稻米脂肪性状QTL稳定性分析及两个稻米品质突变体的基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是世界上最主要的粮食作物。长期以来,由于人口增长和环境问题及随之而来的粮食安全问题,提高水稻产量一直是我国水稻育种和生产的重中之重。但是近年来,随着生活水平的提高,人们对稻米品质提出了更高的要求。同时,国际粮食市场的竞争十分激烈,也促使了我国水稻育种目标从片面的高产转向高产与优质并举。因此品质的遗传学研究成为水稻研究中重要的一部分。本文从两种角度研究了稻米的品质性状:1)从籼粳品种间寻找主效的优质等位变异,改良稻米品质;2)从突变体角度寻找和研究调控稻米品质形成网络中的必要元件。
     稻米虽然仅含2-3%的脂质,但具有独特的营养功效,并能影响其他的营养品质。前人研究表明稻米脂肪含量受多基因控制。稻米脂肪的研究仅限于经典遗传学分析和单环境QTL检测,其遗传研究有限。本研究利用两套来源于不同亲本的定位群体,对稻米脂肪性状进行QTL稳定性分析。同时,以高脂肪的巨大胚品种w025为材料图位克隆了巨大胚基因(OsGE)。此外,本研究还初步定位了一个相关稻米粒形的基因(SGL)。具体内容如下:
     1.稻米脂肪积累相关QTL检测及环境稳定性分析
     利用Sasanishiki/Habataki//Sasanishiki回交重组自交系群体对稻米脂肪积累相关的两个性状(脂肪含量和脂肪指数)进行单环境QTL分析。在稻米脂肪含量方面,共检测到5个QTL。在脂肪指数方面,共检测到3个QTL。同时,利用以Sasanishiki为背景Habataki为供体的CSSL群体,对上述QTL进行验证和环境稳定性分析。结果显示稻米脂肪含量的QTL和稻米脂肪指数的QTL(除qFl2外)都能被CSSL证实并且在环境中是稳定表达。本研究还发现第3染色体的R2778-C1452标记区间和第11染色体的C1172-G1465区间存在稻米脂肪含量和稻米脂肪指数QTL共位点现象。本研究将有助于理解水稻脂肪积累的遗传基础,同时为分子标记辅助选择改良稻米脂肪提供一定的理论指导。
     2.稻米脂肪含量QTL的稳定性分析及相关生理生化分析
     利用以Koshihikari和Kasalath为亲本衍生而来的BIL群体和CSSL群体,对稻米脂肪含量QTL进行了三个环境的稳定性分析。结果显示定位于第7染色体的两个主效QTL (qFC7.1和qFC7.2)在两套群体三个环境中都能稳定表达。而后选择了4个来源于相同亲本组合CSSL家系,其中三个家系(SL219、SL220和SL 221)聚合了两个QTL, SL222家系仅携带Kasalath qFC7.2等位基因。6个环境的表型检测显示,这4个CSSL家系的稻米脂肪含量都显著高于背景亲本。其中的3个家系由于两个QTL的聚合而使其脂肪含量显著高于仅携带单QTL的SL222,验证了qFC7.1的效应及两个基因聚合的效应。同时,对这4个家系的生理生化分析显示:这两个QTL均能大幅度提高米胚油含量,仅携带Kasalath qFC7.2等位基因的SL222家系的蛋白含量和直链淀粉含量相比于背景亲本没有显著变化。萌发实验也显示4个CSSL家系萌发速度较背景亲本快,从另一侧面说明这两个QTL提高了稻米储藏性脂肪的积累。本研究还利用分子标记筛选SL220/Koshihikari的回交次级F2群体,找到了3个家系仅携带qFC7.1,并且这3个家系较背景亲本脂肪含量都极显著提高,直接证明qFC7.1的加性效应。此外,在qFC7.2标记区间内找到了一个相关脂肪合成的酶(3-氧酰基-酰基载体蛋白)基因,测序结果显示:双亲在cDNA上存在多个单碱基差异。这些证据有助于进一步了解稻米脂肪含量的遗传和分子基础,并为改良稻米脂肪提供了理论基础。
     3.高营养高脂肪含量的巨大胚突变体基因OsGE的图位克隆
     米胚的大小直接影响到稻米籽粒的脂肪含量。本研究的材料是本实验室的大胚品种w025。米胚石蜡切片分析结果显示:w025的大胚表型主要是由盾片的伸长所造成。而后利用其与9311衍生的F2群体对大胚基因OsGE进行图位克隆,并将OsGE基因初步定位在第7染色体RM21930和RM234之间约950kb的区域。而后用进一步扩大群体将OsGE基因精细定位在RM21930和InDelE之间95Kb的区域,并与标记IndelG共分离,包含两个BAC克隆。NCBI在该区间收录了一个与米胚大小发育相关基因,编码一个细胞色素P450蛋白。扩增、测序和比对显示在该基因区间内存在一个单碱基变化导致w025翻译提前终止,从而导致该基因失活。本研究为后续的基因功能分析提供遗传基础。
     4.短粒基因SGL的初定位
     粒形影响着外观品质和产量。本研究利用了一个多向表型的短粒突变体(short grain length,sgl)对其基因进行了初步定位。表型研究显示sgl在粒形、穗形、株高和节间长度上与野生型Kitaaki具有显著差异。sgl突变体是转基因过程中突变的植株。TAIL-PCR侧翼序列分析发现外源片段插入了一个位于第一染色体的多聚蛋白编码基因。而后利用sgl突变体与冈46B衍生的F2群体(7000株)对SGL基因进行初步定位。但是由于籼-粳交背景的干扰,F2群体粒形分离比严重偏离,仅选到40株短粒极端个体。利用BSA法在第五染色体上筛选到与粒形具有较好连锁关系的标记G5-9。而后利用F2群体将SGL基因初步定位于G5-9-1510之间127Kb的区间内。该定位的区间内有17个ORF框,其中包括泛素连接酶基因和多种调控基因。这些基因都可能与稻米颖壳和籽粒发育具有密切的关系。本实验为进一步精细定位及分子功能研究提供遗传基础。
Rice is a main cereal food for the population of world and China. Because of the increase of population and food security problem, improving the yield is the most important goals of rice breeding programs in our coutry. However, with the improvement of people's life quality and the fierce global rice market competition, rice quality improvement has become one of the most important goals in rice breeding programs. Here, two different methods were used:1) QTL analysis was used to search useful natural allele for rice quality.2) mapping cloning of genes underlying mutant for rice quality was used to find the essential elements controling rice quality.
     Though the fat or oil in rice grain is low (i.e.,2-3%) and concentrated in germ and bran fraction, its unique healthy benefits has been drawing people's attention. At the same time, it is a key determinant of the processing and cooking quality of rice. So far, the genetic studies on fat had been carried out mainly by classical quantitative genetic methods and single-environment QTL detection. Thus, the genetic information on the environmental stability of QTL, gene action of QTL in the new genetic background, and DNA markers closely linked to target QTL are particularly lacking. To better elucidate genetic basis of rice fat accumulation, Four different populations were used to analysis environmental stablity across different environments. At the same time, we identified the OsGE gene, which can enhance rice fat accumulation by increasing rice embryo size. Besides, we also identified a short grain length mutant (SGL), and the SGL gene were mapped on chromosome 5. The main results are as follows:
     1. Identification of stably expressed QTL for grain fat accumulation
     A total of 85 inbred lines derived from the backcross between Sasanishiki (japonica, as the recurrent parent) and Habataki (indica) were used to detect QTL for rice fat acumulation including fat content, brown rice weight and fat index. Five QTL for fat content, three QTL for brown rice weigth and three QTL for fat index were mapped on chromosome 1,3,6,7,10,11 and 12, explained 5.84-28.46% of the phenotypic variance. Then all the QTL for fat content and fat index were further confirmed across two different environments by some chromosome segment substitution lines (CSSLs), where Habataki was used as the donor parent and Sasanishiki as the recurrent parent, except qFI2. Some QTL affecting fat content and fat index were mapped on the same genome regions. Co-localization of these QTL can provide an explanation for the genetic basis of correlation between fat content and fat index.
     2. Identification of two loci increasing grain fat content in rice and physiological analysis of their function (Oryza sativa)
     The BIL population and CSSL population derived from Koshihikari and Kasalath were used to analysis stable-expressed QTL across three environments. Two stable QTL (denoted as qFC7.1 and qFC7.2) for fat content with large effect were mapped on chromosome 7 in two population across three environments. Four CSSLs were selected to further analysis. Six-environment data on fat content of the four CSSLs confirmed the effect of qFC7.1 and qFC7.2 with high repeatability. Further analysis of these CSSLs on physiology and biochemistry showed that qFC7.1 and qFC7.2 can enhance rice storage fat and embryo fat without other adverse effects. To obtain a CSS line only harboring qFC7.1, we developed a SBC3F2 population (n=2000) from Koshihikari and SL220 pryminding qFC7.1 and qFC7.2. we selected three SBC3F2 lines only habording qFC7.1 by MAS. T-test derectly confirmed the present of qFC7.1. In our marker interval of qFC7.2, we found there was a candidate gene encoding 3-oxoacyl-[acyl-carrier-protein], which played a role on fat synthesis. cDNA sequence blast showed that there was some single nucleic acid difference between Koshihikari and Kasalath. All these results can help us for further study on genetic basis of rice fat.
     3. Mapping cloning of OsGE gene which can can enhance rice fat accumulation by increasing rice embryo size.
     Embryo size-related genes can be used for enchancing rice grain nutrition, especially rice fat. w025 is a new variety derived from chemical inducement and cross breeding method. It is characteristic for its giant embryo. To investigate the effects of embryo size, we conducted microscopy analysis. The result showed that w025has an enlarged scutellum. To map the ge locus, we generated F2 mapping population derived from a cross of the w025 and the cultivar 9311. We mapped the ge to an interval between RM21930 and RM234 on Chromosome 7. To narrow down the search for a candidate gene affected in ge, a larger F2 mapping population consisting of more than 10000 plants, of which 1000 segregants showing the ge mutant phenotype were used for fine-mapping. Between markers RM516 and RM164, we further developed one SSR marker and two InDel markers. The ge locus was finally located in a 95-kb DNA region between SSR marker RM21930 and InDel marker InDelE. In this interval, a gene related with embryo size was collected by NCBI. To define the molecular lesions of ge mutant, the ORF from from wild type and w025 were amplified by RT PCR and were sequenced. Comparison of the sequences revealed that the ORF carries a single nucleotide mutation, which cause premature termination, resulting in a truncated polypeptide.
     4. primary mapping of SGL gene
     In our study, we also isolated a short grain length mutant (SGL). Comparing with wildtype Kitaaki, SGL has distinguished phenotype on grain size, panicle characters, heading date and plant height. Since SGL was derived from transgene lines, the TAIL-PCR was used to analysis the gene which was knocked out by exogenous DNA. The result showed that the knock-out gene is mapped on chromosome 1and encode a polyprotein. To map the SGL locus, we generated F2 mapping population derived from a cross of the SGL and the cultivar G46B. Then We mapped the SGL to an interval between G5-9 and 1510 on Chromosome 5, a 127-kb DNA region. These results are useful in map-based cloning of GSL gene.
引文
Alrefai R, Berke T G, Rocheford T R. Quantitative trait locus analysis of fatty acid concentrations in maize[J]. Gemone,1995,38(5):894-901
    Ando T, Yamamoto T, Shimizu T, et al. Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice[J]. Theor. Appl. Genet.,2008,116(6):881-890
    Ashikari M, Sakakibara H, Lin S,et al. Cytokinin oxidase regulates rice grain production[J]. Science., 2005,309(5735):741-745
    Ashikari M, Wu J, Yano M, et al. Rice gibberellin-insensitive dwarf mutant gene dwarf 1 encodes the a-subunit of gtp-binding protein[J]. Proc. Natl. Acad. Sci. USA,1999,96(18):10284-10289
    Booth J R, Broglie R M, Hitz W D, et al. Gene combinations that alter the quality and functionality of soybean oil. U.S., Patent US6426448[P].2002-7-30
    Brogin R L, Arias C A, Toledo J F. Genetic control of soybean resistance to brown spot (septoria glycines):First studies[J]. Crop Breed Appl. Biotechnol.,2003,3:35-44
    Burns M J, Barnes S R, Bowman J G, et al. QTL analysis of an intervarietal set of substitution lines in brassica napus:(i) seed oil content and fatty acid composition[J]. Heredity,90(1):39-48
    Burr G O, Burr M M, Miller E S. On the fatty acids essential in nutrition. Iii[J]. J. Biol. Chem.,1932, 97(1):1-9
    Champagne E T, Marshall W E, Goynes W R. Effects of degree of milling and lipid removal on starch gelatinization in the brown rice kernel [J]. Cereal Chem.,1990,67:570-574
    Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (oryza sativa l.)[J].Theor. Appl. Genet.,1997,95(4):553-567
    Cong B, Liu J, Tanksley S D. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations[J]. Proc. Natl. Acad. Sci. USA,2002,99:13606-13611
    Choudhury N H, Juliano B Oa. Lipids in developing and mature rice grain[J]. Phytochemistry,1980, 19(6):1063-1069
    Choudhury N H, Juliano B Ob. Effect of amylose content on the lipids of mature rice grain[J]. Phytochemistry,1980,19(7):1385-1389
    Courchesne N M D, Parisien A, Wang B, et al. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches[J]. J. Biotechnol.,2009,141(1-2):31-41
    Csanadi G, Vollmann J, Stift G, et al. Seed quality QTL identified in a molecular map of early maturing soybean[J]. Theor. Appl. Genet.,2001,103(6):912-919
    Doi K, Iwata N, Yoshimura A. The construction of chromosome introgression lines of african rice (oryza glaberrima steud.) in the background of japonica rice (o. Sativa l.)[J]. Rice Genet. Newsl.,1997,14: 39-41
    Doi K, Izawa T, Fuse T, et al. Ehd1, a b-type response regulator in rice, confers short-day promotion of flowering and controls ftlike gene expression independently of hdl [J]. Genes Dev.,2004,18 926-936
    Ebitani T, Takeuchi Y, Nonoue Y, et al. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar'kasalath'in a genetic background of japonica elite cultivar'koshihikari'[J]. Breed Sci.,2005,55:65-73
    Ecke W, Uzunova M, Weibleder K. Mapping the genome of rapeseed (brassica napus l.). Ii. Localization of genes controlling erucic acid synthesis and seed oil content[J]. Theor. Appl. Genet.,1995,91(6): 972-977
    Ellis R P, Cochrane M P, Dale M F B, et al. Starch production and industrial use[J]. J. Sci. Food and Agr.,1998,77(3):289-311
    Fan C, Xing Y, Mao H, et al. Gs3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor. Appl. Genet., 2006,112(6):1164-1171
    Frances H F. The effects of a mediterranean-style dietary pattern on cardiovascular disease risk[J]. Nursing clinics of North America,2008,43(1):105-115
    Gilad Y, Rifkin S A, Pritchard J K. Revealing the architecture of gene regulation:The promise of eQTL studies[J]. Trends in Genetics,2008,24(8):408-415
    Glazier a M, Nadeau J H, Aitman T J. Finding genes that underlie complex traits[J]. Science,2002, 298(5602):2345-2349
    Gravois K. A, Mcnew R W. Combining ability and heterosis in u.S. Southern long-grain rice[J]. Crop Science,1993,33(1):83-86
    Guraya H S, Kada R S, Champane E T. Effect of rice starch-lipid complexes on in vitro digestibility, complexing index, and viscosity[J]. Cereal Chem.,1997,74:561-565
    Hayakawa T, Seo S T, Igaue I. Electron microscopic observation of rice grain.Ⅰ. Morphology of rice starch[J]. J. Japanese Soci. of Starch Sci.,1980,27:173-179
    He X H, Chen G Q, Lin J T, et al. Regulation of Diacylglycerol Acyltransferase in Developing Seeds of Castor[J]. Lipids.2004,39(9):865
    Hemavathy J, Prabhakar J. Lipid composition of rice (oryza sativa 1.) bran[J]. J. American Oil Chemists' Soci.,1987,64(7):1016-1019
    Hobbs D H, Hills M J. Expression and characterization of diacylglycerol acyltransferase from Arabidopsis thaliana in insect cell cultures[J].Biochem. Soci. Transactions.2000,28(6):687-689
    Hobbs D H, Lu C, Hills M J. Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression[J]. FEBS Lett.1999,452:145-149
    Hogan J T, Normand F L, Deobald H J, et al. Production of high-protein rice flour[J]. Rice J.,1968,71: 5-6
    Hong S K, Kitano H, Satoh H, et al. How is embryo size genetically regulated in rice?[J]. Development, 1996,122(7):2051-2058
    Hong Z, Ueguchi-Tanaka M, Fujioka S, et al. The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of arabidopsis diminuto/dwarfl, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J]. Plant Cell,2005,17(8): 2243-2254
    Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome p450[J]. Plant Cell,2003, 15(12):2900-2910
    Howell P M, Lydiate D J, Marshall D F. Towards developing intervarietal substitution lines in brassica napus using marker assisted selection[J]. Genome,1996,39:348-358
    Houston D F. High protein flour can be made from all types of milled rice[J]. Rice J.,1967,70:12-15
    Hu Z L, Li P, Zhou M Q, et al. Mapping of quantitative trait loci (QTL) for rice protein and fat content using doubled haploid lines[J]. Euphytica,2004,135:47-54
    Ichihara K, Takahashi T, Fujii S. Diacylglycerol acyltransferase in maturing safflower seeds:its influences on the fatty acid composition of the triacylglycerol and on the rate of triacylglycerol synthesis[J]. Biochim. Biophys. Acta.1988,958:125-129
    Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function[J]. Plant Physiol.,2003,133(3):1083-1090
    Ito S, Sato S, Fujino Y. Internal lipid in rice starch[J]. Starch/Starke,1979,31:217-221
    Iwata N, Omura T. Studies on the trisomics in rice plants (oryza sativa l.)[J]. Jpn. J. Genet.,1984,59(3): 199-204
    Jako C A, Kumar Y, Wei J, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiol.2001, 126:861-874
    Jane J, Chen Y Y, Lee L F, et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch l[J]. Cereal Chem.,1999,76(5):629-637
    Jha J K, Sinha S, Maiti M K, et al. Functional expression of an acyl carrier protein (acp) from azospirillum brasilense alters fatty acid profiles in escherichia coli and brassica juncea[J]. Plant Physiol. Biochem.,2007,45:490-500
    Juliano B O 1. Rice Chemistry and Technology [M].2nd ed. St Paul, Minnesota:American Association of Cereal Chemists,1985
    Juliano, B.O. Lipids in Cereal Technology [M]. London:Academic Press,1983:305-330
    Kahlon T S, Saunders R M, Sayre R N, et al. Cholesterol-lowering effects of rice bran and rice bran oil fractions in hypercholesterolemic hamsters[J]. Cereal Chem.,1992,69:485-489
    Kang H Y,Cho Y G, Lee Y T, et al. QTL mapping of gene on molecular map of rice[J]. Korean J. Crop Sci.,1998,43:199-204.
    Katavic V, Reed D, Taylor D, et al. Alteration of seed fatty acid composition by an ethyl methanesulfonate- induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity[J]. Plant Physiol.,1995,108:399-409
    Kawashima K, Kiribuchi T. Studies on lipid components and heat dependent pasting behaviour of non-waxy and waxy rice starches[J]. Kaseigaku Zasshi,1980,31:625-628
    Keightley P D, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection selection[J]. Genet. Res. Camb,1993,62:195-203.
    Kennedy E. Biosynthesis of complex lipids[J]. Fed Proc Fed Am Soc Exp Biol.1961,20:934-940
    Kitahara K, Suganuma T, Nagahama T. Susceptibility of amylose-lipid complexes to hydrolysis by glucoamylase from rhizopus niveus[J]. Cereal Chem.,1996,73:428-432
    Kitahara K, Tanaka T, Suganu ma T, et al. Release of bound lipids in cereal starches upon hydrolysis by glucoamylase[J]. Cereal Chem.,1997,74(1):1-6.
    Koh H J, Heu M H, Mccouch S R. Molecular mapping of the ges gene controlling the super-giant embryo character in rice (oryza sativa l.)[J]. Theor. Appl. Genet.,1996,93(1):257-261.
    Komorisono M, Ueguchi-Tanaka M, Aichi I, et al. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrant katanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling[J]. Plant Physiol.,2005,138(4): 1982-1993
    Lande R, Thompson R. Efficiency of marker-assisted selection in the improvement of quantitative traits[J]. Genetics,1990,124(3):743-756
    Lasztity R. Cereal Chemistry [M]. Budapest:Akademiai Kiado,1999:267-290.
    Lee S H, Bailey M A, Mian M R, et al. RFLP loci associated with soybean seed protein and oil content across populations and locations[J]. Theor. Appl. Genet.,1996,93(5):649-657
    Lincion S, Daly M, Lander E S. Construction genetic maps with MAPMARKER/EXP 3.0. In: Whitehead Institute Technical Report.2nd ed. Cambridge:Whitehead Institute} 1992
    Liu W, Zeng J, Jiang G, et al. QTL identification of crude fat content in brown rice and its genetic basis analysis using dh and two backcross populations[J]. Euphytica,2009,169(2):197-205
    Liu Y B, Huang Y J. Effect of fat content of rice on flavor quality. The 2 end Asin crop science conference ABSTRACTS AND PROGRAMM. Under the auspices of ASIAN CRROP SCIENCE ASSOCIATION. Fukui, Japan.1995,August 21-23
    Lou J, Chen L, Yue G, et al. QTL mapping of grain quality traits in rice[J]. J. Cereal Sci.,2009,50(2): 145-151.
    Lu C F, Hills M J. Arabidopsis Mutants Deficient in Diacylglycerol Acyltransferase Display Increased Sensitivity to Abscisic Acid, Sugars, and Osmotic Stress during Germination and Seedling Development[J]. Plant Physiol.,2002,129:1352-1358
    Lu C F, Noyer S B, Hobbs D H, et al. Expression pattern of diacylglycerol acyltransferase-1, an enzyme involved in triacylglycerol biosynthesis, in Arabidopsis thaliana[J]. Plant Mol. Biol.,2003, 52:31-41
    Lu S, Chen L N, Li C Y. Correlations between the fine structure, physicochemical properties, and retrogradation of amylopectins from taiwan rice varietiesl[J]. Cereal Chem.,1997,74(1):34-39.
    Mackay T F C. The genetic architecture of quantitative traits[J]. Ann. Rev. of Genetics,2001,35(1): 303-339.
    Marshall W E, Normand F L, Goynes W R. Effects of lipid and protein removal on starch gelatinization in whole grain milled rice[J]. Cereal Chem.,1990,67:458-463
    Mccouch S R, Teytelman L, Xu Y, et al. Development and mapping of 2240 new ssr markers for rice (oryza sativa l.)[J]. DNA Research,2002,9:199-207
    Mekhedov S, Ila'Rduya O M D, Ohlrogge J. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis[J]. Plant Physiol.,2000,122:389-402
    Mori M, Nomura T, Ooka H, et al. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J]. Plant Physiol.,2002,130(3):1152-1161
    Morrison W R. Lipids in cereal starches:A review[J]. Journal of Cereal Science,1988,8(1):1-15
    Mozaffarian D, Willett W. Trans fatty acids and cardiovascular risk:A unique cardiometabolic imprint?[J]. Curr. Atherosclerosis Rep.,2007,9(6):486-493
    Nagata K, Fukuta Y, Shimizu H, et al. Quantitative trait loci for sink size and ripening traits in rice (oryza sativa l.)[J]. Breeding Sci.,2002a,52:259-273
    Nagata K, Shimizu H, Terao T. Quantitative trait loci for nonstructural carbohydrate accumulation in leaf sheaths and culms of rice (oryza sativa I.) and their effects on grain filling[J]. Breeding Sci., 2002b,52275-283
    Nave P B, Benveniste P, Oelkers P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase[J]. Eur. J. Biochem.2000,267:85-96
    Neer E J. Heterotrimeric proteins:Organizers of transmembrane signals[J]. Cell,1995,80(2):249-257
    Normand F L, Soignet D M, Hogan J T, et al. Content of certain nutrients and amino acid patterns in high-protein rice flour.[J]. Rice J.,1966,69:13-18.
    Ohlrogge J B, Kuo T M. Control of lipid synthesis during soybean seed development:Enzymic and immunochemical assay of acyl carrier protein[J]. Plant Physiol.,1984,74:622-625.
    Parker-Barnes J M, Das T, Bobik E, et al. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids[J]. Proc. Natl. Acad. Sci. USA,2000, 97(15):8284-8289.
    Perry H J, Harwood J L. Changes in the lipid content of developing seeds of Brassica napus[J]. Phytochemistry.1993,32:1411-1415
    Qi B, Fraser T, Mugford S, et al. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants[J]. Nat. Biotechnol.,2004,22:739-745
    Redona E D, Mackill D J. Quantitative trait locus analysis for rice panicle and grain characteristics[J]. Theor. Appl. Genet.,1998,96(6):957-963
    Resurreccion P, Juliano B O, Tanaka Y. Nutrient content and distribution in milling fractions of rice grain[J]. J. Sci. Food Agri.,1979,30(5):475-81.
    Richard F T, William R M. Suelling and gelatinization of cereal starches. Ⅰ. Effects of amylopectin, amylaseand lipids[J]. Cereal Chem.1990,67 (6):551-557
    Roesler K, Shintani D, Savage L, et al. Targeting of the arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds[J]. Plant Physiol.,1997,113(1):75-81.
    Satoh H, T Omura. New endosperm mutations induced by chemical mutagens in rice,oryza sativa 1[J]. Jpn. J. Breed,1981,31:316-326.
    Settlage S B, Kwanyuen P, Wilson R F. Relation between diacylglycerol acyltransferase activity and oil concentration in soybean[J]. JAOCS.1998,75:775-781
    Shockey J M, Gidda S K, Chapital D C, et al. Tung tree dgatl and dgat2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum[J]. Plant Cell,2006,18(9):2294-2313.
    Shomura A, Izawa T, Ebana K, et al. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nat. Genet.,2008,40(8):1023-1028.
    Siloto R M P, Findlay K, Lopez-Villalobos A, et al. The accumulation of oleosins determines the size of seed oilbodies in arabidopsis[J]. Plant Cell,2006,18(8):1961-1974
    Soller M, Beckmann J S. Marker-based mapping of quantitative trait loci using replicated progenies[J]. Theor. Appl. Genet.,1990,67:25-33
    Song X, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown ring-type e3 ubiquitin ligase[J]. Nat. Genet.,2007,39(5):623-630
    Sugano M, Tsuji E. Rice bran oil and cholesterol metabolism[J]. J Nutr,1997,127(3):521S-524
    Suzuki S, Oshima S. Influence of blending oils on human serum cholesterol-rice bran oil, safflower and sunflower oil[J]. Nutrition (Japan),1962,28:194
    Taira H, Nakagahra M, Nagamine T. Fatty acid composition of indica, sinica, javanica, japonica groups of nonglutinous brown rice[J]. J. Agri. Food Chem.,1988,36(1):45-47.
    Tan Y F, Xing Y Z, Li J X, et al. Genetic bases of appearance quality of rice grains in shanyou 63, an elite rice hybrid[J]. Theor. Appl. Genet.,2000,101(5):823-829
    Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome p450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf 11, with reduced seed length[J]. Plant Cell,2005,17(3):776-790.
    Tanaka K K T, Suganuma T, Nagahama T. Release of bound lipids in cereal starches upon hydrolysis by glucoamylase[J]. Cereal Chem.,1997,74:1-6
    Tanksley S D. Mapping polygenes[J]. Annu Rev. Genet.,1993,27:205-233
    Thole V, Hull R. Rice tungro spherical virus polyprotein processing:Identification of a virus-encoded protease and mutational analysis of putative cleavage sites[J]. Virology,1998,247(1):106-114.
    Tian F, Li D J, Fu Q, et al. Construction of introgression lines carrying wild rice (oryza rufipogon griff.) segments in cultivated rice (oryza sativa 1.) background and characterization of introgressed segments associated with yield-related traits[J]. Theor. Appl. Genet.,2006,112:570-580
    USDA. What we eat in America:source of data on food and nutrient intakes of Americans:Washington DC [2008-3-16] http://www.ars.usda.gov/Services/
    Van Horn L, Mccoin M, Kris-Etherton P M, et al. The evidence for dietary prevention and treatment of cardiovascular disease[J]. J. American Dietetic Association,2008,108(2):287-331
    Vega-Lopez S, Ausman L M, Jalbert S M, et al. Palm and partially hydrogenated soybean oils adversely alter Iipoprotein profiles compared with soybean and canola oils in moderately hyperlipidemic subjects[J]. Am. J. Clin. Nutr.,2006,84(1):54-62
    Wan X, Wan J, Su C, et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines[J]. Theor. Appl. Genet.,2004,110(1):71-79
    Wan X, Wan J, Jiang L, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects[J]. Theor. Appl. Genet.,2006,112(7):1258-1270
    Wang H L, Zhang W W, Liu L L, et al. Dynamic QTL analysis on rice fat content and fat index using recombinant inbred lines[J]. Cereal Chem.,2008,85(6):769-775
    Wang J, Wan X, Crossa J, et al. QTL mapping of grain length in rice (oryza sativa 1.) using chromosome segment substitution lines[J]. Genetics Research,2006,88(02):93-104
    Wang J, Li H, Pfeiffer W, et al. Application of identified qtl-marker associations in rice quality improvement through a design breeding approach[J]. Theor. Appl. Genet.,2007,115:87-100
    Wang S, Basten J, Zeng Z. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.2007, http://statgen.ncsu.edu/qtlcart/WQTL Cart.htm
    Wata N, Omura T. Studies on the trisomics in rice plants, vi. An accomplishment of a trisomic series in japonica rice plants[J]. Jpn. J. Genet.,1984,59:199-204
    Weng J F, Gu S H, Wan X Y, et al. Isolation and initial characterization of gw5, a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18:1199-1209
    What's Cooking American. Rice Bran Oil-The World's Healthiest Oil:California Novato. http://whatscookingamerica.net/Information/RiceBranOil.htm
    Wu J, Maehara T, Shimokawa T, et al. A comprehensive rice transcript map containing 6591 expressed sequence tag sites[J]. Plant Cell,2002,14(3):525-535
    Xi Z Y, He F H, Zeng R Z, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (oryza sativa l.)[J]. Genome, 2006,49:476-484
    Yano M, Katayose Y, Ashikari M, et al. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene constans[J]. Plant Cell,2000, 12(2473-2484)
    Yano M. Naturally occurring allelic variations as a new resource for functional genomics in rice[C]// RICE GENETICS Ⅳ. Proceedings of the Fourth International Rice Genetics Symposium. Science Publishers,2001:227-238
    Yano, M.2001. Naturally occurring allelic variations as a new resource for functional genomics in rice. pages 227-238 in:RICE GENETICS IV Proceedings of the Fourth International Rice Genetics Symposium. Science Publishers, Philippines.
    Yu Y H, Li G, Fan Y Y, Zhang K Q, et al. Genetic relationship between grain yield and the contents of protein and fat in a recombinant inbred population of rice[J]. J. Cereal Sci.,2009,50(1):121-125
    Zamir D.Plant breeders go back to nature[J]. Nature Genet.,2008,40(3):269-270
    Zhang Q. Strategies for developing green super rice[J]. Proc. Natl. Acad. Sci. USA,2007,104(42): 16402-16409
    Zhao J, Dimov Z, Becker H, et al. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content[J]. Mol. Breeding,2008,21(1):115-125
    Zheng L Y, Pan J Q, Lv J H. Effects of total glucosides of paeony on enhancing insulin sensitivity and antagonizing nonalcoholic fatty liver in rats[J]. Zhongguo Zhong Yao Za Zhi,2008,33(20): 2385-90
    Zheng P, Allen 1 W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S P, Zhong G, Tarczynski M C, Shenl B. A phenylalanine in dgat is a key determinant of oil content and composition in maize[J]. Nature Genet.,2008,116:881-890
    Zhou Z, Robards K, Helliwell S, et al. Composition and functional properties of rice[J]. International J. Food Sci. Technol.,2002,37(8):849-868
    Zou J, Katavic V, Giblin M, et al. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene[J]. Plant Cell.1997,9:909-923
    Zou J T, Wei Y D, Jako C, et al. The Arabidopsis thaliana TAG 1 mutant has a mutation in a diacylglycerol acyltransferase gene[J]. The Plant J.,1999,19(6):645-653
    陈建国,朱军.籼粳交稻米品质性状的遗传相关分析.湖北大学学报(自然科学版)[J].1998,20(3):288-290
    符福鸿,王丰.杂交水稻谷粒性状的遗传分析[J].作物学报,1994,20(1):39-45.
    郭咏梅,穆平,刘家富,等.水、旱栽培条件下稻谷粒型和粒重的相关分析及其qtl定位[[J].作物学报,2007,33(1):50-56.
    黄英金,刘宜柏,饶治祥,等.几个名优水稻品种特异品质性状的配合力分析[J].江西农业大学学报.1995,17(4):361-367
    贾东,周宇飞,赵建明.水稻品质改良的研究发展现状[J].北方水稻,2009(06):75-77.
    布坎南BB,格鲁依森姆w,琼斯R L.植物生物化学与分子生物学[M].瞿礼嘉,顾红雅,白书农,赵进东,陈章良,译.北京:科学出版社,2004:369-427
    林鸿宣,阂绍楷,熊振民,等.应用rflp图谱定位分析籼稻粒形数量性状基因座位[J].中国农业科学,1995,28(4):1-7.
    林荔辉,吴为人.水稻粒型和粒重的qtl定位分析[J].分子植物育种,2003,1(3):337-342
    刘保国,成萍,卢季吕,等.水稻籽粒脂肪及脂肪酸组分的分析.两南农业大学学报[J].1992,14(3):275-277
    李欣,莫惠栋,王安民.粳型杂交稻米品质性状的遗传表达[J].中国水稻科学,1999,13(4):197-204.
    李强,万建民Ssrhunter,一个本地化的ssr位点搜索软件的开发[J].遗传,2005,27(5):808-810.
    李丹,王建龙,陈光辉.稻米营养品质研究现状与展望[J].中国稻米,2007(02):5-9.
    泷田正.水稻籽粒大小的遗传及其与诸性状的关系[J].国外农学-水稻,1987,1:18-20
    罗玉坤,朱智伟,陈能等.中国主要稻米的粒型及其品质特性[J].中国水稻科学,2004,18(2):135-139.
    马良勇,包劲松,李西明,等.水稻矮生基因的克隆和功能研究进展[J].中国水稻科学,2009,23(1):1-11
    莫惠栋.我国稻米品质的改良[J].中国农业科学,1993,26(4):8-14.
    祁祖白,李宝健,杨文广,等.水稻籽粒外观品质及脂肪含量的遗传研究.遗传学报.1983,10(6):452-458
    石春海,中宗坦.早籼粒形的遗传和改良[J].中国水稻科学,1995((1)):27-32
    石春海,朱军.水稻植株农艺性状与稻米碾磨品质的遗传相关性分析[J].浙江农业大学学报,1997,23(3):331-337
    石春海,何慈信,朱军,等.籼稻稻米外观品质性状的遗传主效应和环境互作效应分析[J].中国水稻科学,1999,13(3):179-182.
    王镜岩,朱圣庚,徐长法:生物化学(上)[M].第3版.北京:高教出版社,2003
    王忠顾蕴洁,陈刚,等.稻米的品质和影响因素[J].分子植物育种,2003,(2):231-241
    王松凤,李辉,刘喜,等.水稻粒形相关性状及千粒重QTL的稳定性分析[J].南京农业大学学报,2008,31(3):1-7.
    伍时照,黄超武,欧烈才,等.水稻品种种性研究——Ⅲ.水稻品种品质特性的研究[J].中国农业科学.1985,5:1-7
    武小金.稻米蒸煮品质性状的遗传研究[J].湖南农学院学报,1989,15(4):6-9
    吴长明,孙传清,陈亮,等.控制稻米脂肪含量的QLT分析.农业生物技术学报,2000(8):382-384
    徐建龙,薛庆中,罗利军,等.水稻粒重及其相关性状的遗传剖析[J].中国水稻科学,2002,16(1):6-10.
    徐正进,陈温福,马殿荣,等.稻谷粒形与稻米主要品质性状的关系[J].作物学报,2004,30(9):894-900.
    杨联松,白一松,张培江等.谷粒形状与稻米品质相关性研究[J].杂交水稻,2001,16(4):48-50
    易小平,陈芳远.籼型杂交水稻品质性状的细胞质遗传效应研究[J].广西农学院学报,10(1):25-32.
    于永红,朱智伟,樊叶杨,等.应用重组自交系群体检测控制水稻糙米粗蛋白和粗脂肪含量的QTL[J].作物学报,2006,(11):1712-171