-cell lung cancer[J]. J Magn Reson Imaging,2007,25(5):992-999.
    [62]Brizel D M, Schroeder T, Scher R L, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys,2001,51 (2):349-353.
    [63]于淼,李辉,刘卫东.抗肿瘤药紫杉醇的不良反应及临床合理用药分析[J].医学理论与实践,2010(8):1022-1023.
    [64]夏晓冬.紫杉醇不良反应分析[J].白求恩军医学院学报,2011(2):141-142.
    [65]Ray M A, Trammell R A, Verhulst S, et al. Development of a mouse model for assessing fatigue during chemotherapy [J]. Comp Med,2011,61(2):119-130.
    [66]Poulos A. Very long chain fatty acids in higher animals--a review[J]. Lipids,1995,30(1):1-14.
    [67]Berridge M J. Inositol lipids and cell proliferation[J]. Biochim Biophys Acta,1987,907(1):33-45.
    [68]Papaleo E, Unfer V, Baillargeon J P, et al. Contribution of myo-inositol to reproduction[J]. Eur J Obstet Gynecol Reprod Biol,2009,147(2):120-123.
    [69]Carlomagno G, Nordio M, Chiu T T, et al. Contribution of myo-inositol and melatonin to human reproduction[M].2011.267-272.
    [70]Kim J E, Kim J Y, Lee K W, et al. Cancer chemopreventive effects of lactic acid bacteria[J]. J Microbiol Biotechnol,2007,17(8):1227-1235.
    [71]Vanderhoof J A, Young R J. Use of probiotics in childhood gastrointestinal disorders[J]. J Pediatr Gastroenterol Nutr,1998,27(3):323-332.