“C418/9311”染色体片段置换系群体的构建及产量相关性状的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)是世界上三大主要粮食作物之一。籼稻(O. sativa ssp. Indica)和粳稻(O. sativa ssp.Japonica)作为亚洲栽培稻的两个重要亚种,经历了漫长时间的进化,其基因组存在着高度的遗传分化,在产量性状和生态适应性等诸多方面表现出较大的差异。作为水稻两个典型的杂种优势群,籼稻和粳稻的杂交又能产生巨大的优势。因此,明晰籼(或粳)稻的等位基因在粳(或籼)稻遗传背景中的遗传特点,挖掘影响产量等相关性状的基因,对于籼粳亚种间优良基因的转移及杂种优势利用具有十分重要的理论和实践意义。水稻产量等性状一般属于多基因控制的数量性状,通常采用籼粳杂交衍生的分离群体,如F2、RIL以及DH等对控制这些性状的数量性状位点(quantitative traits locus, QTL)数目、染色体上的位置及遗传效应进行分析,也取得了一定进展。但这些传统的分析群体遗传背景复杂,估计的QTL往往不太准确,一些效应值较小的QTL很难检测到。染色体片段置换系群体(chromosome segment substitution lines, CSSLs)是指一套以相同亲本为遗传背景,置换了供体亲本一个或少数染色体片段的系列单株组成的群体,由于其遗传背景简单,群体变异小,便于研究者进行多年多点的重复试验等特点,备受研究者的重视,染色体片段置换系群体不仅大大提高了对复杂数量性状基因定位的精确性,而且通过构建次级分离群体可以对目标QTL进行精细定位和克隆分析。
     本研究通过杂交、回交和自交,并在高世代构建DNA池,利用分子标记辅助选择的方法,将优良粳稻品种C418的染色体片段导入到了优良的、并已完成测序的籼稻品种9311的遗传背景中,培育出一套置换片段相互重叠、覆盖粳稻全基因组的水稻染色体片段置换系群体,旨在为水稻重要产量性状的基因(QTL)定位、图位克隆以及水稻杂种优势研究提供基础材料。研究结果如下:
     1)从实验室公共的1000对SSR引物和自行设计的40对In/del标记中,筛选出158对在双亲间表现出多态性的标记,多态性比例为14.25%。多态性标记在不同染色体上的分布频率有一定差异,其中第3和6染色体最低,仅有11.11%;第9染色体相对较高,达24.39%。选择其中在12条染色体上分布相对均匀的136个标记,参考Temnykh, McCouch和the International Rice Genome Sequencing Project等发表的遗传图谱,构建了分子标记连锁图。该图谱覆盖全基因组1480.9 cM,标记间平均间距为10.89 cM,用于分析"C418/9311”BC3F4,BC3F6,BC3F8和SF2世代单株或DNA池的基因型,分子标记辅助选择目标单株。
     2)利用上述的136对多态性标记分析了“C418/9311”BC3F4及其以后各世代群体的基因型,以每个单株含有尽可能少的供体染色体片段及所有家系包含的置换片段能最大程度覆盖整个供体亲本"C418”全基因组两个条件为标准,最终从BC3F8和SF2两个不同世代中筛选出108个株系,构成了一套新的籼、粳染色体片段置换系群体。
     3)通过对置换系群体的遗传组成分析表明,置换系群体平均每个株系包含置换的分子标记数目占总标记数的比例为4.76%,置换的标记数变异范围在1-15个之间;其中5.96个为纯合供体基因型标记,0.51个为杂合基因型标记。
     108个置换系家系置换的片段总长度为2586.3 cM,相当于水稻基因组总长度的1.7倍,代表了水稻的12条染色体。代表每条染色体的家系数目是有差别的,其中,第2染色体的代表家系数最多,有16个;其次是第4和7染色体,分别有11个;第5和10染色体的代表家系数较少,分别有6个和5个。每条染色体平均代表家系数目为9个。
     4)以“C418/9311”染色体片段置换系为材料,采用改良的QTL IciMapping v2.2 Mapping软件,分析了2008年南京,2008年海南两个不同环境下籽粒性状的QTL(粒长、粒宽、粒厚、长宽比、长厚比和千粒重),共检测到70个籽粒性状QTL,分布在水稻的11条染色体上,其中11个QTL能在两个环境下重复检测到,即千粒重QTL-qTGW6.1和qTGW7,粒长QTL-qGL5、粒宽QTL-qGW5,qGW6.1和qGW7.2以及共同作用于长宽比的QTL-qLW5.1和谷粒体积QTL-qGV2,qGV7.4,qGV8.1和qGV9,其中,qTGW7位于第7染色体RM8261标记的染色体区段,是一个新的千粒重QTL。通过建立次级F2分离群体,将qTGW7定位在第7染色体的短臂上,与标记RM22034紧密连锁;后代近等基因系(NIL)的表型结果也证明了前期QTL定位的正确性,同时确定qTGW7与RM22034紧密连锁。利用C418/9311的置换系群体对籽粒性状研究的结果证实“C418/9311”染色体片段置换系应用于数量性状基因座分析是可行的。
     5)选取了64个能覆盖C418 12条染色体全基因组的置换系家系分别与9311杂交形成了含64个家系的杂交组合群体(CSSLHs),采用QTL IciMapping v2.2软件分析了CSSLs和CSSLHs两群体中产量和产量相关性状具有显著遗传效应的位点(QTL)。2008和2009两年,分别检测到87和93个QTL,这些QTL大部分的贡献率都小于20%。在2008年,62.1%(54)QTL具有超显性效应,2009年61.3%(57)QTL具有超显性效应,表明在单位点水平上,超显性对产量及产量相关性状杂种优势的形成具有重要的作用,而含这些杂种优势位点的家系也成了杂交育种的理想材料。此外这些QTL中仅少数能在CSSLs和CSSLHs中同时检测到,表明水稻产量及产量相关性状和杂种优势可能由两套不同的遗传机理控制。
Rice is one of the most important crops in the world. Indica and Japonica are two subspecies of Asian cultivated rice and show high genetic differentiation. Great heterosis also exists in the inter-subspecific crosses between Indica and Japonica rice cultivars. The genetic effect of alleles from japonica (or indica) in a genetic background of indica (or japonica) and the efficiently utilization of inter-subspecific heterosis between Indica and Japonica has its important theory meaning and practical meaning. In the aforementioned studies, F2, F3 populations and the populations derived by backcrossing recombinant inbred lines (RILs) with the parents were usually used. Due to genetic background noise in these mapping populations, QTL location and its effect was not easily and precisely estimated. Especially, the identity of some minor QTL with a low LOD score could be ignored. Chromosome segment substitution lines (CSSLs), with each line carries a single or fewer defined chromosome segment of donor genome, have a pure genetic background from a recurrent genotype. Additionally, CSSLs are directly used in breeding programs when their genetic background is an elite cultivar. Moreover, secondary F2 population can be derived from a further backcross between a selected CSSL and the recurrent parent, and then be used in the fine mapping. For these reasons, the development of series of chromosome segment substitution lines (CSSLs) has been an effective way to isolate useful genes.
     In order to breed a set of CSSL population for fine mapping of quantitative trait loci, map-based cloning and heterosis analysis, the present study used C418 and 9311, which are elite indica and japonica cultivars respectively, as the materials, to develop a set of chromosome segment substitution lines by using molecular marker aided selection. The main results are as follows:
     1) A total 1000 pairs of SSR primers and 40 pairs of new developed in/del markers were used to detect the polymorphism between the parents, among them,158 pairs, which account for 14.25% of the total SSR markers, showed polymorphism. The frequency of the polymorphism markers varied from chromosomes, with the highest of 24.39% on chromosome 9 and the lowest of 11.1% on chromosome 3 and 6. The marker linkage map was built according to marker distance report by Temnykh et al., McCouch et al. and the International Rice Genome Sequencing Project, which is consisted of 136 molecualr loci, spanned a total of 1,480.9 cM on all 12 chromosomes with an average interval of 10.89 cM between adjacent markers. The candidate substitution lines were marker assisted selected from the progenies with these molecular markers.
     2) The genotype of the BC3F4 lines and its consecutive progenies derived from "C418/9311" were analyzed with the 136 molecular markers. Eventually, the chromosome segment substitution lines, which were composed of 108 lines and chosen from BC3F8 and SF2 progenies, were developed with the following criterias:a) a high number of purely recurrent linkage groups;b) a wide coverage of the genome by the donor substituted segments.
     3) The average percent of substitution markers in the 108 lines is 4.76%, with a range of 1 to 15, among them,5.96 and 0.59 markers exhibited homologous donor and heterozygous type, respectively.
     The substitution genome length was 2586.3 cM, about as many as 1.7 times of the rice genome. The 12 chromosomes'genome was substituted by 108 lines, the most substitution lines were on chromosome 2, including 16 substitution lines;next were chromosomes 4 and 7, including 11 substitution lines;the least substitution lines were on chromosomes 5 and 10,6 and 5 respectively, the average substitution lines were 9.
     4) The CSSLs were used to detect the quantitative trait locus (QTL) for kernel traits in two contrasting environments, and led to the identification of 70 quantitative trait loci (QTL), distributing on 11 chromosomes. Out of these QTL affecting kernel traits,11 QTL were simultaneously identified in both environments:1000-grain weight QTL-qTGW6.1, qTGW7; grain length QTL-qGL5;grain width QTL-qGW5, qGW6.1 and qGW7.2;grain length and width ratio QTL-qLW5.1 and grain volume QTL-qGV2, qGV7.4, qGV8.1 and qGV9. More detailed mapping of qTGW7 showed that it was co-segregated with RM22034 on the short arm of chromosome 7. These results indicated that the CSSLs were effectively to identify quantitative trait loci associated with important agronomy traits, and provided rich resource for rice molecular breeding synchronously.
     5) 64 lines from these CSSLs were crossed one by one with the recipient parent to generate a set of corresponding CSSL hybrids (CSSLHs). These materials were field-tested over two years for yield and yield-related traits. A total of 87 (in 2008) and 93 (in 2009) QTL were detected. In 2008,62.1%(54) of the QTL were over-dominant, in 2009, this proportion was 61.3%(57), indicating that over dominance was a major contributor to heterosis. Some of the CSSLs harboured QTL associated with heterosis in both years;these should represent potential candidates as parents of F1 hybrids along with cv.9311 or other indica lines. Moreover, few of these yield-related QTL were detected in both CSSLs and CSSLHs, indicating that the main yield-related traits and heterosis were formed by two different genetic mechanisms.
引文
1. Allen WCJ, Richard JR., Howard JJ. Application of chromosomal substitution techniques in gene function discovery. J. Physiol,2003,554,1:46-55
    2. Alpert KB, Tanksley SD. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:a major fruit weight quantitative trait locus in tomato. Proc. Natl. Acad. Sci. USA,1996,93:15503-15507
    3. Ayahiko S, Takeshi I, Kaworu E, et al. Deletionin a gene associated with grain size increased yields during rice domestication, Nature Genetics,2008,40:1023-1028
    4. Bennetzen JL. Comparative sequence analysis of plant nuclear genomes:microcolinearity and its many exceptions. Plant Cell,2000,12:1021-1029
    5. Botstein D, White RL, Skolnich M, et al. Construction of agenetic linkage map of man using restriction fragment length polymorphisms. Am J Hum Genet,1980,32:314-331
    6. Bruce AB. The Mendelian theory of heredity and the augmentation of vigor. Science,1910,32: 627-628
    7. Causse MA, Fulton TM, Cho YG, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138:1251-1274
    8. Chang TT, Li CC. Gentics Breeding [A], In Luh. Rice; Production and Utilization. AVI press,1980: 87-127
    9. Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet.,1997,95:553-567
    10. Cheng FM, Zhong LJ, Wang F, et al. Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem.,2005,90:39-46
    11. Davenport CB. Degeneration albinism and inbreeding. Science,1908,28:454-455
    12. Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation:version Ⅱ. Plant Mol. Biol. Rep., 1983,1:19-21
    13. Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of japonica rice (O. sativa L.). Rice Genet. Newsl., 1997,14:39-40
    14. East EM. Heterosis. Genetics,1936,21:375-397
    15. East EM,1908 Inbreeding in corn, pp.419-428 in Reports of the Connecticut Agricultural Experiment Station for Years 1907-1908
    16. Ebitani T, Takeuchi Y, Nonoue Y. et al. Construction and Evaluation of Chromosome Segment Substitution Lines Carrying Overlapping Chromosome Segments of indica Rice Cultivar'Kasalath' in a Genetic Background of japonica Elite Cultivar'Koshihikari'. Breed. Sci.,2005,55:65-73
    17. Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics,1995,141: 1147-1162
    18. Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet.,2006,112:1164-1171
    19. Frary AN, Nesbitt TC, Frary AM, et al. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2002,289:85-88
    20. Fridman E, Carrari F, Liu YS, et al. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science,2004,305:1786-1789
    21. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc. Natl. Acad. Sci. USA,2000, 97:4718-4723
    22. Gao YM, Zhu J. Mapping QTLs with digenic epistasis under multiple environments and predicting heterosis based on QTL effects. Theor. Appl. Genet.,2007,115:325-333
    23. Gutierrez AG, Carabali JS, Giraldo OX, et al. Identification of a Rice Stripe Necrosis Virus resistance locus and yield component QTLs using Oryza sativa x O. glaberrima introgression lines. BMC Plant Biol.,2010,10:6. doi:10.1186/1471-2229-10-6
    24. Hallauer AR, Miranda JB. Quantitative genetics in maize breeding.2nd ed. Iowa State Univ. Press, Ames, IA.1988
    25. Han B, Xue YB. Genome-wide intraspecific DNA-sequence variation in rice. Current opinion in plant biology,2003,6:134-138
    26. Harushima Y, Yano M, Shomura A. et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494
    27. He G, Zhu X, Elling AA, et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell,2010,22:17-33
    28. Hittalmani S, Huang N, Venuprasad BCR, et al. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor. Appl. Genet.,2003,107:679-690
    29. Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using marker assisted selection. Genome,1996,39:348-358
    30. Hua JP, Xing YZ, Xu CG, et al. F1 Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895
    31. Hua JP, Xing YZ, Wu WR, et al. Single-locus heterotic effects and dominance by dominance interaction can adequately explain the genetic basis of heterosis in an elite hybrid. Proc. Natl. Acad. Sci. USA,2003,100:2574-2579
    32. Huang Y, Zhang L, Zhang J, et al. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62:579-591
    33. Hyne V, Kearsey MJ, Pike DJ, et al. QTL analysis:unreliability and bias in estimation procedures. Mol. Breed.,1995,1:273-282
    34. Ishimaru K. Identification of a locus increasing rice yield and physiological analysis of its function. Plant Physiol.,2003,133:1083-1090
    35. Jansen RC, Nap JP. Genetical genomics:The added value from segregation. Trends Genet.,2001, 17:388-391
    36. Jones DF. Dominance of linked factors as a means of accounting for heterosis. Genetics,1917,2: 466-479
    37. Kojima S, Takahashi Y, Kobayashi Y. et al.2002, HD3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of HD1 under short-day conditions, Plant Cell Physiol.,43:1096-1105
    38. Kubo T, Aida Y, Nakamura K, et al. Reciprocal chromosome segment substitution series derived from Japonica and Indica cross of rice (Oryza sativa L.). Breed. Sci.,2002,52:319-325
    39. Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet. Newsl.,1999,16:104-106
    40. Lamkey KR, Hallauer AR. Contribution of the Long Arm of Chromosome 10 to the Total Haterosis Observed in Five Maize Hybrids. Crop Sci.,1988,28:896-901
    41. Li L, Lu K, Chen Z, et al. Dominance, Overdominance and Epistasis Condition the Heterosis in Two Heterotic Rice Hybrids. Genetics,2008,180:1725-1742
    42. Li HH, Ribaut JM, Li ZL, et al. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor. Appl. Genet.,2008,116:243-260
    43. Li JM, Michael T, Mccouch SR. Fine Mapping of a Grain-Weight Quantitative Trait Locus in the Pericentromeric Region of Rice Chromosome 3. Genetics,2004,168:2187-2195
    44. Li JX, Yu SB, Xu CG, et al. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet.,2000,101:248-254
    45. Li ZK, Luo LJ, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I Biomass and grain yield. Genetics,2001,158: 1737-1753
    46. Li ZK, Pinson SR, Paterson MAH, et al. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics,1997,145:453-465
    47. Lin HX, Qian HR, Zhuang JY, et al. RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L),Theor. Appl. Genet.,1996,92:920-927
    48. Liu XC, Chen SG, Chen JS, et al. Improvement of combining ability for restorer lines with the identified SSR markers in hybrid rice breeding. Breed. Sci.2004,54:341-346
    ,49. Lu H, Romero-Severson J, Bernarbo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor. Appl. Genet.,2003,107:494-502
    50. Luo LJ, Li ZK, Mei HW, et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice II.Grain yield components. Genetics,2001,58: 1755-1771
    51. McCouch SR, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research,2002,9:199-207
    52. McCouch SR. CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene Nomenclature System for Rice. Rice,2008,1:72-84
    53. Mckenzie KS, Rutger JN. Genetic analysis of aloes content, alkali spreading score and grain dimensions in rice. Crop Sci.,1983:306-313
    54. Mitra GN. Inheritance of grain size in rice. Curr. Sci.,1962,277-278
    55. Nadeau JH, Singer JB, Matin A, et al. Analysing complex genetic traits with chromosome substitution strains. Nat. Genet,2000,24:221-225
    56. Paterson AH, DeVerna J, Lanini B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, from an interspecies cross of tomato. Genetics,1990,124: 735-742
    57. Paterson AH, Lander ES, Hewitt JD, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335: 721-726
    58. Peng JY, Glaszmann JC, Virmani SS. Heterosis and isozyme division in indica rice. Crop Sci., 1988,28:561-563
    59. Prasad K. New record of long grain in rice. Curr. Sci.,1975,44:277-278
    60. Redona ED, Mackill DJ. Quantitative trait locus analysis for rice panicle and grain characteristic. Theor. Appl. Genet.,1998,96:957-963
    61. Rhodes D, Ju GC, Yang WJ. Plant metabolism and heterosis. Plant Breeding Reviews,1992,10: 53-89
    62. Ronen Q Carmel-Goern L, Zamir D, et al. An alternative pathway to (3-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc. Natl. Acad. Sci. USA,2000,97:11102-11107
    63. Sanguinetti CJ, Dias NE, Simpson AJG. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques,1994,17:915-919
    64. Semel Y, Nissenbaum J, Menda N, et al. Overdominant QTL for yield and fitness in tomato. Proc. Natl. Acad. Sci. USA,2006,103,12981-12986
    65. Shan JX, Zhu MZ, Shi M, et al. Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theor. Appl. Genet.,2009,119: 827-836
    66. Shomura A, Izawa T, Ebana K. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet.,2008,40:1023-1028
    67. Shull GH. The composition of a field of maize. Am Breeders Assoc. Rep.,1908,4:196-201
    68. Shull GH. What is "Heterosis". Genetics,1948,33:439-446
    69. Somrith B, Chang TT, Jackson BR. Genetics analysis of traits related to grain characteristics and quality in two crosses of rice. IRRI Research Paper Series,1979,35:1-14
    70. Song S, Huang Y, Wang X, et al. HRGD:a database for mining potential heterosis-related genes in plants. Plant Mol Biol,2009,69:255-260
    71. Song S, Qu H, Chen C, et al. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines. based on SAGE data. BMC Plant Biol.2007a; 7:49. doi:10.1186/1471-2229-7-49
    72. Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet.,2007b,39:623-630
    73. Sprague GF, Tatum LA. General vs. specific combining ability in single crosses of corn. J. Amer. Soc. Agron.,1942,34:923-932
    74. Stuber CW, Lincoln SE, Wolff DW, et al. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics,1992,132: 823-839
    75. Stuber CW. Heterosis in plant breeding. Plant Breeding Reviews,1994,12:227-251
    76. Stuber CW, Edwards MD, Wendel JF. Molecular marker-facilitated investigation of quantitative trait loci in maize. Ⅱ. Factors influencing yields and its component traits. Crop Sci.,1987,27: 639-648
    77. Syed NH, Chen ZJ. Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity,2005,94:295-304
    78. Takahashi Y, Shomura A, Sasaki T, et al. Hd-6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc. Natl. Acad. Sci. USA, 2001,98:7922-7927
    79. Takite T. Breeding for grain shape in rice. Agri. Sci.,1989,44:39-42
    80. Tan YF, Xing YZ, Zhang F, et al. Genetic bases of appearance quality of rice grains in Shanyou63, an elite rice hybrid. Theor. Appl. Genet.,2000,101:823-829
    81. Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication. Nat. Genet.,2008,40:1360-1364
    82. Tanksley SD, Nelson JC. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Thero. Appl. Genet.,1996a,92:191-203
    83. Tanksley SD, Gnardllio S, Fulton TM, et al. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Thero. Appl. Gener., 1996b,92:213-224
    84. Temnykh S, DeCklerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.):frequency, length variation, transposon associations, and genetic marker potential. Genome Res.,2001,11:1441-1452
    85. Temnykh S, Park WD, Ayres N, et al. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Thero. Appl. Genet.,2002,100:697-712
    86. Tian F, Li DJ, Fu Q, Zhu ZF. et al. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor. Appl. Genet.,2006a,112:570-580
    87. Tian F, Zhu Z, Zhang B. et al. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor. Appl. Genet,2006b,113:619-629
    88. Tomar JB, Nanda JS. Genetics and association studies of kernel shape in rice. Indian Journal of Genetics and Plant Breeding,1985,45:278-283
    89. Van Berloo R. GGT:Software for the Display of Graphical Genotypes. J. Hered.,1999,90: 328-329
    90. Wang E, Wang JJ, Zhu XD, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication, Nat. Genet.,2008,40:1370-1374
    91. Wang J, Wan X, Crossa J, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet. Res. Camb.,2006,88:93-104
    92. Wei G, Tao Y, Liu G. A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc. Natl. Acad. Sci. USA,2009,106:7695-7701
    93. Weng J, Gu S, Wan X, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Research,2008,18:1199-1209
    94. Wu J, Maehara T, Shimokawa T, et al. A Comprehensive Rice Transcript Map Containing 6591 Expressed Sequence Tag Sites. Plant Cell,2002,14:525-535
    95. Xi ZY, He FH, Zeng RZ, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 2006,49:476-484
    96. Xiao JH, Li JM, Yuan LP, et al. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754
    97. Xiao J, Li J, Yuan L. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics,1995,140:745-754
    98. Xie XB, Song MH, Jin FX, et al. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufi pogon. Theor. Appl. Genet.,2006,113:885-894
    99. Xing YZ, Tan YF, Hua JP, et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor. Appl. Genet., 2002,105:248-257
    100. Yamakawa H, Hirose T, Kuroda M. et al. Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol.,2007,144: 258-277
    101. Yano M, Katayose Y, Ashikari M, et al. Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell,2000, 12:2473-2483
    102. You AQ, Lu XG, Jin HJ, et al. Identification of quantitative trait loci across recombinant inbred lines and testcross populations for traits of agronomic importance in rice. Genetics,2006,172: 1287-1300
    103. Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor. Appl. Genet.,1989,77:95-101
    104. Yu J, Hu SN, Wang J. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science,2002,296:79-92
    105. Yu SB, Li JX, Xu CG, Tan YF, et al. Epistasis plays an important role as genetic basis of heterosis in rice. Science in China (Series C),1997a,41:293-302
    106. Yu SB, Li JX, Xu CG, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci. USA,1997b,94:9226-9231
    107. Zhang HY, He H, Chen LB, et al. A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Molecular Plant,2008,720-731
    108. Zhao YV, Yang ZY, Wei YL, et al. A Second Discussion on Development of Northern Japonica Hybrid Rice from the Successful Breeding of Restorer C418.2000, Hybrid Rice,15:3-4
    109. Zhu, WY, Lin J, Yang DW, et al. Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Plant Mol. Biol. Rep.2009,27:126-131
    110.阿克沙.水稻单片段替换系群体的建立及QTL定位.分子植物育种,2003,1(4):565-567
    111.曾千春,周开达,朱祯,等.中国水稻杂种优势利用现状,中国水稻科学(Chinese Rice Sci), 2000,14(4):243-246
    112.曾瑞珍,Aksha YT, Alukd AR,等.利用单片段代换系定位水稻粒形QTL.中国农业科学,2006,39(4):647-65
    113.陈庆全,穆俊祥,周红菊,等.利用基础导入系分析粳稻基因的遗传效应,中国农业科学2007,40(11):2387-2394
    114.陈彦惠,刘新芝,彭泽斌,等.玉米杂种优势类群和模式的研究Ⅱ.玉米自交系优势类群的划分和优势模式初探.河南农业大学学报,1995,29(4):341-347
    115.董世钧,李春寿,李关士,等.水稻籼粳杂种一代生育期的表现.中国水稻科学,1995,9(2):77-81
    116.符福鸿,王丰,黄文剑,等.杂交水稻谷粒性状的遗传分析.作物学报.1994,20:39-44.
    117.顾兴友,顾铭洪.轮回422与籼稻杂交F1抽穗期超亲遗传分析.中国水稻科学,1995,9(1):21-26
    118.郭二男,潘增,王才林,等.粳稻的腹白研究.作物学报,1983,9(1):31-38
    119.何风华,席章营,曾瑞珍,等.利用高代回交和分子标记辅助选择建立水稻单片段代换系.遗传学报,2005,32(8):825-831
    120.何风华.水稻单片段替换系群体的建立及QTL分析.分子植物育种,2003,1(4):562-564
    121.贺浩华,罗小金,朱昌兰,等.杂交稻部分不育系与恢复系的SSR分类.作物学报,2006,32(2):169-175
    122.吉志军,尤娟,王龙俊,等.不同基因型水稻稻米加工品质和外观品质的生态型差异.南京农业大学学报,2005,28(4):16-20
    123.焦德茂,季本华,童红玉,等.水稻籼粳亚种杂交F1的光合光抑制特性.植物学报,1994,36(3):190-196
    124.李成荃.杂交粳稻品质性状的遗传研究.杂交水稻,1988,4:32-35
    125.李竞雄.中国大百科全书:生物卷:遗传学分册杂种优势.中国大百科全书出版社,1983,230-234
    126.李任华,徐才国,何予卿,等.水稻亲本遗传分化程度与籼粳亚种间杂种优势的关系.作物学报,1998,24(5):564-576
    127.李欣,顾铭洪,潘学彪.常见水稻品种稻米品质的研究.江苏农学院学报,1987,8(1):1-8
    128.林鸿宣,闵绍楷,熊振民,等.应用RFLP图谱定位分析籼稻粒形数量性状基因座位.中国农业科学,1995,28:1-7
    129.林荔辉,吴为人.水稻粒形和粒重的QT L定位分析.分子植物育种,2003,1(3):337-342
    130.刘炜,李自超,史延丽,等.试用配合力进行粳型水稻杂种优势生态型的划分.作物学报,2004,30(1):66-72
    131.泷田正.水稻粒形特性与育种.农业技术,1990,44(6):39-42
    132.泷田正.水稻籽粒大小的遗传及其与诸性状的关系.国外农学-水稻,1987,1:18-20
    133.卢庆善,孙毅,华泽田主编.农作物杂种优势.北京:中国农业科技出版社,2001
    134.吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响,作物学报,2002,28(4):499-504.
    135.吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响,作物学报,2002,28(4):499-504
    136.莫惠栋.我国稻米品质的改良.中国农业科学,1993,26(4):8-14
    137.潘家驹.作物育种学总论.农业出版社,1992
    138.芮重庆,赵安常.籼稻粒重及粒形性状F1遗传特性的双列分析.中国农业科学,1983:14-20
    139.石春海,申宗坦.早籼粒形的遗传和改良.中国水稻科学,1995,9:27-32
    140.石春海,申宗坦.早籼稻谷性状遗传效应的分析.浙江农业大学学报,1994,20:405-410
    141.石春海,朱军.水稻植株农艺性状与稻米碾磨品质的遗传相关性分析.浙江农业大学学报,1997,23(3):331-337
    142.石春海.水稻粒形与优质米育种.中国农学通报,1994,10:41-45
    143.孙传清,陈亮,李自超,等.两系杂交稻优势生态型的初步研究.杂交水稻,1999,14(2):34-38
    144.孙克新.粳型恢复系C418的特征特性及应用中注意的问题,作物杂志,2003.5
    145.汤继华,马西青,滕文涛,等.利用“永久F2"群体定位玉米株高的QTL与杂种优势位点.科学通报,2006,24,2864-2869
    146.滕文涛,曹靖生,陈彦惠,等.十年来中国玉米杂种优势群及其模式变化的分析.中国农业科学,2004,37(12):1804-1811
    147.田翠,张涛,蒋开锋,等.水稻QTL定位研究进展.基因组学与应用生物学,2009,28(3):557-562
    148.王余龙,姚友礼,李昙云,等.水稻籽粒有关性状与粒重关系的初步探讨.作物学报,1995,21:573-578
    149.王忠,李卫芳,顾蕴洁,等.水稻胚乳的发育及其养分输入的途径.作物学报,1995,21(5):520-527
    150.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25(4):394-399
    151.武田和义,斋藤健一.控制水稻籽粒大小的主效基因.育种学杂志,1980,30(3):280-282
    152.武小金.稻米蒸煮品质性状的遗传研究.湖南农学院学报,1989,15(4):6-9
    153.肖金华,袁隆平.水稻籼粳亚种间杂种优势及其与亲本关系的研究.杂交水稻,1988(1):5-9
    154.熊振民,蔡洪法主编.中国水稻.北京:中国农业科技出版社,1992
    155.熊振民,孔繁林.大粒型水稻品种的遗传动态及其选育.浙江农业科学,1976,2:26-29
    156.熊振民,孔繁林.水稻粒重的超亲遗传及其在育种中的应用.浙江农业大学学报,1982,8(1):17-25
    157.徐建龙,薜庆中,罗利军,等,水稻粒重及其相关性状的遗传解析,中国水稻科学,2002,16(1),6-10
    158.杨联松,白一松,许传万,等.水稻粒形类型及其遗产的研究进展.安徽农业科学,2001 a,29(2):164-167
    159.杨联松,白一松,张培江,等.水稻谷粒形状分类及其与稻米品质相关性研究.杂交水稻,2001b,16(4):48-50
    160.杨振玉,张忠旭,华泽田,等.不同类型籼粳亚种间杂种F1可利用和非可利用杂种优势的评价利用.中国水稻科学,1991,4(2):49-55
    161.杨振玉,张宗旭,魏耀林,等.粳型特异亲和恢复系C418的选育及其特性.杂交水稻,1998,13(3):31-32
    162.应存山主编.中国稻种资源.北京:中国农业科技出版社,1993.530-533
    163.余传元,万建民,翟虎渠,等.利用CSSL群体研究水稻籼粳亚种间产量性状的杂种优势.科学通报,2005,50(1):32-37
    164.袁力行,傅骏骅,张世煌,等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究.作物学报,2001,27(2):149-156
    165.袁隆平.杂交水稻育种的战略设想.杂交水稻,1987,2(1):1-3
    166.张慧廉,邓应德.亚种间杂种籽粒充实度研究.杂交水稻,1990,(2):29-31
    167.郑大浩,李艳茹,金锋学,等.中国玉米Lancaster杂种优势群自交系的系谱、种质基础分析.中国农业科学,2002,35(7):750-757
    168.庄杰云,樊叶杨,吴建利,等.超显性效应对水稻杂种优势的重要作用.2001,中国科学(C辑),31(2):106-113
    169.邹江石,吕川根,王才林,等.两系杂交稻“两优培九”的选育及其栽培特性.中国农业科学,2003,36(8):869-872