端板螺栓连接钢—混凝土组合节点试验及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合型钢混凝土结构和钢管混凝土结构的优点后,将钢骨置入圆(方)钢管中,然后浇注素混凝土,形成一种新型的组合柱形式——钢骨-圆(方)钢管混凝土柱。目前对此种组合柱的力学性能有了较为深入的研究,然而对其节点的研究却相对滞后很多。鉴于此,本文借鉴钢结构中常用的端板螺栓节点,将其引入组合结构中,用贯穿柱身的双头等长高强度螺栓将端板与钢骨-方钢管混凝土柱连接在一起,钢梁焊接在端板上,从而形成一种新型的组合节点形式。本文在总结传统钢-混凝土组合节点的基础上,对此种新型节点的力学性能进行了较为深入的试验与理论研究并提出了其设计方法。主要研究内容如下:
     (1)设计并进行了7个钢骨-方钢管混凝土柱-钢梁端板螺栓连接节点的拟静力试验研究。研究了这种新型节点在梁端低周反复荷载作用下的宏观变形特征、破坏机理、破坏模式以及延性、强度退化、刚度退化和耗能能力等抗震性能指标,同时较为系统地研究了轴压比、端板厚度、螺栓直径、混凝土强度对组合节点受力性能的影响规律,并建立了钢骨-方钢管混凝土柱-钢梁端板螺栓节点的恢复力模型,为结构的弹塑性时程分析提供了依据。
     (2)运用ANSYS对试验中的7个试件进行了全过程有限元分析,分析中考虑了几何非线性、材料非线性和状态非线性等复杂非线性问题。通过与试验结果的对比,验证了有限元方法分析端板螺栓连接组合节点的可靠性。经过计算分析得到了节点域核心混凝土受力特点、节点主应力流的大小及分布、端板与柱翼缘之间接触压应力分布特征等,弥补了试验测试的局限性,从而获得对此类新型节点受力特性更准确、更全面的认识。
     (3)对钢骨-方钢管混凝土柱-钢梁端板螺栓连接节点核心区的受力机理进行了分析,建立了节点核心区的受力模型和屈服机制,推导了节点域的抗剪承载力计算公式,并根据剪切变形协调条件得到了节点域剪力-剪切变形骨架曲线,为此类节点的工程设计提供了简化计算方法。
     (4)考虑了螺栓预拉力作用下板件对螺栓变形的影响,将高强螺栓和受压板件简化为一“栓板单元”,推导得到了栓板单元的刚度计算表达式,并根据螺栓在各个阶段的受力特征,计算得到了螺栓的承载力及变形,建立了节点弯矩-螺栓伸长转角曲线。
     (5)基于屈服线理论和薄板理论分别计算了端板在不同支撑条件下的承载力和初始刚度,并提出了端板全过程受力特性的理论分析方法。
     (6)基于叠加原理提出了一种钢骨-方钢管混凝土柱-钢梁端板螺栓连接节点全过程受力特性的理论分析方法,直接由节点的构造尺寸和材料力学性能便可进行计算分析,避免了复杂的有限元分析计算和试验研究,理论得到的弯矩-转角曲线与试验结果吻合良好。如在实际框架结构的弹塑性计算分析中,将本文提出的弯矩-转角模型应用到结构的计算模型中,能更好地了解节点受力性能对结构整体的影响,从而为今后的科学理论研究和工程实践提供参考。
     (7)在总结试验研究结果、有限元和理论分析成果的基础上,同时结合国内外相关研究成果和规范,针对钢骨-方钢管混凝土柱-钢梁端板螺栓节点提出了较为系统的静力和抗震设计方法,为我国钢-混凝土组合结构的推广应用提供了有益补充。此外,应用组件法建立了此类新型节点初始转动刚度计算的力学模型,并由此推导出节点初始转动刚度的计算表达式,以便在组合框架结构弹性设计时使用。
Steel-reinforced concrete filled steel tubular columns formed by inserting structural steel into concrete-filled circular (square) steel tubes, is a new type of modern composite column. This type of composite column has the advantages of both steel-reinforced concrete structures and concrete filled steel tube structures. There has been a lot of research about the mechanical behavior of the composite column, but the research on its connection is relatively backward. In view of the above-mentioned situations, the bolted end-plate connections, commonly used in steel structures, is introduced in composite structure this dissertation. This new type of connection is formed by end-plate and steel-reinforced concrete filled square steel tubular columns joined together using high strength bolt with equal-length in both ends, and the steel beam is welded on the end-plate. In this dissertation, the mechanical properties and design method of this new type connection have been extensively investigated both experimentally and theoretically based on previous research achievements of steel-concrete composite connections. The main contents are as follows:
     1.7specimens of steel beam-to-steel-reinforced concrete filled steel tubular column bolted end-plate connections are designed and tested under cyclic loading. Macroscopical deformation characteristics, failure mechanism, failure modes, ductility, strength degradation, rigidity strength degradation, energy dissipation of this new type connection under low reversed cyclic loading are observed and studied. Influences of the axial compressive ratio, thickness of end-plate, bolt diameter, concrete strength grade on the bearing capacity of the composite connections are investigated. Hysteretic model for these end-plate connections to square steel tube columns filled with steel-reinforced concrete is also constructed according to experimental results, which can be used in the elasto-plastic time-history analysis of structural system.
     2. The nonlinear finite element analysis (FEA) of7specimens is carried out using ANSYS program, and some complicated nonlinear problems are considered in the analysis, such as geometric nonlinear, material nonlinear and state nonlinear. With comparison to the test results, it is verified that finite element method can efficiently simulate and analyze the bolted end-plate composite connections. Some characteristics of end-plate connections which are difficult to be measured by tests, such as the stress characteristics of concrete in panel zone, the magnitude and distribution of primary stress and the distribution characteristics of contact compressive stress between the end-plate and coloumn flange can be gained in FEA analysis. Therefore, FEA method can reflect the mechanical behavior of connections in a more complete and accurate way.
     3. According to theoretical analysis and test results, the mechanism of force transfer in panel zone is analyzed, and a mechanical model is established in order to derive theoretical equations for calculating the shear capacity of the panel zone. And skeleton curves of shearing force and shear deformation for the panel zone in end-plate connections are obtained in the condition of coincident deformation, which accommodates a brief calculation method for engineering design.
     4. Considering the effect of plate to the deformation of the bolt under pre-stress, the high strength bolt and compressive plate are idealized as a "bolt-plate element" the calculation formula of the rigidity for the "bolt-plate element" is deduced. The bearing capacity and deformation are calculated according to mechanics character of the bolts in each stage, and the moment-rotation curve of the high strength bolt is established.
     5. Based on the theory of yield line and thin plates, bearing capacity and initial stiffness of the end-plate under different supporting conditions are calculated, and theory analysis method of complete loading process of the end-plate is proposed.
     6. A theretical analysis model is presented for analyzing the complete loading process of the bolted end-plate connections on the basis of the superposition principle. The moment-rotation curves can be derived directly from construction dimension and material properties, and avoids the complicated finite element analysis and experimental research. The calculated moment-rotaion curves agree well with the experimental results. In elasticity-plasticity analysis of actual framework structure, if the moment-rotation model presented in this dissertation can be applied to structure analysis model, the influence of connection behavior on the whole structure can be well understood so that it can provide a reference for the design and research in the future.
     7. A complete set of static and seismic design method for semi-rigid end-plate connections are proposed on the basis of achievements of aforementioned cyclic loading tests research, the finite element analysis and relative research achievements. These are all beneficial supplements to the popularization and application of the steel-concrete composite structure. Mechanical model for calculating initial rotational stiffness of the end-plate connections is established by using component methord. According to the mechanical model, the calculation formula for initial rotational stiffness of the end-plate connections is deduced which can be used in elastic design of composite framework structure.
引文
[1]蔡绍怀.现代钢管混凝土结构(修订版).北京:人民交通出版社,2007,1-369
    [2]韩林海.钢管混凝土结构.北京:科学出版社,2000,1-356
    [3]韩林海,陶忠,王文达.现代组合结构和混合结构——试验、理论和方法.北京:科学出版社,2009,1-593
    [4]刘大海,杨翠如.型钢钢管混凝土高楼计算和构造.北京:中国建筑工业出版社,2003,1-447
    [5]韩林海,杨有福.现代钢管混凝土结构技术.北京:中国建筑工业出版社,2004,1-443
    [6]殷超,张艳霞,吴徽.超高层框架柱方案选型及钢管混凝土柱设计要点.世界地震工程,2009,25(3):39-45
    [7]Uy B. Local and post-local buckling of fabricated thin walled steel and steel-concrete composite section. Journal of Structural Engineering, ASCE, 2001,127(6):666-667
    [8]Tsai K C, Hsiao P C, Wang K J, et al. Pseudo-dynamic test of a full-scale CFT/BRB frame-part 1:specimen design, experiment and analysis. Earthquake Engineering and Structural Dynamics,2008,37(2):1081-1098
    [9]顾维平,蔡绍怀,冯文林.钢管高强混凝土的性能与极限强度.建筑科学,1991,7(1): 23-27
    [10]韩林海.钢管高强混凝土轴压力学性能的理论分析与试验研究.工业建筑,1997,27(11):39-44.
    [11]张素梅,郭兰慧,王玉银.方钢管高强混凝土偏压构件的试验研究与理论分析.建筑结构学报,2004,25(1):17-24,70
    [12]张素梅,刘界鹏,王玉银.双向压弯方钢管高强混凝土构件滞回性能试验与分析.建筑结构学报,2005,26(3):9-18
    [13]Mei H, Kiousis P D, Ehsani M R, et a 1. Confinement effects on high-strength concrete. ACI Structural Journal,2001,98(4):548-553
    [14]张小玲,肖兴军.钢管混凝土柱防火保护的计算.建筑防火设计,2007,26(5):532-533
    [15]Lie T T, Kodur V K R. Fire resistance of steel columns filled with bar-reinforced concretc. Journal of Structural Engineering, ASCE,1996,122(1):30-36
    [16]Kodur V K R, Lie T T. Fire resistance of circular steel columns filled with fibre-reinforced concrete. Journal of Structuml Engineering, ASCE,1996, 122(7):776-782
    [17]Kodur V K R. Performance-based fire resistance design of concrete-filled steel columns. Journal of Constructional Steel Research,1999,51:21-26
    [18]Lie T T, Irwin R J. Fire resistance of rectangular steel columns filled with bar-reinforced concrete. Journal of Structuml Engineering, ASCE,1995,121(5): 797-805
    [19]钟善桐.钢管混凝土结构(第三版).北京:清华大学出版社,2003,39-44
    [20]肖阿林,何益斌,黄频等.型钢-钢管混凝土短柱轴压承载力可靠度分析.建筑结构学报,2010,31(8):29-36
    [21]何益斌,肖阿林,郭健等.钢骨-钢管自密实高强混凝土轴压短柱承载力的试验研究.自然灾害学报,2010,19(4):29-33
    [22]肖阿林.钢骨-钢管高性能混凝土轴压组合柱受力性能与设计方法研究:[湖南大学博士学位论文].长沙:湖南大学土木工程学院,2009,25-131
    [23]何益斌,肖阿林,郭健等.钢骨-钢管自密实高强混凝土偏压柱力学性能试验研究.建筑结构学报,2010,31(4):102-109
    [24]王清湘,赵大洲,关萍.钢骨-钢管高强混凝土轴压组合柱受力性能的试验研究.建筑结构学报,2003,24(6):45-49
    [25]王清湘,朱美春,冯秀峰.型钢-方钢管自密实高强混凝土轴压短柱受力性能的试验研究.建筑结构学报,2005,26(4):27-31
    [26]王清湘,赵大洲,关萍.钢骨-钢管高强混凝土组合柱承载力研究.大连理工大学学报,2003,43(6):787-792
    [27]赵大洲.钢骨-钢管高强混凝土组合柱力学性能的研究:[大连理工大学博士学位论文].大连:大连理工土木水利学院,2003,19-97
    [28]朱美春.钢骨-方钢管自密实高强混凝土柱力学性能研究:[大连理工大学博士学位论文].大连:大连理工土木水利学院,2005,24-114
    [29]温宇平,王清湘.钢骨-钢管混凝土组合重载柱与钢梁连接节点抗震性能试验研究.四川建筑科学研究,2008,34(1):113-116
    [30]温宇平,王清湘.钢骨-钢管混凝土组合重载柱节点抗震性能试验研究.工业建筑,2008,38(3):20-22,8
    [31]中国工程建设标准化协会标准CECS159-2004矩形钢管混凝土结构技术规程.北京:中国计划出版社,2004,27-34
    [32]Bahaaria M R, Sherbourne A N. Behavior of eight-bolt large capacity endplate connections. Computers and Structures,2000,77:315-325
    [33]Eurocode 4. Design of composite steel and concrete structures. London: European Committee for Standardization.1994,56-57
    [34]Johansson M. Composite action and confinement effects in tubular steel-concrete columns:[Dissertation for PH.D]. Goteborg, Sweden:Chalmers University of Technology,2002,5-17
    [35]Gerstle K H. Effect of connections on frames. Journal of Constructions Steel Research,1988,10:241-267
    [36]CEN:prEN1993-1-8. Eurocode 3:Design of Steel Structures:part 1.8 Design of Joints.2002,1-124
    [37]CEN:ENV1993-1-1. Eurocode3:Design of Steel Structures:part 1.1 General rules and rules for buildings.1992,1-92
    [38]American Institute of Steel Construction:Allowable Stress Design specification for Structural Steel Buildings, Chicago, IL,1989,1-76
    [39]American Institute of Steel Construction:Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago, IL,1999,1-165
    [40]Bjorhovde B, Colson A, Brozzetti J. Classification system for beam-to-column connections. Journal of Structural Engineering,1990,116(11):3059-3076
    [41]Goto Y, Miyashita S. Validity of classfication systems of semirigid connections. Engineering Structures,1995,17(8):544-553
    [42]Goto Y, Miyashita S. Classification system for rigid and semirigid connections. Journal of Structural Engineering,1998,124(7):750-757
    [43]Hasan R, Kishi N, Chen W F. A new nonlinear connection classification system. Journal of Constructional Steel Research,1998,47:119-140
    [44]Nethercot D A, Li T Q, Ahmed B. Unified classification system for beam-to-column connections. Journal of Constructional Steel Research,1998, 45(1):39-65
    [45]钟善桐,白国良.高层建筑组合结构框架梁柱节点分析与设计.北京:人民交通出版社,2006,1-202
    [46]Alostaz Y M, Schneider S P. Analytical behavior of connections to concrete-filled steel tubes. Journal of Constructional Steel Research,1996, 40(2):95-127
    [47]Schneider S P. Axially loaded concrete-filled steel tube. Journal of Structural Engineering. ASCE,1998.124(10):1125-1138
    [48]Choi S M, Shin I B, Eom C H, et al. An expeimental study on the strength and stiffness of concrete filled steel column connections with external stiffener rings. Proc.,4th Pacific Struct. Steel Conf., Vol.2, Pergamon, U.K.,1995a: 1-8
    [49]Choi S M, Shin I B, Eom C H, et al. Elasto-plastic beahavior of the beam to concrete filled circular steel column connections with external stiffener rings. Building For The 21st Century. Groffotj University Gold Coast Campus, Australia,1995b:451-456
    [50]Fu G, Morita K, Ebato K. Structural behavior of beam-to-column connection of concrete filled circular tube column and H-beam space subassemblage. Journal of Struct Constr. Engng.,1998,508:157-164
    [51]Fujimoto T, Lnai E, Kai M, et al. Behavior beam-to-column connection of CFT column system. The 12th WCEE,2000,2197:1-8
    [52]Elremaily A, Azizinamini A. Experimental behavior of steel beam to CFT column connections. Journal of Constructional Steel Research,2001,57(10): 1099-1119
    [53]Beutel J, Thambiratnam D, Perera N. Monotonic behavior of composite column to beam connections. Engineering Structures,2001,23(9):1152-1161
    [54]Beutel J, Thambiratnam D, Perera N. Cyclic behavior of concrete filled steel tubular column to steel beam connections. Engineering Structures,2002,24(1): 29-38
    [55]Kang C H, Shin K J, Oh Y S, et al. Hysteresis behavior of CFT Column to H-beam connections with external T-stiffeners and penertrated elements. Engineering Structures,2001,23(9):1194-1201
    [56]Johansson M. Composite action in connection regions of concrete-filled steel tube columns. Steel and Composite Structures,2003,3(1):47-64
    [57]Azizinamini A, Schneider S P. Moment connections to circular concrete-filled. steel tube columns. Journal of Structural Engineering,2004,130(2):213-222
    [58]Ricles J M, Peng S W, Lu L W. Seismic behavior of composite concrete filled steel tube column-wide flange beam moment connections. Journal of Structural Engineering,2004,130(2):223-232
    [59]周天华,何保康,陈国津等.方钢管混凝土柱与钢梁框架节点的抗震试验研究.建筑结构学报,2004,25(1):9-16
    [60]聂建国,秦凯,张桂标.方钢管混凝土柱内隔板式节点的抗弯承载力研究.建筑科学与工程学报,2005,22(1):42-54
    [61]聂建国,秦凯.方钢管混凝土柱内隔板式节点骨架曲线的确定方法.土木工程学报,2008,41(4):1-7
    [62]王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实 验研究.上木工程学报,2006,39(9):17-25,61
    [63]王先铁,郝际平,周观根.方钢管混凝土边柱节点抗震性能试验研究.建筑结构学报,2008,29(3):120-127
    [64]徐礼华,凡红,刘胜兵等.方钢管混凝土柱-钢梁节点抗震性能试验研究与有限元分析.工程力学,2008,25(2):122-131
    [65]李正良,刘红军,赵仕兴.方钢管混凝土分叉柱与钢梁连接节点的抗震性能研究.建筑结构学报,2009,30(1):86-94
    [66]牟在根,孙仁范,崔正秀等.简明钢结构设计与计算.北京:人民交通出版社,2005,335-337
    [67]Yibin He, Pin Huang, Qiaojuan Leng. Simplified computational methods for the second-order internal force and displacement of semi-rigidly connected steel frames. In:2009 International Conference on Engineering Computation. Hong Kong,2009,40-43
    [68]Yibin He, Pin Huang, Qiaojuan Leng. Simplified calculation for space steel frame with semi-rigid connections. Journal of Modeling and Optimization,2010, 2(2):18-28
    [69]H型钢商务部.钢框架剪力墙体系图片集.www.h200-700.com, 2003.11.24
    [70]France J E, Davison J B, Kirby P A. Strength and rotational response of rigid connections to tubular columns using flowdrill connectors. Journal of Constructional Steel Research.1999,50(1):1-14
    [71]France J E, Davison J B, Kirby P A. Moment-capacity and rotational stiffness of end-plate connections to concrete-filled tubular columns with flowdrilled connectors. Journal of Constructional Steel Research.1999, 50:35-48
    [72]宗周红,林于东,林杰.矩形钢管混凝土柱与钢梁半刚性连接节点的抗震性能.建筑结构学报,2004,25(6):29-36
    [73]宗周红,林于东,陈惠文等.方钢管混凝土柱与钢梁连接节点的拟静力试验研究.建筑结构学报,2005,26(1):77-84
    [74]葛继平,宗周红,杨强跃.方钢管混凝土柱与钢梁半刚性连接节点的恢复力本构模型.地震工程与工程振动,2005,25(6):81-87
    [75]Wang J F, Han L H, Brian U. Behaviour of flush end plate joints to concrete-filled steel tubular columns. Journal of Constructional Steel Research.2009,65:925-939
    [76]Wang J F, Han L H, Brian U. Hysteretic behaviour of flush end plate joints to concrete-filled steel tubular columns. Journal of Constructional Steel Research.2009,65:1644-1663
    [77]石柏林.钢管混凝土柱-钢梁端板连接节点力学性能研究:[硕士学位论文].大连:福州大学土木工程学院,2008,12-31
    [78]王先铁,郝际平,潘阳等.方钢管混凝土柱穿心高强螺栓-端板节点性能研究.工业建筑,2008,38(3):23-26
    [79]王先铁,郝际平,王丰平.方钢管混凝土柱穿芯螺栓-端板节点抗震性能试验研究.建筑科学,2008,24(9):42-48
    [80]Frye M J, Morris G A. Analysis of flexibly connected steel frames. Canadian Journal of Civil Engineering,1976,2:280-291
    [81]Krishnamurthy N, Huang H T, Jefferey P K, et al. Analytical M-θ Curves for end-plate connections. Journal of the Structural Division,1979,105,ST1: 133-145
    [82]Popov E P, Bertero V V. Cyclic loading of steel beams and connections. J. Struct. Div., ASCE,99(6):1189-1204
    [83]郭兵,顾强.多层钢框架中梁柱端板连接的强度和刚度.建筑结构学报,2004,25(2):27-31
    [84]郭兵.钢框架梁柱端板连接在循环荷载作用下的破坏机理及抗震设计对策:[西安建筑科技大学博士学位论文].西安:西安建筑科技大学,2002,105-108
    [85]Jones S W, Kirby P A, Nethercot D A. Columns with semi-rigid joints. Journal of Structural Engineering, ASCE,1982,108(2):361-372
    [86]Colson A, Louveau J M. Connections incidence on the inelastic behacior of steel structures. In:Proceedings of the Euromech Colloquium, Palermo,1983, 1014-1020
    [87]Kishi N, Chen W F. Moment-rotation relations of semirigid connections with angles. Journal of Structural Engineering, ASCE,1990,116(7):1813-1834
    [88]Bursi O S, Jaspart J P. Calibration of a finite element mode for isolated bolted end-plate steel connections. Journal of Construction Steel Research,1997,44(3): 225-262
    [89]Sherbourne A N, Bahaari M R. Finite element prediction of end Plate bolted connection behavior Ⅰ:parametric study. Journal of Structural Engineering,1997, 123(2):157-164
    [90]Bahaari M R, Sherbourne A N. Finite element prediction of end Plate bolted connection behavior Ⅱ:analytic formulation. Journal of Structural Engineering, 1997,123(2):165-175
    [91]Lui E M, Chen W F. Analysis and behavior of flexibly-jointed frames. Engineering Structures,1986,8(4):107-118
    [92]陈惠发,周绥平.钢框架稳定设计.上海:上海图书出版公司,1991,281-294
    [93]Yee K L, Melchers R E. Moment-rotation curves for bolted connections. Journal of Structural Engineering,1986,112:615-635
    [94]Wu F S, Chen W F. A design model for semi-rigid connections. Engineering Structures,1990,12(2):88-97
    [95]郭兵,柳锋,顾强.梁柱端板连接的破坏模式及弯矩转角关系.土木工程学报,2002,35(5):24-27
    [96]郭兵,郭秉山,张洪伟.梁柱外伸式端板螺栓连接的M-θ关系.山东建筑工程学院学报,2001,16(3):1-5
    [97]中华人民共和国国家标准GB50017-2003.钢结构设计规范.北京:中国计划出版社,2003:1-116
    [98]中华人民共和国行业标准JGJ82-91.钢结构高强度螺栓连接的设计、施工及验收规范.北京:中国建筑工业出版社,1992:2-13
    [99]中国工程建设标准化协会标准CECS102:2002.门式刚架轻型房屋钢结构技术规程.北京:中国计划出版社,2003:44-47
    [100]李少甫.钢结构的螺栓端板连接.建筑结构,1998,8:24-26
    [101]Faella C, Piluso V, Rizzano G. Structural Steel Semirigid Connections, CRC Press LLC, Boca Raton, Florida,2000,1-536
    [102]施刚.钢框架半刚性端板连接的静力和抗震性能研究:[清华大学博士学位论文].北京:清华大学土木水利学院,2004:114-123
    [103]中华人民共和国行业标准JGJ101-96.建筑抗震试验方法规程.北京:中国建筑工业出版社,1997:9-13
    [104]中华人民共和国国家标准GB/T50081-2002.普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003:14-18
    [105]中华人民共和国国家标准GB/T2975-1998.钢及钢产品力学性能试验取样位置及试样制备.北京:中国建筑工业出版社,1998:1-36
    [106]中华人民共和国国家标准GB/T228-2002.金属拉伸试验方法.北京:中国建筑工业出版社,2002:1-25
    [107]张新培.钢筋混凝土抗震结构非线性分析.北京:科学出版社,2003,35-37
    [108]王浩,李志刚,郝际平.节点域性能的研究.钢结构,2005,20(1):68-70.
    [109]Coelho A M G, Bijlaard F S K, Silva L S. Experimental assessment of the ductility of extended end Plate connections. Engineering Structures,2004, 26(9):1185-1206
    [110]李成玉,郭耀杰,李美东.钢框架节点刚度测试方法研究.工业建筑,2005,35(5):98-100
    [111]石永久,施刚,王元清.钢结构半刚性端板连接弯矩-转角曲线简化计算方法.土木工程学报,2006,39(3):19-23
    [112]楼国彪,李国强,雷青.钢结构高强度螺栓端板连接研究现状(Ⅰ).建筑钢结构进展,2006,8(2):8-21
    [113]石文龙,李国强,肖勇等.半刚性连接梁柱组合节点低周反复荷载试验研究.建筑结构学报,2008,29(5):56-66
    [114]江见鲸.钢筋混凝土结构非线性有限元分析.陕西:陕西科学技术出版社,1994,56-76
    [115]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.上海:同济大学出版社,1997,87-112
    [116]何政,欧进萍.钢筋混凝土结构非线性分析.黑龙江:哈尔滨工业大学出版社,2007,67-89
    [117]Mander J B, Priestley M J N, Park R. Theoretical stress-Slrain model for confined concrete. Journal ofStructural Engineering, ASCE,1988,114(8): 1804-1826
    [118]Sakino K, Nakahara H, Morino S, et al. Behavior of centrally loaded concrete-filled steel tube short columns. Journal of Structural Engineering, ASCE,2004,130(2):180-188
    [119]赖永标,胡仁喜,黄书珍.ANSYS 11.0土木工程有限元分析典型范例.北京:电子工业出版社,2007,120-143
    [120]何益斌,黄频,郭健等.外伸端板节点有限元分析.湖南大学学报(自然科学版),2009,36(5):1-6
    [121]吴文平,黄炳生,樊建慧.方钢管混凝土柱-钢梁竖向加劲板连接节点抗震性能分析.防灾减灾工程学报,2008,28(2):223-229
    [122]Nie J G, Qin K, Cai C S. Seismic behavior of connections composed of CFSSTCs and steel-concrete composite beams-finite element analysis. Journal of Constructional Steel Research,2008,64:680-688
    [123]孙修礼.半刚性连接钢管混凝土框剪结构的有限元分析.钢结构,2008,23(5):16-18
    [124]黄冀卓,王湛,马人乐.半刚性钢框架结构分析与性能研究.建筑结构,2006,36(8):20-24,30
    [125]王燕,厉见芬.半刚性钢框架的内力分析.力学与实践,2003,25(2):35-38
    [126]Faella C, Martinelli E, Nigro E. Analysis of steel-concrete composite PR-frames in partial shear interaction:A numerical model and some applications. Engineering Structures,2008,30:1178-1186
    [127]Liew T Y R, Chen W F, Chen H. Advanced inelastic analysis of frame structures. Journal of Constructional Steel Research,2000,55:245-265
    [128]谢志成.材料力学.北京:清华大学出版社,1993,45-123
    [129]王素芳,陈以一.T形件连接初始刚度的理论计算模型.工业建筑,2007,37(10):80-83
    [130]王素芳,陈以一,陈友泉.端板连接高强度螺栓群中和轴位置研究.建筑科学与工程学报,2005,22(3):45-54
    [131]施刚,石永久,王元清等.钢结构外伸式端板连接摩擦型高强度螺栓受力特性试验研究.东南大学学报,2004,34(3):375-378
    [132]吴兆旗,张素梅,姜绍飞.梁柱端板连接节点初始转动刚度计算模型.工程力学,2009,26(6):226-232,256
    [133]郭秉山,苏云鹏,阎月梅.梁柱端板连接节点的端板强度计算模型.西安科技学院学报,2004,24(1):41-45
    [134]郭健,何益斌,黄频等.端板连接节点中端板强度计算.湖南大学学报(自然科学版),2008,35(2):13-16
    [135]施刚,石永久,王元清.钢结构梁柱半刚性端板连接弯矩-转角全曲线计算方法.工程力学,2006,23(5):67-74
    [136]中国工程建设标准化协会标准CECS 28:90.钢管混凝土结构设计与施工规程.北京:中国计划出版社,2010:1-80
    [137]中华人民共和国国家标准GB50011-2010.建筑抗震设计规范.北京:中国建筑工业出版社,2010:1-483
    [138]中华人民共和国行业标准JGJ99-98.高层民用建筑钢结构技术规程.北京:中国建筑工业出版社,1998:1-261
    [139]姚武.高性能混凝土体积稳定性的控制及优化设计.工业建筑,2005,35(11):74-77
    [140]陈绍蕃.门式刚架端板螺栓连接的强度和刚度.钢结构,2000,15(1):6-11
    [141]Grundy P, Thomas I R, Benntts I. Beam-to-column moment connections. Journal of the Structural Division,1980,106(1):313-330
    [142]Kukreti A R, Murray T M, Ghassemieh M. Finite element modeling of large capacity stiffened steel tee-hanger connections. Computers & Structures,1989, 32(2):409-422
    [143]Adey B T, Grondin G Y, Cheng J J R. Cyclic loading of end plate moment connections. Canadian Journal of Civil Engineering,2000,27(4):683-701
    [144]American Institute of Steel Construction:Manual of Steel Construction:Load and Resistance Factor Design(Third Edition), Chicago, IL,2001
    [145]Kukreti A R, Ghasseimieh M, Murray T M. Behavior and design of large capacity moment end plates. Journal of Structural Engineering,1990,116(3): 809-828
    [146]童根树,赵伟.外伸端板连接端板加劲肋设计及有限元研究.沈阳建筑大学学报(自然科学版),2005,21(6):616-620
    [147]中华人民共和国国家标准GB/T 985.1-2008.气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口.北京:中国标准出版社,2008:1-17
    [148]中华人民共和国国家标准GB50205-2001.钢结构工程施工质量验收规范.北京:中国计划出版社,2002:1-139
    [149]Wu L Y, Chung L L, Wang M T. Numerical study on seismic behavior of H-beams with wing plates for bolted beam-column connections. Journal of Constructional Steel Research,2009,65(1):97-115