高空环境下弹箭的弹道特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着一些高新技术的应用,常规弹箭的射程越来越大,对应的弹道高度也越来越高。在已开展的超远程弹箭研制过程中,发现了按通常外弹道、弹箭空气动力学等理论设计的火箭弹,其试验射程与计算射程相差较多的现象。这种现象产生的原因是由于火箭飞行的射程和高度很大,按以往方法计算重力、空气动力和弹道所带来的误差将不可忽略;另一方面弹箭在全弹道飞行过程中所处的大气参数以及所受的空气动力变化很大,因此,与在一般射程和弹道高范围内飞行的常规弹箭相比,经历高空环境飞行的弹箭将表现出不同的弹道特性,进而可能对质心运动产生较大的影响。而对于上述问题,目前尚缺乏深入的理论研究,因此对于这种经历高空飞行的无控弹箭,有必要对其弹道特性进行进一步的研究,为此类弹箭的研制提供理论基础。
     根据在超远程火箭在研制中发现的现象和问题,该文主要研究以下内容:
     (1)根据标准气象条件的定义、特点及目的,基于炮兵标准气象条件和现有的气象资料,将炮兵标准气象条件扩展至高空,供经历高空环境飞行弹箭的气动力及弹道计算参考使用。
     (2)根据重力学理论,将正常重力的斯托克斯算法扩展至总地球椭球地表外空间,从而得到了弹道计算中正常重力的一个新的计算方法。基于该方法,分析了常规弹箭弹道学中各种重力计算模型的精度并讨论了其使用范围。计算结果表明:当射程较小时,采用常值重力模型(g=9.8m/s2)可满足弹道计算精度的要求;随着射程的进一步增加,若地表处采用正常重力,而重力值随高度的变化采用平方反比公式的重力模型并不能提高重力的计算精度,此时应采用圆球地表重力模型,即除了考虑纬度和高度变化的影响外,还应考虑重力方向随飞行过程的变化;弹箭射程超过一百公里时,采用正常重力模型计算重力将有助于提高弹道计算的精度。
     (3)基于空气动力学及稀薄气体动力学理论,分析了弹箭经历高空环境飞行过程中空气动力系数的变化情况及特点,并讨论了这种变化对弹道计算精度及弹道特性的影响。结果表明,低密度气体效应对空气动力系数的计算有一定的影响,对于经历高空环境飞行的弹箭,这种效应所导致的高空空气动力系数与地面值的差异对弹道计算的影响应当予以考虑;另一方面,在分析变系数对弹箭角运动特性的影响时,可忽略低密度气体效应对弹道空气动力系数的影响,这是由于低密度效应对弹道空气动力系数的影响与空气密度随高度变化对弹道空气动力系数的直接影响相比要小得多,可忽略不计。
     (4)建立了适用于超远程弹箭的弹道计算模型,研究了椭球地表模型假设下的弹道飞行高度及曲面地表射程的计算方法,讨论了不同地表模型、不同重力模型以及气动力系数随高度变化对弹道计算的影响。结果表明,上述因素对超远程弹道的计算均有不同程度的影响,有必要采用更为完善的弹道模型以提高其计算精度。(5)建立了同时适用于高低空的弹箭角运动模型,比较和分析了弹道学中各种弹箭角运动模型的差异及其产生原因。研究了变系数对弹箭角运动稳定性的影响,讨论了弹箭在高空飞行时的工程稳定性。在气动力与攻角幅值平方δ2成线性的假设下,推导了弹箭的非线性角运动模型,推导结果表明,弹箭的非线性角运动模型中还含有与(δ2)′有关的项。基于新建立的弹箭非线性角运动模型改进了弹箭角运动的动稳定判据。改进的非线性动稳定判据不但考虑了更完善的模型,而且还给出了攻角初始值的允许范围,可更好地判断经历高空飞行弹箭非线性角运动的动稳定性。
     以上研究结果对经历高空飞行弹箭的弹道计算和总体设计具有一定的参考价值。
The firing range of conventional projectile is becoming further and further with the application of new and advanced technology. It was found that the experimental firing range differ fairly from the calculated firing range in the research process of ultra range projectile designed basing on the classical ballistic and aerodynamic theory. The cause of these phenomena is that the span and altitude range the rocket experienced is so large that on the one hand the traditional method used to calculate the gravity, aerodynamic forces and trojectory cause non-negligible error, on the other hand the aerodynamic forces and moments vary greatly during the flight and leading the projectile to behave different characteristics compared with the projectiles flying at low altitude. It is necessary to make a further study on the aerodynamic and ballistic characteristics for the projectile experiencing high altitude environment so that we can provide the theoretical basis for developing it.
     This paper is devoted to the research of the following content according to the phenomena observed in the development of ultra range rocket.
     (1) Referencing to the Artillery Standard Atmosphere and other available atmosphere data, the Artillery Standard Atmosphere is extended to the high altitude basing on its definition, characteristic and purpose.
     (2) Basing on the gravimetric theory, a new method for calculating normal gravity is proposed. Basing on this method, the various gravity calculation model introduced in ballistics is compared and their application range is analyzed. The calculation result show that the constant value gravity model with g= 9.8m/s2 is appropriate for trajectory calculation when the range is short. With the increase of the trajectory range, the sphere earth gravity model should be adopted. For ultra range trajectory, adopting normal gravity model makes for trajectory calculation precision.
     (3) Basing on the theory of aerodynamic and rarified aerodynamic, the variation of aerodynamic coefficient versus height and its effect on ballistics is analyzed for conventional projectile experiencing high altitude environment. The result shows that the effect of aerodynamic variation versus height on trajectory calculation should be considered while its effect on angular motion analyzation is negligible.
     (4) The calculation model fit for ultra range projectile is built. The calculation method for flying height and curve earth surface range is researched. The effect of different earth surface model, different gravity model and the variation of aerodynamics vesurs height on trajectory calculation are discussed. The result shows that the above mentioned factor may affect trajectory calculatin quite a little. They should be considered to improve the precision of trajectory calculation.
     (5) The angular motion model suitable for both low and high altitude environment is built. The nuance of angular motion model introduced in different ballistics is compared and the cause of this difference is analyzed. The effect of coefficient variation on the stability of angular motion is analyzed; the engineering stablility of projectile flying at high altitude environment is researched. With the hypothesis that the aerodynamics coefficient is linear inδ2, the square of attach angle amplitude, the nonlinear angular motion model is derived. The result shows that the nonlinear angular motion model also contain item relative to (δ2). Basing on the new derived nonlinear angular motion model, the criterion of dynamical stability is researched considering algebra and aerodynamic nonlinearity. The research results achieved are of important reference to the calculation and designation of projectile experiencing high altitude environment.
引文
[1]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业出版社.2004.11
    [2]韩子鹏.弹箭外弹道学[M].北京:北京理工大学出版社.2008.7
    [3]浦发.外弹道学(修定本)[M].北京:国防工业出版社.1980
    [4]宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社.1993.1
    [5]王中原,周卫平.外弹道设计理论与方法[M].北京:科学出版社.2004.9
    [6]浦发,芮筱亭.外弹道学[M].北京:国防工业出版社1989.6
    [7]闵杰,郭锡福.实用外弹道学[M].北京:兵器工业部教材编审室1986
    [8]华东工程学院203教研室编写组编.火箭外弹道学[M].南京:华东工程学院1974
    [9]曲延禄.外弹道气象学概论[M].北京:气象出版社.1987.8
    [10]汤晓云,韩子鹏,邵大燮编著.外弹道气象学[M].北京:兵器工业出版社,1990.5
    [11]沈青.稀薄气体动力学[M].北京:国防工业出版社.2003.1
    [12]沈仲书,刘亚飞.弹丸空气动力学[M].国防工业出版社,1983.9
    [13]沈青.认识稀薄气体动力学[J].力学与实践.2002(24):1-14
    [14]阎章更祁载康.射表技术[M].国防工业出版社.2000.1
    [15]张毅,杨辉耀,李俊莉.弹道导弹弹道学[M].国防科技大学出版社.1999.3
    [16]Curry W H, Reed J F. Measurement of Magnus Effects on A Sounding Rocket Model in A Supersonic Wind Tunnel[R]. AIAA No.66-754
    [17]Nicolaides J D,Ingram C W, CLARE T A.An Investigation of the Non-linear Flight Dynamics of Ordnance Weapons[R]. AIAA No.69-135.
    [18]Regan F L, Shannon J H W, Tanner F J. The Joint NOL/RAE/WRE Research Program on Bomb Dynamics, PartⅣ, A Low Drag Bomb with Freely Spinning Stabilizers[R]. AD 764881,1973.
    [19]王华毕,吴甲生.火箭弹锥形运动稳定性分析[J].兵工学报2008(5):562-566
    [20]李臣明,高空气象与气动力对远程弹箭弹道的影响研究[D].南京:南京理工大学,2007.7
    [21]雷娟棉,吴甲生.尾翼稳定大长径比无控旋转火箭弹的锥形运动与抑制[J].空气动力学学报.2005(12):455—457
    [22]方俊.重力测量与地球形状学(下册)[M].北京:科学出版社.1975.4
    [23]管泽霖,宁津生.地球形状及外部重力场[M].测绘出版社.1981.6
    [24]王谦身.重力学[M].北京:地震出版社.2003.4
    [25](俄)A.A.德米特里耶夫斯基,Д.H.雷申科,C.C.波哥吉斯托夫.韩子鹏等译.外弹道学[M].北京-国防工业出版社2000,1
    [26]李臣明,张微,韩子鹏等.地球重力偏心对远程弹箭弹道的影响[J].兵工学报.2007(8):919-922
    [27]沈青.航天飞行中的稀薄气体动力学[J].流体力学实验与测量.1997(4):1-7
    [28]沈青.稀薄气体动力学(英文版)[M].北京:北京大学出版社1997.6
    [29]Donald Greer and Phil Hamory, Keith Krakei, Mark DrelaO. Design and Predictions for A High-Altituide(Low Reynolds-Number) Aerodynamic Flight Experiment[J]. AIAA-99-3183
    [30]孟秀云编.导弹制导与控制系统原理[M].北京:北京理工大学出版社.2000.8
    [31]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M].北京:北京理工大学出版社.2000.8
    [32]陈德华等.战术导弹零升阻力雷诺数效应及修正方法.流体力学实验与测量[J].1999(1):92-96
    [33]楼洪钿.细长锥小迎角气动特性的R e效应[J].空气动力学学报,2001(4):466-470
    [34]张维智,贺德馨,张兆顺.低雷诺数高升力翼型的设计和实验研究[J].空气动力学学报,1998(3):363-367
    [35]叶建,林国华,邹正平,陆利蓬.低雷诺数下二维翼型绕流的流场特性分析[J].航空动力学报,2003(1):38-45
    [36]郑祥明,昂海松,黄达.飞翼式微型飞行器飞行动力学特性研究[J].航空学报,2006(3):374-379
    [37]袁昌盛,付金华.国际上微型飞行器的研究进展与关键问题[J].航空兵器,2005(6):50-53
    [38]杨爱明,翁培奋.微型飞行器小展弦比机翼的低雷诺数气动力特性分析[J].空气动力学学报,2005(1):57-67
    [39]李志国,朱鹏程,李锋.小展弦比机翼低雷诺数升阻特性试验研究[J].流体力学实验与测量,2004(4):78-82
    [40]李锋,石文,欧忠明,周伟江.微型飞行器气动特性和飞行控制[J].空气动力学学报,2005(1):84-87
    [41]臧国才.弹丸阻力曲线随高度变化的计算研究[J].弹道学报,1992(1):65-69
    [42]C.H.墨菲.对称发射体的自由飞行运动[M].北京:国防工业出版社,1984.3
    [43]徐明友.高等外弹道学[M].北京:高等教育出版社.2003.10
    [44]徐明友.弹箭飞行动力学[M].北京:国防工业出版社.2003.1
    [45]徐明友.现代外弹道学[M].北京:兵器工业出版社.1999.9
    [46]徐明友.飞行动力学[M].北京:科学出版社.2003.8
    [47]李奉昌,韩子鹏.弹丸非线性运动理论[M].机械委兵工教材编审室.1988.1
    [48]董亮等.弹箭飞行稳定性理论及其应用[M].北京:兵器工业出版社,1989.11
    [49]Murphy, C. H. Nonlinear Motion of a Missile with Slight Configurational Asymmetries [J]. Journal of Spacecraft and Rockets,1971 (3):259-263.
    [50]C.H. Murphy. William H. Spin-Yaw Lockin of A Rotationally Symmetric Missile[J]. AIAA 2007-6491
    [51]Charles.H. Murphy. Angular Motion of a Re-entering Symmetric Missile[J]. AIAA 64-643.
    [52]Charles.H.Murphy. Limit Motions of a Slightly Asymmetric Re-entry Vehicle Acted on by Cubic Damping Moments [J]. AIAA 74-820.
    [53]Charles.H.Murphy. Limit Nonlinear Motion of a Missile with Slight Comfigurational Asymmetries [J]. AIAA 70-534.
    [54]Charles.H.Murphy. Symmetric Missile Dynamic Instabilities-A Survey[J]. AIAA-80-0320.
    [55]Charles.H.Murphy. Angular Motion of Spinning Almost Symmetric Missiles[J]. AIAA-78-1334
    [56]美国国家海洋和大气局、国家航宇局和美国空军部著.标准大气[M].北京-科学出版社1982.1
    [57]周淑贞,张如一,张超等.气象学与气候学(第三版).北京:高等教育出版社,1979.4
    [58]王中原,韩子鹏,林献武.对建立我国炮兵高空标准气象条件的分析和建议[J].弹道学报.2007(1):9-16
    [59]C.T.Ford. Gravitational Model Effects on ICBM Accuracy. AIAA 83-2296
    [60]《数学手册》编写组.数学手册[M].北京:高等教育出版社。1979.5
    [61]S.查普曼,T.G.考林.非均匀气体的数学理论[M].北京:科学出版社,1985.4
    [62]吴其芬,陈伟芳编著.高温稀薄气体热化学非平衡流动的DSMC方法[M].长沙:国防科技大学出版社1999.6
    [63]沈青.航天飞行中的稀薄气体动力学[J].流体力学实验与测量,1997年,11(4):1-6
    [64]Pavel Vashchenkov, A. Kashkovsky, and Mikhail Ivanov. Numerical Analysis of High Altitude Aerodynamics of Reentry Vehicles [J]. AIAA 2005-3409
    [65]K. L. Guo and G. S. Liaw. Numerical predictions of the transitional flow past blunt bodies[J]. AIAA 2001-0228
    [66]Mikhail S. Ivanov, Pavel V.Vashchenkovy, Aleksander V. Kashkovsky. Numerical Modeling of High Altitude Aerodynamics of Reentry Vehicles[J]. AIAA 2006-3801
    [67]吴雄陈伟芳石于中.复杂外形气动特性的DSMC模拟与桥函数估算[J].导弹与航天运载技术.2003(3):51-56
    [68]吴雄陈伟芳石于中.过渡区球锥气动力特性的桥函数估算与DSMC仿真研究[J].航空计算技术2002(4):4-8
    [69]吴其芬等.小Knudsen数稀薄气体绕流流场分析[J].空气动力学学报.1993(4):423-434
    [70]陈伟芳,王全利,吴雄.再入体过渡区气动特性预测[J].国防科技大学学报.2004(1):5-7
    [71]吴望一编著.流体力学[M].北京-北京大学出版社.1983.9
    [72]清华大学工程力学系编.流体力学基础(上)[M].北京:机械工业出版社.1980
    [73]清华大学工程力学系编.流体力学基础(下)[M].北京:机械工业出版社.1982
    [74]刘应中,缪国平编著.高等流体力学[M].上海:上海交通大学出版社.2000.4
    [75]安吉森(John D. Anderson). Computational Fluid Dynamics[M].北京:清华大学出版社.2002.8
    [76]王致清.流体力学基础[M].北京:高等教育出版社.1987.3
    [77]徐文熙,徐文灿编著.粘性流体力学[M]北京:北京理工大学出版社.1989
    [78]章梓雄,董曾南编著.粘性流体力学[M].北京-清华大学出版社.1998.3
    [79]陈矛章编.粘性流体动力学基础[M].北京-高等教育出版社.1993.7
    [80](德)史里希廷(Schlichting,H.).边界层理论[M].北京:科学出版社1991.2
    [81]纪楚群,傅致祥,曾广存.导弹空气动力学[M].宇航出版社.1996.6
    [82]钱翼稷编著.空气动力学[M].北京-北京航空航天大学出版社.2004.4
    [83]王中原,臧国才.高超音速弹—翼组合体气动力计算方法[J].弹道学报.1990(3):13-21
    [84]徐华舫编著.空气动力学基础[M].北京-北京航空学院出版社.1987.6
    [85]童秉纲,孔祥言,邓国华.气体动力学.北京:高等教育出版社.1990.1
    [86]臧国才,李树常.弹箭空气动力学[M].兵器工业出版社.1989.9
    [87]赵学端,廖其奠主编.粘性流体力学[M].北京-机械工业出版社.1993.5
    [88]徐文熙,徐文灿编著.粘性流体力学[M].北京-北京理工大学出版社.1989.5
    [89]张志成等.高超声速气动热和热防护[M].北京:国防工业出版社.2003.5
    [90]黄志澄.高超声速飞行器大气动力学[M],北京:国防工业出版社.1995.12
    [91]瞿章华,曾明,刘伟,柳军编著高超声速大气动力学[M],长沙:国防科技 大学出版社.1999.7
    [92]E. V. Zoby, J. N. Moss, and K. Sutton. Approximate Convective-Heating Equations for Hypersonic Flows. AIAA 79-1078R
    [93]Christopher J. Riley and Fred R. Dejarnette. An Engineering Aerodynamic Heating Method for Hypersonic Flow. AIAA 92-0499
    [94]Fred R. De Jarnette and H.Harris Hamilton. Inviscid Surface Streamlines and Heat Transfer on Shuttle-Type Configurations. Journal of Spacecraft and Rockets.1973(10):314-321
    [95]H.Harris Hamilton, Fred R. Dejarnette and K.James Weilmuenster. Application of axisymmetric Analog for Calculating Hearting in Three-Dimensional Flows. AIAA 85-0245
    [96]K.C. Wang and Joe M. Caram. Comparison of Space Shuttle Orbiter Wing Leading Edge Heating Rate Calculations with Experimental and Flight Data. AIAA 94-0453
    [97]Artem A.Dyakonov and Fred R. Dejarnette. Streanlines and Aerodynamic Heating for Unstructured Grids on High Speed Vehicles. AIAA 2003-151
    [98]Dejarnette. F.R. Calculation of Inviscid Surface Streanlines and Heat Transfer on Shuttle Type Configurations. NASA CR-111922
    [99]张延教.高等动力学[M].南京理工大学内部教材.1984.11
    [100]Charles.H. Murphy. Effect of Near-Zero Spin on Instability of controlled Projectiles in Ascending or Descending Flight[R]. AD-E430473.
    [101]Charles.H. Murphy. Effect of Horizontal and Vertical Side Forces and Moments on Stability of a Symmetric Missile in Ascending or Descending Flight[R].AD E430280
    [102]H.H.包戈留科夫,IO.A.米特罗波尔斯基.非线性振动理论中的渐近方法[M].上海:上海科学技术出版社.1963.10
    [103]褚亦清,李翠英.非线性振动分析[M].北京:北京理工大学出版社.1996.9
    [104]N.Γ.马尔金.运动稳定性理论[M].北京:科学出版社.1959.11
    [105]W.T.汤姆逊.振动理论及其应用[M].北京:煤碳工业出版社.1980.5
    [106]Charlse H. Murphy Gravity Induced Angular Motion of a Spinning Missile[J] AIAA 70-968
    [107]Chen Yangquan. The Ballistic Mystery of'PARISGUN'[J]. Journal of Ballistics,1999(4):7-14
    [108]Charles.H. Murphy. Generalized Subharmonic Response of a Missile with Slight Configurational Asymmetries [J]. AIAA-72-972.
    [109]Charles.H. Murphy. Generalized Response of an Asymmetric Missile to Spin Varying through Resonance [J]. AIAA-71-46
    [110]C.H. Murphy. William H. Spin-Yaw Lockin of An Elastic Finned Projectile[J].AIAA 2003-5622
    [111]J. Morote. Resonant Lock-In of Unguided Rockets Having Nonlinear Aerodynamic Properties. AIAA 2006-830
    [112]Charles H. Murphy, William H. Mermagen, Sr. Aero-Elastic Motion of A Spin-Stabilized Projectile [J]. AIAA 2004-5058
    [113]Charles H. Murphy, William H. Mermagen, Sr. Flight Mechanics of an Elastic Symmetric Missile[R].ARL-TR-2255
    [114]Charles H. Murphy, William H. Mermagen, Sr. Flight Flight Motion of A continuously Elastic Finned Missile [J].AIAA 2001-4327
    [115]C.H. Murphy. Spinning projectile Instability Induced by an Internal Mass Mounted on an Elastic Beam [J].AIAA-92-4493-CP.