MDV-1 CVI988疫苗株VP22及UL13蛋白功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Function of VP22 and UL13 Protein of Marek's Disease Virus Serotype 1 CVI988 Vaccine Strain
  • 作者:张晨飞
  • 论文级别:博士
  • 学科专业名称:预防兽医学
  • 学位年度:2009
  • 导师:秦爱建
  • 学科代码:090602
  • 学位授予单位:扬州大学
  • 论文提交日期:2009-05-01
摘要
血清I型马立克氏病病毒(Marek’s disease virus serotype 1,MDV-1)的UL49基因和UL13基因分别和单纯疱疹病毒I型的UL49及UL13基因同源,各自编码大小约27.6kDa和57.1kDa大小的蛋白,在HSV-1中,这两种蛋白均为主要的被膜蛋白。VP22被发现在不存在其他病毒蛋白的情况下具备蛋白转导的功能,并且目前已经有很多研究表明VP22能够转运其它蛋白在细胞间扩散,使其在克服基因治疗和基因免疫的缺陷方面具有得天独厚的优势。而UL13作为病毒自身编码的丝/苏氨酸蛋白激酶,在病毒复制、组装、以及调节宿主细胞转录翻译方面发挥着重要作用。在HSV中,VP22是UL13的主要病毒蛋白底物,并且有研究发现VP22的磷酸化可能影响该蛋白的定位,而在MDV中还未有类似报道。
     目前关于MDV VP22及UL13的研究相对较少,究竟MDV VP22是否也能作为蛋白转运的工具?又有哪些蛋白能够被该蛋白转运?MDV VP22的转运功能是否能够增强机体针对目的蛋白的免疫应答水平?VP22的转导特性又如何?在MDV中,UL13是否能够磷酸化VP22?该磷酸化修饰对VP22又有何影响?这些都需要进一步的实验进行探索。本研究旨在通过对上述问题的探索,为VP22进一步走向应用打好基础。
     1. VP22转运异源蛋白的研究
     MDV VP22具有独立的蛋白转导功能,能够在细胞间高效转导,为进一步探索该蛋白作为蛋白转运工具的可行性,本研究构建了GFP、AIV-NP、BoIFN-γ、IBDV-VP2以及NDV-F基因与MDV-1 VP22融合表达的重组质粒,并将所获得的重组质粒在COS-1上进行瞬时表达以观察上述不同融合蛋白在COS-1细胞上的定位情况,从而评价VP22对这4种蛋白的转运能力。结果发现GFP、AIV-NP及BoIFN-γ在与VP22融合表达的状态下能够被VP22高效转运,而VP22对NDV-F的转运效率较低,对IBDV-VP2则完全不具备转运能力。此外,被VP22转运后的蛋白均定位在细胞核内。这些研究结果说明MDV VP22能够作为蛋白转运的载体,但对所转运蛋白具有选择性,并且VP22能够改变被转运蛋白原始的细胞定位。
     2. VP22增强机体针对目的抗原免疫应答水平的评价
     MDV VP22蛋白具备蛋白转运的功能,能够转运与VP22融合表达的GFP、AIV-NP、BoIFN-γ以及NDV-F等蛋白,为进一步评价VP22对这几种蛋白的免疫增强效果,本研究将pNP-VP22、pBoIFN-γ-VP22及pF-VP22的重组表达融合蛋白的质粒免疫Balb/c小鼠,4免后采取小鼠血清并分离小鼠淋巴细胞,通过ELISA、ELISPOT以及流式细胞法检测各组小鼠的免疫应答水平,结果发现,VP22能够特异性增强BoIFN-γ的细胞免疫水平,而对其体液免疫没有多大的影响。相反,NP蛋白的体液免疫水平却显著增强,但细胞免疫增强的效果不明显。而对于F蛋白,VP22几乎对其无任何的免疫增强的效果。上述结果显示,MDV-1 VP22具备增强机体针对目的抗原的免疫应答的功能,但免疫应答的类型可能会受到VP22蛋白转运方式的影响。
     3. VP22转导机制的研究
     MDV VP22蛋白具有独立的蛋白转导功能,能够作为蛋白转运的工具,但其转导及细胞定位的机制还未确定。我们早期的研究发现,在MDV感染的CEF中,VP22定位于细胞核,为进一步研究该蛋白的转导机制及细胞定位机理,分析该蛋白在表达过程中细胞定位的影响因素,本研究通过重组人腺病毒表达VP22蛋白,并对重组病毒表达的VP22的转导功能进行鉴定,结果发现将重组病毒感染的AD-293细胞裂解产物加至正常的MDBK细胞上,VP22能够进入几乎所有的细胞,说明重组病毒表达的VP22蛋白具有很强的蛋白转导功能。进一步鉴定VP22的细胞定位发现,在重组病毒感染的AD-293细胞中,VP22首先聚集于细胞核周围,随后以特殊的荧光粒子的形式散在于胞浆中,有别于AD-293细胞中瞬时表达的VP22及MDV感染的CEF中VP22的定位模式;同时我们也对Bac-to-Bac杆状病毒表达系统表达的VP22的蛋白转导特性以及VP22转导的细胞广谱性进行了研究,发现该系统表达的VP22也具有蛋白转导的功能,并且其定位可能受到温度的影响,而瞬时表达的VP22的转导是细胞广谱性的,能够在多种细胞上实现蛋白转导的功能,并且定位在细胞核内。
     4. MDV-1 UL13序列对比分析及对VP22可能的磷酸化位点预测
     蛋白激酶是一类庞大的蛋白家族,尽管它们的结构、催化模式以及特异性底物都存在很大的差异,但它们的功能结构域却相当保守。MDV UL13是病毒编码的蛋白激酶,本研究通过DNAStar软件的MegAlin功能对比MDV不同毒株以及不同疱疹病毒属的UL13氨基酸序列,发现MDV不同毒株的UL13序列近乎相同,而不同疱疹病毒属的UL13及相应同源物的同源性很低,但在它们的激酶结构域内保守。通过CDTree软件绘制该蛋白的遗传分类图谱,发现它与黑腹果蝇的pelle蛋白的功能结构域属于相同进化分支,利用NCBI protein Blast功能检索MDV UL13保守结构域,发现MDV UL13也具有丝/苏氨酸蛋白激酶的激酶结构域,并且催化中心主要位于152-297氨基酸残基间,利用Cn3D 4.1软件分析Blast结果,建立UL13可能的结构模型,同时对比真核生物蛋白激酶的基序,发现UL13在激酶SubdomainⅦ的保守甘氨酸残基被丝氨酸替代,SubdomainⅧ的保守非极性脯氨酸残基被极性半胱氨酸残基替换。利用NetPhos 2.0 Server对VP22进行磷酸化位点预测,发现该蛋白存在多个丝/苏氨酸磷酸化位点,且主要集中在两端,提示MDV VP22很有可能也是UL13的磷酸化底物。
     5. UL13的原核和真核表达以及多抗血清的制备
     MDV UL13蛋白是病毒自身编码的蛋白激酶,具有类似真核细胞蛋白激酶的功能,并且在整个疱疹病毒科内都具有保守性,为研究该蛋白激酶的功能,本研究通过PCR方法从CVI988疫苗株基因组中扩增UL13基因,并将UL13基因片段克隆到杆状病毒转移载体pFastTMBac1中,再将重组质粒转化DH10Bac感受态细胞,经过转座和蓝白菌落筛选及PCR鉴定,获得含UL13基因的重组穿梭载体。在脂质体的辅助下将重组穿梭载体转染Sf9细胞,通过PCR验证获得含UL13基因的重组杆状病毒,命名为rBac-UL13。同时,利用GENEART(www.gcua.de)分析UL13在大肠杆菌中表达时密码子的偏嗜性;通过DNAstar抗原性分析确定UL13的高抗原性片段,进行原核表达,并以切胶免疫方法免疫小鼠制备多抗血清,再以获得的多抗血清检测rBac-UL13重组毒感染的sf9细胞,证实了所获多抗血清含有特异性针对UL13的抗体,同时也证实了UL13在Bac-to-Bac杆状病毒表达系统中的表达。
The UL49 and UL13 homolog gene of Herpes simplex virus (HSV) in Marek’s disease virus serotype 1 (MDV-1) encodes the major tegument protein VP22 and UL13 of 27.6kDa and 57.1kDa respectively. VP22 possess a remarkable property of protein transduction independent of any other viral proteins and can be used in protein delivery technology to overcome the limitations in gene therapy and DNA vaccine. UL13 plays important roles in virus replication, virion assembly, regulation of host cells’transcription and translation as a viral serine/threonine protein kinase. VP22 is a major substrate of UL13 in HSV, and phosphorylation of VP22 may influence the localization of this protein. However, phosphorylation of VP22 by UL13 in MDV has not been demonstrated so far.
     Currently, most researches about VP22 and UL13 are focus on HSV. However, whether can MDV VP22 be utilized as a transporter for protein delivery? If Yes, what kinds of proteins can be transported by MDV VP22? Can MDV VP22 enhance the immune response induced by these proteins? What is the transduction characterization of MDV VP22? Does UL13 phosphorylate VP22 in MDV? Does the modification of phosphorylation influence the biological activity of VP22? All these questions remain unclear. We aimed to resolve these questions in this study for the further application of MDV VP22.
     1. MDV-1 VP22: a transporter that can selectively deliver proteins into cells
     MDV VP22 shows a remarkable property of protein transduction independent of any other viral proteins. To confirm whether it can be utilized as a transporter for protein delivery, five heterogenes, encodes GFP, AIV-NP, BoIFN-γ, IBDV-VP2 and NDV-F were respectively fused to MDV UL49 gene. Transient expression were carried out by transfecting these fusion genes into COS-1 cells. The results suggested that GFP, AIV-NP、BoIFN-γbe highly transported by VP22 while NDV-F be transported at low efficiency. However IBDV-VP2 could not be deliveried at all. Our data suggests that the VP22 of MDV-1 selectively transport heterogenous proteins into cells and the original localization of cargo proteins may be changed after transporting by MDV-1 VP22.
     2. Evaluation of MDV VP22 enhances the immune response by DNA vaccination
     MDV VP22 possesses the property of protein delivery and GFP, AIV-NP, BoIFN-γ, IBDV-VP2 and NDV-F can be deliveried into cells by VP22. To further evaluate the immune response enhancements induced by VP22, balb/c mice were immunized with recombinant plasmids expressing NP-VP22, BoIFN-γ-VP22 and F-VP22 respectively. Antiserum and spleen cells were isolated from the mice after 4 times immunization. ELISA, ELISPOT and FACS analysis was carried out to evaluate the immune response of each group. The results indicated that the cellular immunity level of BoIFN-γwas significantly enhanced by VP22 while the humoral immunity was not. In contrast, humoral immunity level of NP was significantly enhanced and a slight enhancement of cellular immunity. However, the immune response induced by F-VP22 and F alone has no difference. It implied that the immunogenicity of F can not be enhanced by MDV VP22. Taken together, MDV-1 VP22 selectively increases the immunity of antigens, but the type of immune response may be influenced by the way in which VP22 transported.
     3. Mechanism of VP22 protein transduction
     VP22 shows a remarkable property of protein transduction independent of any other viral proteins, and can be used for protein delivery. However, the subcellular localization mechanism of this protein remains unclear. In this study, VP22 was expressed with recombinant adenovirus. Lysates of recombinant virus infected 293 cells were added to normal MDBK cells. The results revealed that infected 293 cells expressed VP22 protein can almost enter all the monolayers, suggests that adenovirus expressed VP22 remains its transduction property. Subsequent study showed that in recombinant adenovirus infected 293 cells, VP22 first gather round the nucleus membrane, and then concentrated in particles in cytoplasm, which differs from the nuclei localization pattern of VP22 in MDV infected CEF and transient expressed VP22 in 293 cells. We also characterized the protein transduction property of Bac-to-Bac Baculovirus Expression System expressed VP22, and examined the transduction ability of transient expressed VP22 in different cell lines. The results suggested that VP22 expressed by Bac-to-Bac System remained its protein transduction property and the subcellular localization of the protein may be influenced by temperature; transient expressed VP22 remained its transduction property in different cells and was localized in the nucleolus of all these cell types.
     4. Sequence analysis of MDV-1 UL13 and phosphorylation sites prediction of VP22
     The protein kinases comprise one of the largest superfamilies of homologous proteins containing hundreds of members. Although there is a rich diversity of structures, regulation modes, and substrate specificities among the protein kinases, there are also common motifs and structural features in their functional domains. In this study, amino acid sequence analysis was carried out between the homologous gene of UL13 in different strains of MDV and in different Herpesviridae subfamilies, analysis by MegAlin function of DNAstar software. The results indicted that UL13 share almost 100% homology between different strains of MDV, and was highly conserved in kinase domains while the sequences contained a rich diversity in different Herpesviridae subfamilies. Taxonomy analysis of UL13 catalytic center using CDTree3.1 software provided by NCBI implied that UL13 is more homologous to Drosophila melanogaster pelle protein. The conserved domain of UL13 was analyzed with protein blast and Cn3D 4.1 online software of NCBI, the results suggest that 152-297 residue is kinase catalytic center of UL13. However conserved glycine in kinase subdomainⅦfor most protein kinase was replaced by serine in UL13 and proline in kinase subdomainⅧreplaced by cysteine. Phosphorylation sites prediction of VP22 was carried out with NetPhos 2.0 online Server. Numerous phosphorylation sites were found, most of which were enriched in the N and C terminus of VP22, implying that VP22 may be a kinase substrate of UL13 in MDV.
     5. Expression of UL13 by prokaryotic and eukaryotic system and antiserum preparation
     As a viral serine/threonine protein kinase, the kinase activity of UL13 is similar to the eukaryotic protein kinases, and is conserved in Herpesviridae subfamily. To further investigate the function of UL13 kinase, UL13 gene was amplified by polymerase chain reaction (PCR) from MDV-1 CVI988/Rispens strain, followed by introducing to the pFastTMBac1 vector. The recombinants were transformed into DH10Bac in which translocation was occurred. Recombinant genome of baculovirus was identified by PCR and then transfected into sf9 cells to obtain the recombinant baculovirus expressing UL13, named as rBac-UL13. The codon bias and antigenicity of UL13 in E.coli was analyzed by online service GENEART ( www.gcua.de ) and DNAstar software respectively. The UL13 truncated fragments were expressed in E.coli as GST fusion protein, and mice were immunized with the expressed GST fusion protein to obtain antiserum against UL13. Sf9 cells infected with rBac-UL13 were reacted with the antiserum. The result suggested that the antiserum contains antibodies specific to UL13.
引文
Advani, S. J., R. Brandimarti, et al. (2000). "The disappearance of cyclins A and B and the increase in activity of the G(2)/M-phase cellular kinase cdc2 in herpes simplex virus 1-infected cells require expression of the alpha22/U(S)1.5 and U(L)13 viral genes." J Virol 74(1): 8-15.
    Allinquant, B., P. Hantraye, et al. (1995). "Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro." J Cell Biol 128(5): 919-27.
    Ambriovic, A., M. Adam, et al. (1997). "Efficacy of replication-defective adenovirus-vectored vaccines: protection following intramuscular injection is linked to promoter efficiency in muscle representative cells." Virology 238(2): 327-35.
    Anfinsen, C. B. (1973). "Principles that govern the folding of protein chains." Science 181(96): 223-30.
    Anton, L. C., U. Schubert, et al. (1999). "Intracellular localization of proteasomal degradation of a viral antigen." J Cell Biol 146(1): 113-24.
    Antonawich, F. J., H. J. Federoff, et al. (1999). "BCL-2 transduction, using a herpes simplex virus amplicon, protects hippocampal neurons from transient global ischemia." Exp Neurol 156(1): 130-7.
    Aris, A., J. X. Feliu, et al. (2000). "Exploiting viral cell-targeting abilities in a single polypeptide, non-infectious, recombinant vehicle for integrin-mediated DNA delivery and gene expression." Biotechnol Bioeng 68(6): 689-96.
    Asai, R., T. Ohno, et al. (2007). "Identification of proteins directly phosphorylated by UL13 protein kinase from herpes simplex virus 1." Microbes Infect 9(12-13): 1434-8.
    Avrameas, A., L. Gasmi, et al. (2001). "DNA and heparin alter the internalization process of anti-DNA monoclonal antibodies according to patterns typical of both the charged molecule and the antibody." J Autoimmun 16(4): 383-91.
    Avrameas, A., T. Ternynck, et al. (1999). "Efficient gene delivery by a peptide derived from a monoclonal anti-DNA antibody." Bioconjug Chem 10(1): 87-93.
    Avrameas, A., T. Ternynck, et al. (1998). "Polyreactive anti-DNA monoclonal antibodies and a derived peptide as vectors for the intracytoplasmic and intranuclear translocation of macromolecules." Proc Natl Acad Sci U S A 95(10): 5601-6.
    Baek, M. C., P. M. Krosky, et al. (2002). "Specific phosphorylation of exogenous protein and peptide substrates by the human cytomegalovirus UL97 protein kinase. Importance of the P+5 position." J Biol Chem 277(33): 29593-9.
    Baek, M. C., P. M. Krosky, et al. (2004). "Phosphorylation of the RNA polymerase II carboxyl-terminal domain in human cytomegalovirus-infected cells and in vitro by the viral UL97 protein kinase." Virology 324(1): 184-93.
    Bauer, M., M. Meyer, et al. (2002). "Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue." Exp Neurol 177(1): 40-9.
    Bentley, D. (2002). "The mRNA assembly line: transcription and processing machines in the same factory." Curr Opin Cell Biol 14(3): 336-42.
    Binder, H. and G. Lindblom (2003). "Charge-dependent translocation of the Trojan peptide penetratin across lipid membranes." Biophys J 85(2): 982-95.
    Biron, K. K., R. J. Harvey, et al. (2002). "Potent and selective inhibition of human cytomegalovirus replication by 1263W94, a benzimidazole L-riboside with a unique mode of action." Antimicrob Agents Chemother 46(8): 2365-72.
    Biswas, S. K., P. L. Boutz, et al. (1998). "Influenza virus nucleoprotein interacts with influenza virus polymerase proteins." J Virol 72(7): 5493-501.
    Borsello, T., P. G. Clarke, et al. (2003). "A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia." Nat Med 9(9): 1180-6.
    Boshart, M., F. Weber, et al. (1985). "A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus." Cell 41(2): 521-30.
    Branden, L. J., A. J. Mohamed, et al. (1999). "A peptide nucleic acid-nuclear localization signal fusion that mediates nuclear transport of DNA." Nat Biotechnol 17(8): 784-7.
    Brignati, M. J., J. S. Loomis, et al. (2003). "Membrane association of VP22, a herpes simplex virus type 1 tegument protein." J Virol 77(8): 4888-98.
    Brinkmann, U., R. E. Mattes, et al. (1989). "High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product." Gene 85(1): 109-14.
    Bruening, W., B. Giasson, et al. (1998). "Activation of stress-activated MAP protein kinases up-regulates expression of transgenes driven by the cytomegalovirus immediate/early promoter." Nucleic Acids Res 26(2): 486-9.
    Bullido, R., P. Gomez-Puertas, et al. (2000). "Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein." J Gen Virol 81(Pt 1): 135-42.
    Burlina, F., S. Sagan, et al. (2005). "Quantification of the cellular uptake of cell-penetrating peptides byMALDI-TOF mass spectrometry." Angew Chem Int Ed Engl 44(27): 4244-7.
    Cai, S. R., G. Xu, et al. (2006). "The kinetics and tissue distribution of protein transduction in mice." Eur J Pharm Sci 27(4): 311-9.
    Cai, W. and P. A. Schaffer (1992). "Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells." J Virol 66(5): 2904-15.
    Calderone, T. L., R. D. Stevens, et al. (1996). "High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli." J Mol Biol 262(4): 407-12.
    Campbell, M. E., J. W. Palfreyman, et al. (1984). "Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription." J Mol Biol 180(1): 1-19.
    Cao, L., J. Si, et al. (2006). "Intracellular localization and sustained prodrug cell killing activity of TAT-HSVTK fusion protein in hepatocelullar carcinoma cells." Mol Cells 21(1): 104-11.
    Cashman, S. M., D. J. Morris, et al. (2003). "Evidence of protein transduction but not intercellular transport by proteins fused to HIV tat in retinal cell culture and in vivo." Mol Ther 8(1): 130-42.
    Chaloin, L., P. Bigey, et al. (2001). "Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide." Bioconjug Chem 12(5): 691-700.
    Chaloin, L., P. Vidal, et al. (1997). "Conformations of primary amphipathic carrier peptides in membrane mimicking environments." Biochemistry 36(37): 11179-87.
    Chaloin, L., P. Vidal, et al. (1998). "Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties." Biochem Biophys Res Commun 243(2): 601-8.
    Chauhan, A., A. Tikoo, et al. (2007). "The taming of the cell penetrating domain of the HIV Tat: myths and realities." J Control Release 117(2): 148-62.
    Chauhan, A., J. Turchan, et al. (2003). "Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport." J Biol Chem 278(15): 13512-9.
    Chee, M. S., G. L. Lawrence, et al. (1989). "Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase." J Gen Virol 70 ( Pt 5): 1151-60.
    Chen, G. F. and M. Inouye (1990). "Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes." Nucleic Acids Res 18(6): 1465-73.
    Chen, H., A. Qin, et al. (2008). "[The N1-18 terminus of Marek's disease virus VP22 is essential for protein transduction]." Wei Sheng Wu Xue Bao 48(1): 91-7.
    Chen, H., C. Song, et al. (2007). "Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek's disease virus." Sci China C Life Sci 50(1): 75-9.
    Chen, L., H. Hahn, et al. (2001). "Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC." Proc Natl Acad Sci U S A 98(20): 11114-9.
    Chen, L., L. R. Wright, et al. (2001). "Molecular transporters for peptides: delivery of a cardioprotective epsilonPKC agonist peptide into cells and intact ischemic heart using a transport system, R(7)." Chem Biol 8(12): 1123-9.
    Chen, M. R., S. J. Chang, et al. (2000). "A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro." J Virol 74(7): 3093-104.
    Chhabra, A., S. Mehrotra, et al. (2004). "Cross-presentation of a human tumor antigen delivered to dendritic cells by HSV VP22-mediated protein translocation." Eur J Immunol 34(10): 2824-33.
    Chi, J. H., C. A. Harley, et al. (2005). "The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids." J Gen Virol 86(Pt 2): 253-61.
    Chung, T. D., J. P. Wymer, et al. (1989). "Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10)." J Virol 63(8): 3389-98.
    Clements, G. B. and N. D. Stow (1989). "A herpes simplex virus type 1 mutant containing a deletion within immediate early gene 1 is latency-competent in mice." J Gen Virol 70 ( Pt 9): 2501-6.
    Conner, J., J. Cooper, et al. (1992). "An autophosphorylating but not transphosphorylating activity is associated with the unique N terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit." J Virol 66(12): 7511-6.
    Console, S., C. Marty, et al. (2003). "Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans." J Biol Chem 278(37): 35109-14.
    Corr, M., D. J. Lee, et al. (1996). "Gene vaccination with naked plasmid DNA: mechanism of CTL priming." J Exp Med 184(4): 1555-60.
    Coulter, L. J., H. W. Moss, et al. (1993). "A mutant of herpes simplex virus type 1 in which the UL13 protein kinase gene is disrupted." J Gen Virol 74 ( Pt 3): 387-95.
    Crespo, L., G. Sanclimens, et al. (2002). "Peptide dendrimers based on polyproline helices." J Am Chem Soc 124(30): 8876-83.
    Daikoku, T., S. Shibata, et al. (1997). "Purification and characterization of the protein kinase encoded by the UL13 gene of herpes simplex virus type 2." Virology 235(1): 82-93.
    Dalrymple, M. A., D. J. McGeoch, et al. (1985). "DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters." Nucleic Acids Res 13(21): 7865-79.
    Davis, H. L. (1997). "Plasmid DNA expression systems for the purpose of immunization." Curr Opin Biotechnol 8(5): 635-46.
    Davis, N. L., K. W. Brown, et al. (1996). "A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge." J Virol 70(6): 3781-7.
    De Marco, F., S. Hallez, et al. (2003). "DNA vaccines against HPV-16 E7-expressing tumour cells." Anticancer Res 23(2B): 1449-54.
    Derossi, D., S. Calvet, et al. (1996). "Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent." J Biol Chem 271(30): 18188-93.
    Derossi, D., G. Chassaing, et al. (1998). "Trojan peptides: the penetratin system for intracellular delivery." Trends Cell Biol 8(2): 84-7.
    Derossi, D., A. H. Joliot, et al. (1994). "The third helix of the Antennapedia homeodomain translocates through biological membranes." J Biol Chem 269(14): 10444-50.
    Deshayes, S., M. C. Morris, et al. (2005). "Cell-penetrating peptides: tools for intracellular delivery of therapeutics." Cell Mol Life Sci 62(16): 1839-49.
    Diehl, A. M., M. Yin, et al. (1994). "Tumor necrosis factor-alpha induces c-jun during the regenerative response to liver injury." Am J Physiol 267(4 Pt 1): G552-61.
    Dingwell, K. S., C. R. Brunetti, et al. (1994). "Herpes simplex virus glycoproteins E and I facilitate cell-to-cell spread in vivo and across junctions of cultured cells." J Virol 68(2): 834-45.
    Doe, B., M. Selby, et al. (1996). "Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells." Proc Natl Acad Sci U S A 93(16): 8578-83.
    Drin, G., S. Cottin, et al. (2003). "Studies on the internalization mechanism of cationic cell-penetrating peptides." J Biol Chem 278(33): 31192-201.
    Duchardt, F., M. Fotin-Mleczek, et al. (2007). "A comprehensive model for the cellular uptake of cationic cell-penetrating peptides." Traffic 8(7): 848-66.
    Duffy, C., J. H. Lavail, et al. (2006). "Characterization of a UL49-null mutant: VP22 of herpes simplexvirus type 1 facilitates viral spread in cultured cells and the mouse cornea." J Virol 80(17): 8664-75.
    Eck, S. L. (1999). "The prospects for gene therapy." Hosp Pract (Minneap) 34(11): 67-75.
    Efthymiadis, A., L. J. Briggs, et al. (1998). "The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties." J Biol Chem 273(3): 1623-8.
    El-Andaloussi, S., P. Jarver, et al. (2007). "Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study." Biochem J 407(2): 285-92.
    Elliott, G. and P. O'Hare (1997). "Intercellular trafficking and protein delivery by a herpesvirus structural protein." Cell 88(2): 223-33.
    Elliott, G. and P. O'Hare (1998). "Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules." J Virol 72(8): 6448-55.
    Elliott, G. and P. O'Hare (1999). "Intercellular trafficking of VP22-GFP fusion proteins." Gene Ther 6(1): 149-51.
    Elliott, G. and P. O'Hare (1999). "Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection." J Virol 73(5): 4110-9.
    Elliott, G. and P. O'Hare (2000). "Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division." J Virol 74(5): 2131-41.
    Elliott, G., D. O'Reilly, et al. (1996). "Phosphorylation of the herpes simplex virus type 1 tegument protein VP22." Virology 226(1): 140-5.
    Elliott, G., D. O'Reilly, et al. (1999). "Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22." J Virol 73(7): 6203-6.
    Elliott, G. D. and D. M. Meredith (1992). "The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49." J Gen Virol 73 ( Pt 3): 723-6.
    Emi, N., S. Kidoaki, et al. (1997). "Gene transfer mediated by polyarginine requires a formation of big carrier-complex of DNA aggregate." Biochem Biophys Res Commun 231(2): 421-4.
    Ensoli, B., L. Buonaguro, et al. (1993). "Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation." J Virol 67(1): 277-87.
    Esclatine, A., B. Taddeo, et al. (2004). "The herpes simplex virus 1 UL41 gene-dependent destabilization of cellular RNAs is selective and may be sequence-specific." Proc Natl Acad Sci U S A 101(10): 3603-8.
    Esclatine, A., B. Taddeo, et al. (2004). "The UL41 protein of herpes simplex virus mediates selective stabilization or degradation of cellular mRNAs." Proc Natl Acad Sci U S A 101(52): 18165-70.
    Everett, R. D. (1989). "Construction and characterization of herpes simplex virus type 1 mutants with defined lesions in immediate early gene 1." J Gen Virol 70 ( Pt 5): 1185-202.
    Farnsworth, A., T. W. Wisner, et al. (2007). "Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD." J Virol 81(1): 319-31.
    Fawell, S., J. Seery, et al. (1994). "Tat-mediated delivery of heterologous proteins into cells." Proc Natl Acad Sci U S A 91(2): 664-8.
    Fernandez-Carneado, J., M. J. Kogan, et al. (2004). "Potential peptide carriers: amphipathic proline-rich peptides derived from the N-terminal domain of gamma-zein." Angew Chem Int Ed Engl 43(14): 1811-4.
    Fischer, R., K. Kohler, et al. (2004). "A stepwise dissection of the intracellular fate of cationic cell-penetrating peptides." J Biol Chem 279(13): 12625-35.
    Fittipaldi, A., A. Ferrari, et al. (2003). "Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins." J Biol Chem 278(36): 34141-9.
    Freeman, L., H. Kurumizaka, et al. (1996). "Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos." Proc Natl Acad Sci U S A 93(23): 12780-5.
    Fuchs, S. M. and R. T. Raines (2004). "Pathway for polyarginine entry into mammalian cells." Biochemistry 43(9): 2438-44.
    Fuchs, W., H. Granzow, et al. (2002). "The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions." J Virol 76(13): 6729-42.
    Futaki, S. (2005). "Membrane-permeable arginine-rich peptides and the translocation mechanisms." Adv Drug Deliv Rev 57(4): 547-58.
    Futaki, S., W. Ohashi, et al. (2001). "Stearylated arginine-rich peptides: a new class of transfection systems." Bioconjug Chem 12(6): 1005-11.
    Galcheva-Gargova, Z., B. Derijard, et al. (1994). "An osmosensing signal transduction pathway in mammalian cells." Science 265(5173): 806-8.
    Garapin, A., L. Ma, et al. (2001). "Mixed immune response induced in rodents by two naked DNA genes coding for mycobacterial glycosylated proteins." Vaccine 19(20-22): 2830-41.
    Garmory, H. S., K. A. Brown, et al. (2003). "DNA vaccines: improving expression of antigens." GenetVaccines Ther 1(1): 2.
    Garmory, H. S., D. Freeman, et al. (2004). "Protection against plague afforded by immunisation with DNA vaccines optimised for expression of the Yersinia pestis V antigen." Vaccine 22(8): 947-57.
    Garmory, H. S., S. D. Perkins, et al. (2005). "DNA vaccines for biodefence." Adv Drug Deliv Rev 57(9): 1343-61.
    Geiss, B. J., G. L. Cano, et al. (2004). "Herpes simplex virus 2 VP22 phosphorylation induced by cellular and viral kinases does not influence intracellular localization." Virology 330(1): 74-81.
    Geiss, B. J., J. E. Tavis, et al. (2001). "Temporal regulation of herpes simplex virus type 2 VP22 expression and phosphorylation." J Virol 75(22): 10721-9.
    Giorello, L., L. Clerico, et al. (1998). "Inhibition of cancer cell growth and c-Myc transcriptional activity by a c-Myc helix 1-type peptide fused to an internalization sequence." Cancer Res 58(16): 3654-9.
    Gompels, U. A., J. Nicholas, et al. (1995). "The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution." Virology 209(1): 29-51.
    Gump, J. M. and S. F. Dowdy (2007). "TAT transduction: the molecular mechanism and therapeutic prospects." Trends Mol Med 13(10): 443-8.
    Gurunathan, S., D. M. Klinman, et al. (2000). "DNA vaccines: immunology, application, and optimization*." Annu Rev Immunol 18: 927-74.
    Gustafsson, C., S. Govindarajan, et al. (2004). "Codon bias and heterologous protein expression." Trends Biotechnol 22(7): 346-53.
    Hafezi, W., E. Bernard, et al. (2005). "Herpes simplex virus tegument protein VP22 contains an internal VP16 interaction domain and a C-terminal domain that are both required for VP22 assembly into the virus particle." J Virol 79(20): 13082-93.
    Hahn, S. (2004). "Structure and mechanism of the RNA polymerase II transcription machinery." Nat Struct Mol Biol 11(5): 394-403.
    Hakansson, S., A. Jacobs, et al. (2001). "Heparin binding by the HIV-1 tat protein transduction domain." Protein Sci 10(10): 2138-9.
    Hampsey, M. (1998). "Molecular genetics of the RNA polymerase II general transcriptional machinery." Microbiol Mol Biol Rev 62(2): 465-503.
    Hamza, M. S., R. A. Reyes, et al. (2004). "ORF36 protein kinase of Kaposi's sarcoma herpesvirus activates the c-Jun N-terminal kinase signaling pathway." J Biol Chem 279(37): 38325-30.
    Hanks, S. K. and T. Hunter (1995). "Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification." FASEB J 9(8): 576-96.
    Hanks, S. K. and A. M. Quinn (1991). "Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members." Methods Enzymol 200: 38-62.
    Hanks, S. K., A. M. Quinn, et al. (1988). "The protein kinase family: conserved features and deduced phylogeny of the catalytic domains." Science 241(4861): 42-52.
    He, Z., Y. S. He, et al. (1997). "The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines." J Virol 71(1): 405-11.
    Heine, J. W., R. W. Honess, et al. (1974). "Proteins specified by herpes simplex virus. XII. The virion polypeptides of type 1 strains." J Virol 14(3): 640-51.
    Hirel, P. H., M. J. Schmitter, et al. (1989). "Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid." Proc Natl Acad Sci U S A 86(21): 8247-51.
    Ho, A., S. R. Schwarze, et al. (2001). "Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo." Cancer Res 61(2): 474-7.
    Holstege, F. C., U. Fiedler, et al. (1997). "Three transitions in the RNA polymerase II transcription complex during initiation." EMBO J 16(24): 7468-80.
    Honess, R. W. and B. Roizman (1974). "Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins." J Virol 14(1): 8-19.
    Hyndman, L., J. L. Lemoine, et al. (2004). "HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes." J Control Release 99(3): 435-44.
    Itai, K., D. Sawamura, et al. (2001). "Keratinocyte gene therapy: inducible promoters and in vivo control of transgene expression." Clin Exp Dermatol 26(6): 531-5.
    Izumiya, Y., S. F. Lin, et al. (2003). "Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression." J Virol 77(2): 1441-51.
    Jackson, A., S. Friedman, et al. (1992). "Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells." Proc Natl Acad Sci U S A 89(22): 10691-5.
    Jarosinski, K. W., N. G. Margulis, et al. (2007). "Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC." J Virol 81(19): 10575-87.
    Jarver, P. and U. Langel (2004). "The use of cell-penetrating peptides as a tool for gene regulation." Drug Discov Today 9(9): 395-402.
    Jeschke, M. G., G. Richter, et al. (2001). "Therapeutic success and efficacy of nonviral liposomal cDNA gene transfer to the skin in vivo is dose dependent." Gene Ther 8(23): 1777-84.
    Ji, H., T. L. Wang, et al. (1999). "Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors." Hum Gene Ther 10(17): 2727-40.
    Jin, L. H., J. H. Bahn, et al. (2001). "Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells." Free Radic Biol Med 31(11): 1509-19.
    Johnson, D. C. and M. T. Huber (2002). "Directed egress of animal viruses promotes cell-to-cell spread." J Virol 76(1): 1-8.
    Jones, S. W., R. Christison, et al. (2005). "Characterisation of cell-penetrating peptide-mediated peptide delivery." Br J Pharmacol 145(8): 1093-102.
    Kaplan, I. M., J. S. Wadia, et al. (2005). "Cationic TAT peptide transduction domain enters cells by macropinocytosis." J Control Release 102(1): 247-53.
    Katayama, Y., S. Gottesman, et al. (1988). "The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component." J Biol Chem 263(29): 15226-36.
    Kato, A., M. Yamamoto, et al. (2005). "Identification of proteins phosphorylated directly by the Us3 protein kinase encoded by herpes simplex virus 1." J Virol 79(14): 9325-31.
    Kato, A., M. Yamamoto, et al. (2006). "Herpes simplex virus 1-encoded protein kinase UL13 phosphorylates viral Us3 protein kinase and regulates nuclear localization of viral envelopment factors UL34 and UL31." J Virol 80(3): 1476-86.
    Kato, K., Y. Kawaguchi, et al. (2001). "Epstein-Barr virus-encoded protein kinase BGLF4 mediates hyperphosphorylation of cellular elongation factor 1delta (EF-1delta): EF-1delta is universally modified by conserved protein kinases of herpesviruses in mammalian cells." J Gen Virol 82(Pt 6): 1457-63.
    Kawabata, K., Y. Takakura, et al. (1995). "The fate of plasmid DNA after intravenous injection in mice: involvement of scavenger receptors in its hepatic uptake." Pharm Res 12(6): 825-30.
    Kawaguchi, Y., R. Bruni, et al. (1997). "Interaction of herpes simplex virus 1 alpha regulatory proteinICP0 with elongation factor 1delta: ICP0 affects translational machinery." J Virol 71(2): 1019-24.
    Kawaguchi, Y. and K. Kato (2003). "Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2." Rev Med Virol 13(5): 331-40.
    Kawaguchi, Y., T. Matsumura, et al. (1999). "Cellular elongation factor 1delta is modified in cells infected with representative alpha-, beta-, or gammaherpesviruses." J Virol 73(5): 4456-60.
    Kawaguchi, Y., C. Van Sant, et al. (1998). "Eukaryotic elongation factor 1delta is hyperphosphorylated by the protein kinase encoded by the U(L)13 gene of herpes simplex virus 1." J Virol 72(3): 1731-6.
    Keller, W., S. Bienroth, et al. (1991). "Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3' processing signal AAUAAA." EMBO J 10(13): 4241-9.
    Khalil, I. A., K. Kogure, et al. (2006). "High density of octaarginine stimulates macropinocytosis leading to efficient intracellular trafficking for gene expression." J Biol Chem 281(6): 3544-51.
    Kim, D., C. Jeon, et al. (2006). "Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo." Exp Cell Res 312(8): 1277-88.
    Kim, T. W., C. F. Hung, et al. (2004). "Vaccination with a DNA vaccine encoding herpes simplex virus type 1 VP22 linked to antigen generates long-term antigen-specific CD8-positive memory T cells and protective immunity." Hum Gene Ther 15(2): 167-77.
    Kirkham, M. and R. G. Parton (2005). "Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers." Biochim Biophys Acta 1746(3): 349-63.
    Klinman, D. M., G. Yamshchikov, et al. (1997). "Contribution of CpG motifs to the immunogenicity of DNA vaccines." J Immunol 158(8): 3635-9.
    Klinman, D. M., A. K. Yi, et al. (1996). "CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma." Proc Natl Acad Sci U S A 93(7): 2879-83.
    Knopf, K. W. and H. C. Kaerner (1980). "Virus-specific basic phosphoproteins associated with herpes simplex virus type a (HSV-1) particles and the chromatin of HSV-1-infected cells." J Gen Virol 46(2): 405-14.
    Kogan, M. J., O. Lopez, et al. (2004). "Exploring the interaction of the surfactant N-terminal domain of gamma-Zein with soybean phosphatidylcholine liposomes." Biopolymers 73(2): 258-68.
    Koptidesova, D., J. Kopacek, et al. (1995). "Identification and characterization of a cDNA clone derived from the Marek's disease tumour cell line RPL1 encoding a homologue of alpha-transinducingfactor (VP16) of HSV-1." Arch Virol 140(2): 355-62.
    Kordower, J. H., M. E. Emborg, et al. (2000). "Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease." Science 290(5492): 767-73.
    Kotsakis, A., L. E. Pomeranz, et al. (2001). "Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein." J Virol 75(18): 8697-711.
    Kozak, M. (1987). "At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells." J Mol Biol 196(4): 947-50.
    Krieg, A. M., A. K. Yi, et al. (1995). "CpG motifs in bacterial DNA trigger direct B-cell activation." Nature 374(6522): 546-9.
    Krieg, A. M., A. K. Yi, et al. (1998). "The role of CpG dinucleotides in DNA vaccines." Trends Microbiol 6(1): 23-7.
    Krosky, P. M., M. C. Baek, et al. (2003). "The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress." J Virol 77(2): 905-14.
    Kuchler, K. (1993). "Unusual routes of protein secretion: the easy way out." Trends Cell Biol 3(12): 421-6.
    Kueltzo, L. A., N. Normand, et al. (2000). "Conformational lability of herpesvirus protein VP22." J Biol Chem 275(43): 33213-21.
    Kugler, S., E. Kilic, et al. (2003). "Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area." Gene Ther 10(4): 337-47.
    Kugler, S., P. Lingor, et al. (2003). "Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units." Virology 311(1): 89-95.
    Kuhn, R., F. Schwenk, et al. (1995). "Inducible gene targeting in mice." Science 269(5229): 1427-9.
    Kurreck, J. (2003). "Antisense technologies. Improvement through novel chemical modifications." Eur J Biochem 270(8): 1628-44.
    Kwissa, M., K. von Kampen, et al. (2000). "Efficient vaccination by intradermal or intramuscular inoculation of plasmid DNA expressing hepatitis B surface antigen under desmin promoter/enhancer control." Vaccine 18(22): 2337-44.
    Kwong, A. D. and N. Frenkel (1987). "Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs." Proc Natl Acad Sci U S A 84(7): 1926-30.
    Kwong, A. D., J. A. Kruper, et al. (1988). "Herpes simplex virus virion host shutoff function." J Virol 62(3): 912-21.
    Lakso, M., B. Sauer, et al. (1992). "Targeted oncogene activation by site-specific recombination in transgenic mice." Proc Natl Acad Sci U S A 89(14): 6232-6.
    Lawrence, G. L., M. Chee, et al. (1990). "Human herpesvirus 6 is closely related to human cytomegalovirus." J Virol 64(1): 287-99.
    Lee, T. I. and R. A. Young (2000). "Transcription of eukaryotic protein-coding genes." Annu Rev Genet 34: 77-137.
    Leib, D. A., D. M. Coen, et al. (1989). "Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency." J Virol 63(2): 759-68.
    Leifert, J. A., S. Harkins, et al. (2002). "Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity." Gene Ther 9(21): 1422-8.
    Leslie, J., F. J. Rixon, et al. (1996). "Overexpression of the herpes simplex virus type 1 tegument protein VP22 increases its incorporation into virus particles." Virology 220(1): 60-8.
    Liang, X., B. Chow, et al. (1997). "Study of immunogenicity and virulence of bovine herpesvirus 1 mutants deficient in the UL49 homolog, UL49.5 homolog and dUTPase genes in cattle." Vaccine 15(10): 1057-64.
    Liang, X., B. Chow, et al. (1995). "Characterization of bovine herpesvirus 1 UL49 homolog gene and product: bovine herpesvirus 1 UL49 homolog is dispensable for virus growth." J Virol 69(6): 3863-7.
    Lin, S. F., D. R. Robinson, et al. (1999). "Kaposi's sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein-Barr virus." J Virol 73(3): 1909-17.
    Liu, J. L. and H. J. Kung (2000). "Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style." Virus Genes 21(1-2): 51-64.
    Locher, C. P., S. A. Witt, et al. (2002). "Enhancement of antibody responses to an HIV-2 DNA envelope vaccine using an expression vector containing a constitutive transport element." DNA Cell Biol 21(8): 581-6.
    Loirat, D., Z. Li, et al. (1999). "Muscle-specific expression of hepatitis B surface antigen: no effect on DNA-raised immune responses." Virology 260(1): 74-83.
    Long, M. C., V. Leong, et al. (1999). "ICP22 and the UL13 protein kinase are both required for herpessimplex virus-induced modification of the large subunit of RNA polymerase II." J Virol 73(7): 5593-604.
    Lundberg, M. and M. Johansson (2001). "Is VP22 nuclear homing an artifact?" Nat Biotechnol 19(8): 713-4.
    Lundberg, M., S. Wikstrom, et al. (2003). "Cell surface adherence and endocytosis of protein transduction domains." Mol Ther 8(1): 143-50.
    Luo, D. and W. M. Saltzman (2000). "Synthetic DNA delivery systems." Nat Biotechnol 18(1): 33-7.
    Luse, D. S. and G. A. Jacob (1987). "Abortive initiation by RNA polymerase II in vitro at the adenovirus 2 major late promoter." J Biol Chem 262(31): 14990-7.
    Mannino, R. J., M. Canki, et al. (1998). "Targeting immune response induction with cochleate and liposome-based vaccines." Adv Drug Deliv Rev 32(3): 273-287.
    Marschall, M., M. Freitag, et al. (2003). "The protein kinase pUL97 of human cytomegalovirus interacts with and phosphorylates the DNA polymerase processivity factor pUL44." Virology 311(1): 60-71.
    Marschall, M., A. Marzi, et al. (2005). "Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina." J Biol Chem 280(39): 33357-67.
    Marschall, M., M. Stein-Gerlach, et al. (2002). "Direct targeting of human cytomegalovirus protein kinase pUL97 by kinase inhibitors is a novel principle for antiviral therapy." J Gen Virol 83(Pt 5): 1013-23.
    Marsden, H. S., N. D. Stow, et al. (1978). "Physical mapping of herpes simplex virus-induced polypeptides." J Virol 28(2): 624-42.
    Martin, A., P. O'Hare, et al. (2002). "Herpes simplex virus tegument protein VP22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding." J Virol 76(10): 4961-70.
    Martin, J. C., C. A. Dvorak, et al. (1983). "9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent." J Med Chem 26(5): 759-61.
    Matsuoka, N., S. Miyatake, et al. (2000). "Adenovirus-mediated gene transfer of basic fibroblast growth factor promotes the survival of primary-cultured rat neuronal cells." Neuroreport 11(9): 2001-6.
    McGeoch, D. J., M. A. Dalrymple, et al. (1988). "The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1." J Gen Virol 69 ( Pt 7): 1531-74.
    McGeoch, D. J., M. A. Dalrymple, et al. (1988). "Structures of herpes simplex virus type 1 genes requiredfor replication of virus DNA." J Virol 62(2): 444-53.
    McGeoch, D. J. and A. J. Davison (1986). "Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses." Nucleic Acids Res 14(4): 1765-77.
    McLean, G., F. Rixon, et al. (1990). "Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47." J Gen Virol 71 ( Pt 12): 2953-60.
    McLean, T. I. and S. L. Bachenheimer (1999). "Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication." J Virol 73(10): 8415-26.
    Meredith, D. M., J. A. Lindsay, et al. (1991). "Post-translational modification of the tegument proteins (VP13 and VP14) of herpes simplex virus type 1 by glycosylation and phosphorylation." J Gen Virol 72 ( Pt 11): 2771-5.
    Merrick, W. C. (1992). "Mechanism and regulation of eukaryotic protein synthesis." Microbiol Rev 56(2): 291-315.
    Mettenleiter, T. C. (2002). "Herpesvirus assembly and egress." J Virol 76(4): 1537-47.
    Mettenleiter, T. C. (2004). "Budding events in herpesvirus morphogenesis." Virus Res 106(2): 167-80.
    Mettenleiter, T. C. and T. Minson (2006). "Egress of alphaherpesviruses." J Virol 80(3): 1610-1; author reply 1611-2.
    Michel, D. and T. Mertens (2004). "The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host." Biochim Biophys Acta 1697(1-2): 169-80.
    Michel, D., P. Schaarschmidt, et al. (1998). "Functional regions of the human cytomegalovirus protein pUL97 involved in nuclear localization and phosphorylation of ganciclovir and pUL97 itself." J Gen Virol 79 ( Pt 9): 2105-12.
    Mitchell, D. J., D. T. Kim, et al. (2000). "Polyarginine enters cells more efficiently than other polycationic homopolymers." J Pept Res 56(5): 318-25.
    Morales, J., P. Cormier, et al. (1992). "Molecular cloning of a new guanine nucleotide-exchange protein, EF1 delta." Nucleic Acids Res 20(15): 4091.
    Mori, T., Y. Mineta, et al. (2008). "Efficient secretion of the herpes simplex virus tegument protein VP22 from living mammalian cells." Arch Virol 153(6): 1191-5.
    Morris, M. C., J. Depollier, et al. (2001). "A peptide carrier for the delivery of biologically active proteins into mammalian cells." Nat Biotechnol 19(12): 1173-6.
    Morris, M. C., P. Vidal, et al. (1997). "A new peptide vector for efficient delivery of oligonucleotides into mammalian cells." Nucleic Acids Res 25(14): 2730-6.
    Morrison, E. E., Y. F. Wang, et al. (1998). "Phosphorylation of structural components promotes dissociation of the herpes simplex virus type 1 tegument." J Virol 72(9): 7108-14.
    Mulner-Lorillon, O., O. Minella, et al. (1994). "Elongation factor EF-1 delta, a new target for maturation-promoting factor in Xenopus oocytes." J Biol Chem 269(31): 20201-7.
    Muranyi, W., J. Haas, et al. (2002). "Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina." Science 297(5582): 854-7.
    Mwangi, W., W. C. Brown, et al. (2005). "Enhancement of antigen acquisition by dendritic cells and MHC class II-restricted epitope presentation to CD4+ T cells using VP22 DNA vaccine vectors that promote intercellular spreading following initial transfection." J Leukoc Biol 78(2): 401-11.
    Nagy, A. (2000). "Cre recombinase: the universal reagent for genome tailoring." Genesis 26(2): 99-109.
    Nakase, I., M. Niwa, et al. (2004). "Cellular uptake of arginine-rich peptides: roles for macropinocytosis and actin rearrangement." Mol Ther 10(6): 1011-22.
    Naldinho-Souto, R., H. Browne, et al. (2006). "Herpes simplex virus tegument protein VP16 is a component of primary enveloped virions." J Virol 80(5): 2582-4.
    Neumann, G., M. R. Castrucci, et al. (1997). "Nuclear import and export of influenza virus nucleoprotein." J Virol 71(12): 9690-700.
    Ng, T. I., L. Keenan, et al. (1994). "Phosphorylation of varicella-zoster virus open reading frame (ORF) 62 regulatory product by viral ORF 47-associated protein kinase." J Virol 68(3): 1350-9.
    Ng, T. I., C. Talarico, et al. (1996). "Partial substitution of the functions of the herpes simplex virus 1 U(L)13 gene by the human cytomegalovirus U(L)97 gene." Virology 225(2): 347-58.
    Nishi, K. and K. Saigo (2007). "Cellular internalization of green fluorescent protein fused with herpes simplex virus protein VP22 via a lipid raft-mediated endocytic pathway independent of caveolae and Rho family GTPases but dependent on dynamin and Arf6." J Biol Chem 282(37): 27503-17.
    Normand, N., H. van Leeuwen, et al. (2001). "Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery." J Biol Chem 276(18): 15042-50.
    O'Donnell, L. A., J. A. Clemmer, et al. (2002). "Marek's disease virus VP22: subcellular localization and characterization of carboxyl terminal deletion Mutations." Virology 292(2): 235-40.
    O'Neill, R. E., J. Talon, et al. (1998). "The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins." EMBO J 17(1): 288-96.
    O'Regan, K. J., M. A. Bucks, et al. (2007). "A conserved region of the herpes simplex virus type 1tegument protein VP22 facilitates interaction with the cytoplasmic tail of glycoprotein E (gE)." Virology 358(1): 192-200.
    O'Regan, K. J., M. A. Murphy, et al. (2007). "Incorporation of the herpes simplex virus type 1 tegument protein VP22 into the virus particle is independent of interaction with VP16." Virology 369(2): 263-80.
    Oehlke, J., A. Scheller, et al. (1998). "Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically." Biochim Biophys Acta 1414(1-2): 127-39.
    Ogle, W. O., T. I. Ng, et al. (1997). "The UL13 protein kinase and the infected cell type are determinants of posttranslational modification of ICP0." Virology 235(2): 406-13.
    Overton, H., D. McMillan, et al. (1994). "Production of host shutoff-defective mutants of herpes simplex virus type 1 by inactivation of the UL13 gene." Virology 202(1): 97-106.
    Palen, E., R. C. Venema, et al. (1994). "GDP as a regulator of phosphorylation of elongation factor 1 by casein kinase II." Biochemistry 33(28): 8515-20.
    Pardridge, W. M. (2002). "Blood-brain barrier drug targeting enables neuroprotection in brain ischemia following delayed intravenous administration of neurotrophins." Adv Exp Med Biol 513: 397-430.
    Park, J., D. Lee, et al. (2000). "Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) open reading frame 36 protein is a serine protein kinase." J Gen Virol 81(Pt 4): 1067-71.
    Phelan, A., G. Elliott, et al. (1998). "Intercellular delivery of functional p53 by the herpesvirus protein VP22." Nat Biotechnol 16(5): 440-3.
    Pomeranz, L. E. and J. A. Blaho (1999). "Modified VP22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection." J Virol 73(8): 6769-81.
    Pooga, M., U. Soomets, et al. (1998). "Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo." Nat Biotechnol 16(9): 857-61.
    Potel, C. and G. Elliott (2005). "Phosphorylation of the herpes simplex virus tegument protein VP22 has no effect on incorporation of VP22 into the virus but is involved in optimal expression and virion packaging of ICP0." J Virol 79(22): 14057-68.
    Powrie, F. and R. L. Coffman (1993). "Cytokine regulation of T-cell function: potential for therapeutic intervention." Immunol Today 14(6): 270-4.
    Rahaus, M., N. Desloges, et al. (2004). "Replication of varicella-zoster virus is influenced by the levels ofJNK/SAPK and p38/MAPK activation." J Gen Virol 85(Pt 12): 3529-40.
    Reddy, S. M., E. Cox, et al. (1998). "Varicella-zoster virus (VZV) ORF32 encodes a phosphoprotein that is posttranslationally modified by the VZV ORF47 protein kinase." J Virol 72(10): 8083-8.
    Ren, X., J. S. Harms, et al. (2001). "Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization." J Virol 75(17): 8251-8.
    Ren, X., J. S. Harms, et al. (2001). "Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions." J Virol 75(19): 9010-7.
    Reynolds, A. E., E. G. Wills, et al. (2002). "ULtrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids." J Virol 76(17): 8939-52.
    Rice, J., C. A. King, et al. (1999). "Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines." Vaccine 17(23-24): 3030-8.
    Richard, J. P., K. Melikov, et al. (2005). "Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors." J Biol Chem 280(15): 15300-6.
    Richard, J. P., K. Melikov, et al. (2003). "Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake." J Biol Chem 278(1): 585-90.
    Riis, B., S. I. Rattan, et al. (1990). "Eukaryotic protein elongation factors." Trends Biochem Sci 15(11): 420-4.
    Rittner, K., A. Benavente, et al. (2002). "New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo." Mol Ther 5(2): 104-14.
    Romaker, D., V. Schregel, et al. (2006). "Analysis of the structure-activity relationship of four herpesviral UL97 subfamily protein kinases reveals partial but not full functional conservation." J Med Chem 49(24): 7044-53.
    Rothbard, J. B., S. Garlington, et al. (2000). "Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation." Nat Med 6(11): 1253-7.
    Rothbard, J. B., T. C. Jessop, et al. (2004). "Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells." J Am Chem Soc 126(31): 9506-7.
    Rubartelli, A., F. Cozzolino, et al. (1990). "A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence." EMBO J 9(5): 1503-10.
    Rusnati, M., D. Coltrini, et al. (1997). "Interaction of HIV-1 Tat protein with heparin. Role of thebackbone structure, sulfation, and size." J Biol Chem 272(17): 11313-20.
    Ryckman, B. J. and R. J. Roller (2004). "Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship." J Virol 78(1): 399-412.
    Ryser, H. J., T. E. Termini, et al. (1975). "Polynucleotide aggregates enhance the transport of protein at the surface of cultured mammalian cells." J Cell Physiol 87(2): 221-8.
    Saar, K., M. Lindgren, et al. (2005). "Cell-penetrating peptides: a comparative membrane toxicity study." Anal Biochem 345(1): 55-65.
    Sacks, W. R. and P. A. Schaffer (1987). "Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture." J Virol 61(3): 829-39.
    Saha, S., S. Yoshida, et al. (2006). "A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus." Virology 354(1): 48-57.
    Saha, S., S. Yoshida, et al. (2006). "A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus." Virology 354(1): 48-57.
    Sahr, K. E., T. L. Coetzer, et al. (1993). "Spectrin cagliari. an Ala-->Gly substitution in helix 1 of beta spectrin repeat 17 that severely disrupts the structure and self-association of the erythrocyte spectrin heterodimer." J Biol Chem 268(30): 22656-62.
    Saldanha, C. E., J. Lubinski, et al. (2000). "Herpes simplex virus type 1 glycoprotein E domains involved in virus spread and disease." J Virol 74(15): 6712-9.
    Sanchez, V. and D. H. Spector (2002). "Virology. CMV makes a timely exit." Science 297(5582): 778-9.
    Sauer, B. and N. Henderson (1990). "Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase." New Biol 2(5): 441-9.
    Sbai, H., J. Schneider, et al. (2002). "Role of transfection in the priming of cytotoxic T-cells by DNA-mediated immunization." Vaccine 20(25-26): 3137-47.
    Scheller, A., J. Oehlke, et al. (1999). "Structural requirements for cellular uptake of alpha-helical amphipathic peptides." J Pept Sci 5(4): 185-94.
    Schenk, P. M., S. Baumann, et al. (1995). "Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare ArgtRNAs." Biotechniques 19(2): 196-8, 200.
    Schimmer, A. D., D. W. Hedley, et al. (2001). "The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2." Cell Death Differ 8(7): 725-33.
    Schmidt, M. C., B. Rothen-Rutishauser, et al. (1998). "Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane." Biochemistry 37(47): 16582-90.
    Schwarze, S. R. and S. F. Dowdy (2000). "In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA." Trends Pharmacol Sci 21(2): 45-8.
    Sciortino, M. T., B. Taddeo, et al. (2007). "Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase." J Virol 81(20): 10924-32.
    Sharma, A. K. and G. K. Khuller (2001). "DNA vaccines: future strategies and relevance to intracellular pathogens." Immunol Cell Biol 79(6): 537-46.
    Simeoni, F., M. C. Morris, et al. (2003). "Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells." Nucleic Acids Res 31(11): 2717-24.
    Smiley, J. R. (2004). "Herpes simplex virus virion host shutoff protein: immune evasion mediated by a viral RNase?" J Virol 78(3): 1063-8.
    Smith-Donald, B. A. and B. Roizman (2008). "The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13." J Virol 82(9): 4533-43.
    Smith, R. F. and T. F. Smith (1989). "Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus." J Virol 63(1): 450-5.
    Sodeik, B., M. W. Ebersold, et al. (1997). "Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus." J Cell Biol 136(5): 1007-21.
    Song, B. W., H. V. Vinters, et al. (2002). "Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector." J Pharmacol Exp Ther 301(2): 605-10.
    Song, C. P., H. J. Chen, et al. (2007). "[Preparation and immunological characterization of monoclonalantibodies against VP22 carboxyl terminus of Marek's disease virus serotype 1]." Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 23(3): 249-52.
    Spear, P. G. and B. Roizman (1972). "Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion." J Virol 9(1): 143-59.
    Stauber, R. H. and G. N. Pavlakis (1998). "Intracellular trafficking and interactions of the HIV-1 Tat protein." Virology 252(1): 126-36.
    Strom, T. and N. Frenkel (1987). "Effects of herpes simplex virus on mRNA stability." J Virol 61(7): 2198-207.
    Suarez, D. L. and S. Schultz-Cherry (2000). "The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model." Avian Dis 44(4): 861-8.
    Subbarao, N. K., R. A. Parente, et al. (1987). "pH-dependent bilayer destabilization by an amphipathic peptide." Biochemistry 26(11): 2964-72.
    Sugita, T., T. Yoshikawa, et al. (2008). "Comparative study on transduction and toxicity of protein transduction domains." Br J Pharmacol 153(6): 1143-52.
    Suzuki, T., S. Futaki, et al. (2002). "Possible existence of common internalization mechanisms among arginine-rich peptides." J Biol Chem 277(4): 2437-43.
    Svanholm, C., L. Bandholtz, et al. (1999). "Enhancement of antibody responses by DNA immunization using expression vectors mediating efficient antigen secretion." J Immunol Methods 228(1-2): 121-30.
    Swanstrom, R. I. and E. K. Wagner (1974). "Regulation of synthesis of herpes simplex type 1 virus mRNA during productive infection." Virology 60(2): 522-33.
    Taddeo, B., A. Esclatine, et al. (2003). "The stress-inducible immediate-early responsive gene IEX-1 is activated in cells infected with herpes simplex virus 1, but several viral mechanisms, including 3' degradation of its RNA, preclude expression of the gene." J Virol 77(11): 6178-87.
    Taddeo, B., M. T. Sciortino, et al. (2007). "Interaction of herpes simplex virus RNase with VP16 and VP22 is required for the accumulation of the protein but not for accumulation of mRNA." Proc Natl Acad Sci U S A 104(29): 12163-8.
    Tang, D. C., M. DeVit, et al. (1992). "Genetic immunization is a simple method for eliciting an immune response." Nature 356(6365): 152-4.
    Tasciotti, E. and M. Giacca (2005). "Fusion of the human immunodeficiency virus type 1 tat protein transduction domain to thymidine kinase increases bystander effect and induces enhanced tumorkilling in vivo." Hum Gene Ther 16(12): 1389-403.
    Thoren, P. E., D. Persson, et al. (2004). "Membrane binding and translocation of cell-penetrating peptides." Biochemistry 43(12): 3471-89.
    Thoren, P. E., D. Persson, et al. (2005). "Membrane destabilizing properties of cell-penetrating peptides." Biophys Chem 114(2-3): 169-79.
    Tobery, T. W. and R. F. Siliciano (1997). "Targeting of HIV-1 antigens for rapid intracellular degradation enhances cytotoxic T lymphocyte (CTL) recognition and the induction of de novo CTL responses in vivo after immunization." J Exp Med 185(5): 909-20.
    Topp, K. S., L. B. Meade, et al. (1994). "Microtubule polarity in the peripheral processes of trigeminal ganglion cells: relevance for the retrograde transport of herpes simplex virus." J Neurosci 14(1): 318-25.
    Torchilin, V. P. (2008). "Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers." Adv Drug Deliv Rev 60(4-5): 548-58.
    Troy, C. M., D. Derossi, et al. (1996). "Downregulation of Cu/Zn superoxide dismutase leads to cell death via the nitric oxide-peroxynitrite pathway." J Neurosci 16(1): 253-61.
    Tung, C. H. and S. Stein (2000). "Preparation and applications of peptide-oligonucleotide conjugates." Bioconjug Chem 11(5): 605-18.
    ULmer, J. B., R. R. Deck, et al. (1994). "Protective immunity by intramuscular injection of low doses of influenza virus DNA vaccines." Vaccine 12(16): 1541-4.
    van Zeijl, M., J. Fairhurst, et al. (1997). "The human cytomegalovirus UL97 protein is phosphorylated and a component of virions." Virology 231(1): 72-80.
    Vandenbroucke, R. E., S. C. De Smedt, et al. (2007). "Cellular entry pathway and gene transfer capacity of TAT-modified lipoplexes." Biochim Biophys Acta 1768(3): 571-9.
    Venema, R. C., H. I. Peters, et al. (1991). "Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity." J Biol Chem 266(19): 12574-80.
    Venema, R. C., H. I. Peters, et al. (1991). "Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities." J Biol Chem 266(18): 11993-8.
    Wadia, J. S., R. V. Stan, et al. (2004). "Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis." Nat Med 10(3): 310-5.
    Wang, F., W. Tang, et al. (2005). "Herpes simplex virus type 1 glycoprotein e is required for axonal localization of capsid, tegument, and membrane glycoproteins." J Virol 79(21): 13362-72.
    Wasserman, W. J., J. D. Richter, et al. (1982). "Protein synthesis during maturation promoting factor- and progesterone-induced maturation in Xenopus oocytes." Dev Biol 89(1): 152-8.
    Watts, A. M., R. K. Bright, et al. (2000). "DNA cancer vaccination strategies target SV40 large tumour antigen in a murine experimental metastasis model." Dev Biol (Basel) 104: 143-7.
    Wender, P. A., D. J. Mitchell, et al. (2000). "The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters." Proc Natl Acad Sci U S A 97(24): 13003-8.
    Westwick, J. K., C. Weitzel, et al. (1994). "Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase." J Biol Chem 269(42): 26396-401.
    Whitley, R. J., E. R. Kern, et al. (1993). "Replication, establishment of latency, and induced reactivation of herpes simplex virus gamma 1 34.5 deletion mutants in rodent models." J Clin Invest 91(6): 2837-43.
    Wills, K. N., I. A. Atencio, et al. (2001). "Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus." J Virol 75(18): 8733-41.
    Wolf, D. G., C. T. Courcelle, et al. (2001). "Distinct and separate roles for herpesvirus-conserved UL97 kinase in cytomegalovirus DNA synthesis and encapsidation." Proc Natl Acad Sci U S A 98(4): 1895-900.
    Wolff, J. A., R. W. Malone, et al. (1990). "Direct gene transfer into mouse muscle in vivo." Science 247(4949 Pt 1): 1465-8.
    Wu, B., H. M. Moulton, et al. (2008). "Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer." Proc Natl Acad Sci U S A 105(39): 14814-9.
    Wu, D., B. W. Song, et al. (2002). "Pharmacokinetics and brain uptake of biotinylated basic fibroblast growth factor conjugated to a blood-brain barrier drug delivery system." J Drug Target 10(3): 239-45.
    Wu, T. C., F. G. Guarnieri, et al. (1995). "Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens." Proc Natl Acad Sci U S A 92(25): 11671-5.
    Wyman, T. B., F. Nicol, et al. (1997). "Design, synthesis, and characterization of a cationic peptide thatbinds to nucleic acids and permeabilizes bilayers." Biochemistry 36(10): 3008-17.
    Xu, Z. L., H. Mizuguchi, et al. (2001). "Optimization of transcriptional regulatory elements for constructing plasmid vectors." Gene 272(1-2): 149-56.
    Yamada, M., T. Oligino, et al. (1999). "Herpes simplex virus vector-mediated expression of Bcl-2 prevents 6-hydroxydopamine-induced degeneration of neurons in the substantia nigra in vivo." Proc Natl Acad Sci U S A 96(7): 4078-83.
    Yamamoto, S., T. Yamamoto, et al. (1992). "DNA from bacteria, but not from vertebrates, induces interferons, activates natural killer cells and inhibits tumor growth." Microbiol Immunol 36(9): 983-97.
    Yao, F. and R. J. Courtney (1989). "A major transcriptional regulatory protein (ICP4) of herpes simplex virus type 1 is associated with purified virions." J Virol 63(8): 3338-44.
    Yoshida, A., T. Nagata, et al. (2000). "Advantage of gene gun-mediated over intramuscular inoculation of plasmid DNA vaccine in reproducible induction of specific immune responses." Vaccine 18(17): 1725-9.
    You, Z., X. Huang, et al. (2001). "Targeting dendritic cells to enhance DNA vaccine potency." Cancer Res 61(9): 3704-11.
    Yuan, J., A. Horlin, et al. (1997). "Polo-like kinase, a novel marker for cellular proliferation." Am J Pathol 150(4): 1165-72.
    Yuan, J., A. Kramer, et al. (2002). "Efficient internalization of the polo-box of polo-like kinase 1 fused to an Antennapedia peptide results in inhibition of cancer cell proliferation." Cancer Res 62(15): 4186-90.
    Yukawa, H., J. C. Takahashi, et al. (2000). "Adenoviral gene transfer of basic fibroblast growth factor promotes angiogenesis in rat brain." Gene Ther 7(11): 942-9.
    Zacny, V. L., E. Gershburg, et al. (1999). "Inhibition of Epstein-Barr virus replication by a benzimidazole L-riboside: novel antiviral mechanism of 5,
    6-dichloro-2-(isopropylamino)-1-beta-L-ribofuranosyl-1H-benzimidazole." J Virol 73(9): 7271-7.
    Zahn, K. (1996). "Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth." J Bacteriol 178(10): 2926-33.
    Zakhartchouk, A. N., S. Viswanathan, et al. (2007). "Optimization of a DNA vaccine against SARS." DNA Cell Biol 26(10): 721-6.
    Zavaglia, D., M. C. Favrot, et al. (2003). "Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein." Gene Ther 10(4): 314-25.
    Zhao, W., S. B. Xiao, et al. (2005). "[Immunogenicity of DNA vaccine expressing GP5 of porcine reproductive and respiratory syndrome virus fused with VP22 of bovine herpesvirus 1]." Sheng Wu Gong Cheng Xue Bao 21(5): 725-30.
    Zheng, C., R. Brownlie, et al. (2005). "Characterization of the nuclear localization and nuclear export signals of bovine herpesvirus 1 VP22." J Virol 79(18): 11864-72.
    Zhou, X., P. Berglund, et al. (1995). "Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus." Proc Natl Acad Sci U S A 92(7): 3009-13.
    Zhu, J., Z. Qiu, et al. (2005). "Nuclear and mitochondrial localization signals overlap within bovine herpesvirus 1 tegument protein VP22." J Biol Chem 280(16): 16038-44.
    Zou, Y. R., W. Muller, et al. (1994). "Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies." Curr Biol 4(12): 1099-103.
    李娜,秦爱建, et al. (2007). "抗A型禽流感病毒核蛋白特异性单克隆抗体的研制及其特性."扬州大学学报(农业与生命科学版) 28(1): 9-12.
    李瑞芳,秦爱建, et al. (2006). "抗奶牛γ-干扰素特异性单克隆抗体的研制及其特性."中国人兽共患病杂志22(8): 755-758.
    秦爱建,崔治中, et al. (1994). "抗马立克氏病毒pp38血清与不同血清型病毒的免疫交叉反应."微生物学报34(5): 393-397. 崔平福(2007). "新城疫病毒融合蛋白高效表达及其特异性单克隆抗体的研制和初步应用."扬州大学硕士论文.
    刘红梅,秦爱建, et al. (2006). "传染性法氏囊病毒JS株VP2基因的序列分析及其表达."中国预防兽医学报28(4): 461-465.
    陈鸿军,宋翠萍, et al. (2006). "MDV-1 VP22羧基端在大肠杆菌中高效可溶性表达."中国病毒学21(2): 169-172.