高质量单壁碳纳米管的生长调控与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单壁碳纳米管(SWNTs)是一种典型的一维纳米材料,具有与其直径、手性紧密相关的电学、光学以及化学等方面的优异性能,且半导体性SWNTs的带隙与其直径成倒数关系。然而,目前所制备的SWNTs样品中绝大多数是由多种具有不同直径和手性的SWNTs组成的,且难以分离,因此无法保证SWNTs基器件性能的均一性,这已经成为阻碍SWNTs大规模应用于纳电子器件的科学难题之一。此外,当前在利用电弧放电法进行高效率、低成本、大规模制备SWNTs方面还存在诸多问题,尤其表现在催化剂的催化效率低下方面,一方面导致产物中含有大量杂质,需要经过繁琐的后续提纯处理,另一方面导致SWNTs制备效率不高,难以大幅度降低SWNTs的生产成本。针对上述问题,本论文在对电弧放电过程进行深入分析的基础上开展了优化制备工艺、调控SWNTs成核、生长过程、低纯度样品提纯及选择性刻蚀金属性SWNTs等方面的研究工作。
     首先对电弧放电过程中各影响因素进行了深入细致的分析,重点研究了催化剂的引入方式、不同阴极尺寸等因素对所制备SWNTs的纯度和产量的影响。实验结果表明,催化剂以金属盐的方式引入时能够显著地改善其在阳极石墨棒的分布均匀性,有利于提高催化效率,大大提高了产物中SWNTs的纯度。适当增加阴极直径有利于改善SWNTs成核、生长环境,提高产物中SWNTs的纯度,通过调控阴极直径(0.8cm~2.5cm)可以实现对SWNTs长度的调控。
     提出了通过引入低压反应性气体对SWNTs成核、生长过程进行主动干预来实现调控SWNTs直径分布的思想。在电弧放电过程中,引入的低压反应性气体(CO、CO2和N2O)能够影响SWNTs的成核、生长过程。增加反应性气体在缓冲气体中的含量能够实现抑制小直径SWNTs的形成,而使SWNTs直径分布向大直径SWNTs方向移动。同时,引入少量反应性气体在一定程度上可以提高产物中SWNTs的纯度。
     首次利用横向磁场控制磁性催化剂在电弧等离子体中的运动行为;利用电磁场来调控电弧等离子体参数(等离子体密度、电子温度)、带电碳原子簇的运动行为、电子运动方向等。通过改变磁场强度、方向能够控制电弧等离子体的喷射方向,也即控制了催化剂以及带电碳原子簇的运动状态,最终达到对SWNTs成核、生长以及沉积方向的调控。施加横向磁场后,在定向电弧等离子体前、后、左、右等四个区域收集的SWNTs样品具有不同的直径分布,尤其当Fe/Mo作为催化剂时,改变横向磁场强度与方向能够对SWNTs直径分布与定向沉积方向进行更加有效地调控。同时,研究结果表明磁场对SWNTs制备过程的调控主要是通过影响催化剂粒子在非均匀磁场中的尺寸分布来实现的,洛伦兹力改变尽管能够调控SWNTs的直径分布但并未起到决定性作用。另外,首次利用施加横向磁场可诱导SWNTs定向沉积这一特点将非连续单反应室SWNTs的单批次制备产量由10克提高到50克以上。
     针对低纯度SWNTs样品提纯这一难题,提出利用分步离心逐级提高SWNTs纯度与湿法氧化相结合的综合方法进行SWNTs提纯处理。具体来讲,首先通过空气氧化去除大部分无定形碳成分;然后将样品均匀分散形成SWNTs-SDS水溶液,然后分别在4500、9000、12000和15000rpm等四种转速下离心分离逐步将杂质沉淀分离出来;接着采用H2O2加热回流的方式氧化去除残余的超细杂质粒子,并通过稀酸酸洗反应掉残余的催化剂粒子,最后获得洁净的SWNTs样品。该提纯方法对SWNTs结构产生的破坏很小,能很好地保留了初始样品中SWNTs直径分布的信息,这为研究直径可控性生长及后续的测试分析提供保障。
     利用金属性与半导体性SWNTs在电学性能上的差异,我们首次分别采用Ar、H2、N2和He四种室温等离子体对提纯后的SWNTs进行选择性刻蚀,利用UV-vis-NIR吸收光谱对等离子体刻蚀前后金属性与半导体性SWNTs比例的变化进行表征。结果表明,通过控制等离子体功率、气压和刻蚀时间等参数可实现对金属性SWNTs的选择性刻蚀,而剩下半导体性SWNTs。该方法还适用于其他气体等离子体,尤其是反应性气体等离子体。
As a one-dimension nanomaterial, the superior electronic and opticalproperties of single-walled carbon nanotubes (SWNTs) strongly depend on theirdiameter and chiral angle, and the bandgap energies of semiconducting SWNTsare inversely proportional to their diameters. However, the as-synthesizedSWNTs always come as a mixture of nanotubes with different chiralities,resulting in the heterogeneous performance of SWNT-based devices. Thispresents a major obstacle to many advanced applications of SWNTs. On theother hand, there are still several big challenges for low-cost, large-scalesynthesis of SWNTs by DC arc discharge method, especially for low catalyticefficiency of the existing catalysts. As a result, numerous impurities and SWNTsare produced together, which causes the difficulties in the purification andhigh-cost of SWNT products. To address the above problems, we have carriedout a lot of research work in optimizing synthesis conditions,controlled-synthesis of SWNTs, purification of SWNT samples with low-purity,and selective etching of metallic SWNTs.
     In the dissertation, many factors affecting SWNT synthesis during arcdischarge process have been analyzed, and we paid more attention to theinvestigation on the adding type of catalysts and the cathode diameters, whichwill influence the purity and yield of SWNT products. The experimental resultsshow that the distribution of catalysts in the anode can be improved significantlywhen the catalysts were added with metal salt, leading to higher catalyticefficiency, which will improve the purity of SWNTs in products. During the arcdischarge process, increasing the cathode diameter improves the nucleation andgrowth conditions of SWNTs, resulting in SWNT products with high purity, andthe length-controlled synthesis has been done through changing the cathodediameters from0.8cm to2.5cm.
     The active intervention to the nucleation and growth process of SWNTswas introduced by adding low-pressure reactive gases, which is supposed tocontrol the diameter distribution of SWNTs. Low-pressure reactive gases (CO,CO2and N2O) with different contents were mixed with buffer gas during arcdischarge process, and the increasing of the reactive gas results in theenrichment of SWNTs with big diameters. Meanwhile, the purity of SWNTs canbe improved to some extent when a little reactive gas was added.
     For the first time, transversal magnetic field was applied to change plasmaparameters (plasma density, electron temperature), the motions of catalysts, charged carbon atoms and electrons, which will influence the nucleation, growthprocess and deposition direction of SWNTs due to the change in the direction oforiented arc plasma. After applying a transversal magnetic field to arc plasma,the diameter distribution of SWNTs in different regions will be different witheach other. Especially for Fe/Mo as catalysts, the diameter distribution andselective deposition of SWNTs can be more effectively controlled by changingthe direction and strength of transversal magnetic field. Meanwhile, althoughLorenz forces can influence the diameter distribution of SWNTs, magnetic fieldcontrolled synthesis process of SWNTs is dominated by tailoring the sizedistribution of the catalysts in non-uniform magnetic field. In addition, thesingle batch yield of SWNT products have be increased firstly from10g to50gthrough applying a transversal magnetic field to arc plasma.
     For low-purity SWNT products, the fractional centrifugation, combinedwith chemical oxidization, was devoted to the purification process. In particular,air oxidization was firstly used to remove most of amorphous carbon, thenSWNT samples were dispersed uniformly into aqueous SDS solution, and theimpurities with different sizes were separated from SWNT-SDS solution usingcentrifugation method with4500,9000,12000and15000rpm, respectively.Finally, the impurity particles with small sizes were removed by H2O2refluxingand acid washing. The diameter distribution of purified SWNTs is consistent with the primary ones due to few destroy of SWNT structures.
     Based on the differences in electronic properties between metallic andsemiconducting SWNTs, room-temperature plasmas (Ar, H2, N2and He) wereperformed firstly to selectively etch the purified SWNTs, and the ratio changesbetween metallic and semiconducting SWNTs after selective etching werecharacterized by UV-vis-NIR absorption spectra. We find that plasma power, gaspressure and etching time play important roles in selective etching SWNTs. Bycontrolling the plasma parameters, four gas (Ar, N2, H2and He) plasmas can beused to etch preferably metallic SWNTs at room temperature, retaining thesemiconducting SWNTs. Other gas plasmas, especially for reactive gas, shouldalso be suitable for selective etching of SWNTs.
引文
[1] Iijima S. Helical microtubules of graphitic carbon [J]. Nature1991,345:56–58.
    [2] Bethune DS, Kiang CH, Devries MS, et al. Cobalt-catalysed growth of carbon nanotubes withsingle-atomic-layer walls [J]. Nature1993,363:605–607.
    [3] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1-nm diameter [J]. Nature1993,363:603–605.
    [4] Guan LH, Suenaga K, Iijima S. Smallest carbon nanotube assigned with atomic resolution accuracy [J].Nano Lett.2008,8(2):459–462.
    [5] Lyu SC, Lee TJ, Yang CW, Lee CJ. Synthesis and characterization of high-quality double-walledcarbon nanotubes by catalytic decomposition of alcohol [J]. Chem. Comm.2003,1404–1405.
    [6] Wen Q, Zhang RF, Qian WZ, et al. Growing20cm long DWNTs/TWNTs at a rapid growth rate of8090μm/s [J].Chem. Mater.2010,22(4):1294–1296.
    [7] Qi H, Qian C, Liu J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanolmixture [J]. Chem. Mater.2006,18(24):5691–5695.
    [8] Hou Y, Tang J, Zhang HB, et al. Functionalized few-walled carbon nanotubes for mechanicalreinforcement of polymeric composites [J]. ACS Nano2009,3(5):1057–1062.
    [9]成会明.碳纳米管制备、结构、物性及应用.北京:化学工业出版社.2002.
    [10]韦进全,张先锋,王昆林.碳纳米管宏观体.北京:清华大学出版社.2006.
    [11] Saito Y, Fujita M, Dresselhaus G, et al. Electronic structure of chiral graphene tubules [J]. Appl. Phys.Lett.1992,60(18):2204–2208.
    [12] Henning TH, Salama F. Carbon in the universe [J]. Science1998,282:2204.
    [13] Iijima S, Ajayan PM, Ichihashi S. Growth model for carbon nanotubes [J]. Phys. Rev. Lett.1992,69(21):3100–3106
    [14] Dresselhaus MS, DCarbon G, Avouris P. Carbon nanotube: synthesis, structure, properties andapplications. Berlin, Germany, Springer-Verlag,2001.
    [15] Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: graphitic microtubules [J].Phys. Rev. Lett.1992,68:1579–1581.
    [16] Mintmire JW, White CT. Universal density of states for carbon nanotubes [J]. Phys. Rev. Lett.1998,81:2506–2509.
    [17] Ouyang M, Huang JL, Cheung CL, et al. Energy gaps in" metallic" single-walled carbon nanotubes [J].Science2001,292(5517):702–705.
    [18] Saito R, Dresselhaus G, Dresselhaus MS. Trigonal warping effect of carbon nanotubes [J]. Phys. Rev.B2000,61:2981–2990.
    [19] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes [J].Synthetic Metals1999,103:2555–2558.
    [20] Ritschel M, Uhlemann M, Gutfleisch O, et al. Hydrogen storage in different carbon nanostructures [J].Appl. Phys. Lett.2002,80(16):2985–2987
    [21] Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors [J]. Science2000,287:622–625.
    [22] McEuen PL, Park MS. Single-walled carbon nanotube electronics [J]. IEEE Trans. Nanotechnol.2002,1:78–82
    [23] Appenzeller J, Martel R, Derycke V, et al. Carbon nanotubes as potential building blocks for futurenanoelectronics[J]. Microelectron. Eng.2002,64:391–394
    [24] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J], Science1996,273:483–487.
    [25] Dai H, Rinzler AG, Nikolaev P, et al. Single-wall nanotubes produced by metal-catalyzeddisproportionation of carbon monoxide [J]. Chem. Phys. Lett.1996,260:471–475.
    [26] Kong J, Soh HT, Cassell AM, et al. Synthesis of individual single-walled carbon nanotubes onpatterned silicon wafers [J]. Nature1998,395:878–881.
    [27] Cassell AM, Raymakers JA, Kong, J, et al. Large scale CVD synthesis of single-walled carbonnanotubes [J]. J. Phys. Chem. B1999,103:6484–6492.
    [28] Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbonnanotubes from carbon monoxide [J]. Chem. Phys. Lett.1999,313:91–97.
    [29] Height MJ, Howard JB, Tester JW, et al. Flame synthesis of single-walled carbon nanotubes [J].Carbon2004,42:2295.
    [30] Li YM, Kim W, Zhang YG, et al. Growth of single-walled carbon nanotubes from discrete catalyticnanoparticles of various sizes [J]. J. Phys. Chem. B2001,105:11424–11431.
    [31] Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthesis of high-purity single-walledcarbon nanotubes from alcohol [J]. Chem. Phys. Lett.2002,360:229–234.
    [32] W Kim, H C Choi, M Shim, et al. Synthesis of ultralong and high percentage of semiconductingsingle-walled carbon nanotubes [J]. Nano Lett.2002,2:703–708.
    [33] Kato T, Jeong G, Hirata T, et al. Single-walled carbon nanotubes produced by plasma-enhancedchemical vapor deposition [J]. Chem. Phys. Lett.2003,381:422–426.
    [34] Li Y M, Mann D, Rolandi M, et al. Preferential growth of semiconducting single-walled carbonnanotubes by a plasma enhanced CVD method [J]. Nano Lett.2004,4:317–321.
    [35] Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-freesingle-walled carbon nanotubes [J]. Science2004,306:1362–1364.
    [36] Ding L, Tselev A, Wang JY, et al. Selective growth of well-aligned semiconducting single-walledcarbon nanotubes [J]. Nano Lett.2009,9,800–805.
    [37] Huang SM, Cai QR, Chen JY, et al. Metal-catalyst-free growth of single-walled carbon nanotubes onsubstrates [J]. J. Am. Chem. Soc.2009,131:2094–2095.
    [38] Liu BL, Ren WC, Gao LB, et al. Metal-catalyst-free growth of single-walled carbon nanotubes [J]. J.Am. Chem. Soc.2009,131:2082–2083.
    [39] Harutyunyan AR, Chen GG, Paronyan TM, et al. Preferential growth of single-walled carbonnanotubes with metallic conductivity [J]. Science2009,326:116–120.
    [40] Ghorannevis Z, Kato T, Kaneko T, et al. Narrow-chirality distributed single-walled carbon nanotubegrowth from nonmagnetic catalyst [J]. J. Am. Chem. Soc.2010,132:9570–9572.
    [41] Liu Y, Hong J, Zhang Y, et al. Flexible orientation control of ultralong single-walled carbon nanotubesby gas flow [J]. Nanotechnology2009,20:185601–6.
    [42] Wang B, Poa CHP, Wei L, et al.(n, m) selectivity of single-walled carbon nanotubes by differentcarbon precursors on Co–Mo catalyst [J]. J. Am. Chem. Soc.2007,129:9014–9019.
    [43] Lu C, Liu J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method bycarbon feeding [J]. J. Phys. Chem. B2006,110:20254–20257.
    [44] Zhang YN, Zheng LX. Towards chirality-pure carbon nanotubes [J]. Nanoscale2010,2:1919–1929.
    [45] Chilo SM, Balzano L, Herrera J E, et al. Narrow (n, m)-distribution of single-walled carbon nanotubesgrown using a solid supported catalyst [J]. J. Am. Chem. Soc.2003,125:11186–11187.
    [46] Li X L, Tu XM, Zaric S, et al. Selective synthesis combined with chemical separation of single-walledcarbon nanotubes for chirality selection [J]. J. Am. Chem. Soc.2007,129:15770–15771.
    [47] Kitiyanan B, Alvarez WE, J Harwell H, et al. Controlled production of single-wall carbon nanotubesby catalytic decomposition of CO on bimetallic Co–Mo catalysts [J]. Chem. Phys. Lett.2000,317:497–503.
    [48] L Durrer, J Greenwald, T Helbling, et al. Narrowing SWNT diameter distribution using size-separatedferritin-based Fe catalysts [J]. Nanotechnology2009,20:355601–7.
    [49] He M, Chernov A I, Fedotov P V, et al. Predominant (6,5) single-walled carbon nanotube growth on acopper-promoted iron catalyst [J]. J. Am. Chem. Soc.2010,132:13994–13996
    [50] Chiang WH, Sankaran RM. Linking catalyst composition to chirality distributions of as-grownsingle-walled carbon nanotubes by tuning NixFe1xnanoparticles [J]. Nat. Mater.2009,8:882–886.
    [51] Wang B, Wei L, Yao L, et al. Pressure-induced single-walled carbon nanotube (n,m) selectivity onCo–Mo catalysts [J]. J. Phys. Chem. C2007,111:14612–14616.
    [52] Kobayashi K, Kitaura R, Kumai Y, et al. Synthesis of single-wall carbon nanotubes grown fromsize-controlled Rh/Pd nanoparticles by catalyst-supported chemical vapor deposition [J]. Chem. Phys.Lett.2008,458:346–350.
    [53] Yao YG, Feng CQ, Zhang J, et al.“Cloning” of single-walled carbon nanotubes via open-end growthmechanism [J]. Nano Lett.2009,9:1673–1677.
    [54] Takizawa M, Bandow S, Yudasaka M, et al. Change of tube diameter distribution of single wall carbonnanotubes induced by changing the bimetallic ratio of Ni and Y catalysts [J]. Chem. Phys. Lett.2000,326:351–357.
    [55] Saito Y, Tani Y, Kasuya A, Diameters of single-wall carbon nanotubes depending on helium gaspressure in an arc discharge [J]. J. Phys. Chem. B2000,104:2495–2499.
    [56] Farhat S, de La Chapelle ML, Loiseau A, et al. Diameter control of single-walled carbon nanotubesusing argon–helium mixture gases [J]. J. Chem. Phys.2001,115:6752–6759.
    [57] Bae JC, Yoon YJ, Lee SJ, et al. Diameter control of single-walled carbon nanotubes by plasma rotatingelectrode process [J]. Carbon2002,40:2905–2911.
    [58] Volotskova O, Fagan JA, Huh JY, et al. Tailored distribution of single-wall carbon nanotubes from arcplasma synthesis using magnetic fields [J]. ACS Nano2010,4:5187–5192.
    [59] Keidar M, Beilis I, Boxman RL, et al,2-D expansion of the low-density interelectrode vacuum arcplasma jet in an axial magnetic field [J]. J. Phys. D: Appl. Phys.1996,29:1973–1983.
    [60] Keidar M, Levchenko I, Arbel T, et al. Magnetic-field-enhanced synthesis of single-wall carbonnanotubes in arc discharge [J]. J. Appl. Phys.2008,103:094318–7.
    [61] Keidar M, Levchenko I, Arbel T, et al. Increasing the length of single-wall carbon nanotubes in amagnetically enhanced arc discharge [J]. Appl. Phys. Lett.2008,92:043129–3.
    [62] Dürkop T, Getty SA, Enrique C, et al. Extraordinary mobility in semiconducting carbon nanotubes [J].Nano Lett.2004,4:35–39.
    [63] Liu XL, Luo ZC, Han S, et al. Band engineering of carbon nanotube field-effect transistors viaselected area chemical gating [J]. Appl. Phys. Lett.2005,86(24):2435–2437.
    [64] Javey A, Tu R, Farmer DB, et al. High performance n-type carbon nanotube field-effect transistorswith. chemically doped contacts.[J]. Nano Lett,2005,5:345–348.
    [65] Tans SJ, Verschueren ARM, Dekker C. Room-temperature transistor based on a single carbonnanotube [J]. Nature1998,393:49–52.
    [66] Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors [J]. Science2001,294:1317–1320.
    [67] Martel R, Wong HSP, Chan K, et al. Carbon nanotube field-effect transistors for logic applications [J].IEDM Tech. Dig.2001,159–162.
    [68] Chen CX, Yan L, Kong ESW, et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology2006,17:2192–2197.
    [69] Javey A, Guo J, Farmer D B, et al. Carbon nanotube field-effect transistors with integrated ohmiccontacts and high-k gate dielectrics [J]. Nano Lett.2004,4(3):447–450
    [70] Wind SJ, Appenzeller J, Martel R, et al. Vertical scaling of carbon nanotube field-effect transistorsusing top gate electrodes [J]. Appl. Phys. Lett.2002,80:3817–3819.
    [71] Yang MH, Teo KBK, Gangloff L, et al. Advantages of top-gate, high-k dielectric carbon nanotubefield-effect transistors [J]. Appl. Phys. Lett.2006,88:113507–4.
    [72] Javey A, Kim H, Brink M, et al. High-k dielectrics for advanced carbon-nanotube transistors and logicgates [J]. Nat. Mater.2002,1:241–246.
    [73] Appenzeller J, Martel R, Derycke V, et al. Carbon nanotubes as potential building blocks for futurenanoelectronics [J]. Micro. Eng.2002,64:391–397
    [74] Seidel RV, Graham AP, Kretz JRB, et al. Sub-20nm short channel carbon nanotube transistors [J].Nano Lett.2005,5:147–150.
    [75] Lin YM, Appenzeller J, Knoch J, et al. High-performance carbon nanotube field-effect transistor withtunable polarities [J]. IEEE Trans. Nanotechnol.2005,4(5):481–489.
    [76] Li J, Lu YJ, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection [J]. Nano Lett.2003,3(7):929–933.
    [77] An KH, Jeong SY, Hwang HR, et al. Enhanced sensitivity of a gas sensor incorporating single-walledcarbon nanotube-polypyrrole nanocomposites [J]. Adv. Mater.2004,16(12):1005–1009
    [78] Bekyarova E, Davis M, Burch T, et al. Chemically functionalized single-walled carbon nanotubes asammonia sensors [J]. J. Phys. Chem. B2004,108(51):19717–19720.
    [79] Lee CY,Strano MS. Understanding the dynamics of signal transduction for adsorption of gases andvapors on carbon nanotube sensors [J]. Langmuir2005,21(11):5192–5196.
    [80] Bradley K,Gabriel JCP,Briman M, et al. Charge transfer from ammonia physisorbed on nanotubes [J].Phys. Rev. Lett.2003,91(21):2183011–4
    [81] Snow ES, Perkins FK, Houser EJ, et al. Chemical detection with a single-walled carbon nanotubecapacitor [J]. Science2005,307:1942–1945.
    [82] Lee JU, Gipp PP, Heller CM. Carbon nanotube pn junction diodes [J]. Appl. Phys. Lett.2004,85,145–147.
    [83] Lee JU. Photovoltaic effect in ideal carbon nanotube diodes [J]. Appl. Phys. Lett.2005,87:073101–3.
    [84] Wang S, Zhang ZY, Ding L, et al. A doping-free carbon nanotube CMOS inverter-based bipolar diodeand ambipolar transistor [J]. Adv. Mater.2008,20:3258–3262.
    [85] Jiao LY, Xian XJ, Wu ZY, et al. Fabrication of carbon nanotube diode with atomic force microscopymanipulation [J]. J. Phys. Chem. C2008,112:7544–7546.
    [86] Liu ZF, Jiao LY, Yao YG, et al. Aligned, ultralong single-walled carbon nanotubes: from synthesis,sorting, to electronic devices [J]. Adv. Mater.2010,22:1–26.
    [87] Derycke V, Martel R, Appenzeller J, et al. Carbon nanotube inter-and intramolecular logic gates [J].Nano Lett.2001,1(9):453–456.
    [88] Chen ZH, Appenzeller J, Lin YM, et al. An integrated logic circuit assembled on a single carbonnanotube [J]. Science2006,311:17351736.
    [1] Maruyama S, Kojima R, Miyauchi Y, et al. Low-temperature synthesis of high-purity single-walledcarbon nanotubes from alcohol [J]. Chem. Phys. Lett.2002,360:229–234.
    [2] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-freesingle-walled carbon nanotubes [J]. Science2004,306:1362–1364.
    [3] Huang S M, Cai Q R, Chen J Y, et al. Metal-catalyst-free growth of single-walled carbon nanotubes onsubstrates [J]. J. Am. Chem. Soc.2009,131:2094–2095.
    [4] Ando Y, Zhao X, Hirahara K. Mass production of single-wall carbon nanotubes by the arc plasma jetmethod [J]. Chem. Phys. Lett.2000,323(5-6):580–584
    [5] Ando Y, Zhao X L, Ohkohchi M, et al. Large-scale purification of single-wall carbon nanotubesprepared by electric arc discharge [J]. Diam. Rel. Mater.2006,15:1098–1120
    [6] Ando Y, Zhao X L, Kadoya T, et al. Development of Fe-doped carbon electrode for mass-producinghigh-yield single-wall carbon nanotubes [J]. Diam. Rel. Mater.2007,16(4-7):1101–1105
    [7] Gemaly EG, Ebbesen TW. Mechanism of carbon nanotube formation in the arc discharge [J]. Phys.Rev. B199552(3):2083–2089.
    [8] Hinkov I, Farhat S, Scott CD. Influence of the gas pressure on single-wall carbon nanotube formation[J]. Carbon2005,43:2453–2462.
    [9] Fetterman AJ, Raitsesa Y, Keidarb M. Enhanced ablation of small anodes in a carbon nanotube arcplasma [J]. Carbon2008,46:1322–1326.
    [10] Ostrogorsky AG, Marin C. Heat transfer during production of carbon nanotubes by the electric-arcprocess [J]. Heat Mass Trans.2006,42:470–477.
    [11] Ebbesen TW, Hiura H, Fujita J, et al. Patterns in the bulk growth of carbon nanotubes [J]. Chem. Phys.Lett.1993,209:83–90.
    [12] Gavillet J, Loiseau A, Journet C, et al. Root-growth mechanism for single-wall carbon nanotubes [J].Phys. Rev. Lett.2001,87:275504–4.
    [13] Cheng HM, Li F, G Su, et al. Large-scale and low-cost synthesis of single-walled carbon nanotubes bythe catalytic pyrolysis of hydrocarbons [J]. Appl. Phys. Lett.1998,72:3282–3284.
    [14] Maiti A, Brabec CJ, Bernholc J. Kinetics of metal-catalyzed growth of single-walled carbon nanotubes[J]. Phys. Rev. B1997,55:R6097–R6100.
    [15] Rao AM, Chen J, Richter E, et al. Effect of van der waals interactions on the Raman modes in singlewalled carbon nanotubes [J]. Phys. Rev. Lett.2001,86:3895–3898.
    [16] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge [J]. J. Phys. D:Appl. Phys.2007,40:2388–2393.
    [17] Waldorff EI, Waas AM, Friedmann PP, et al. Characterization of carbon nanotubes produced by arcdischarge: Effect of the background pressure [J]. J. Appl. Phys.2004,95:2749–2756.
    [18] M Takizawa, S Bandow, M Yudasaka, et al. Change of tube diameter distribution of single wallcarbon nanotubes induced by changing the bimetallic ratio of Ni and Y catalysts [J]. Chem. Phys. Lett.2000,326:351–357.
    [19] Keidar M, Levchenko I, Arbel T, et al. Magnetic-field-enhanced synthesis of single-wall carbonnanotubes in arc discharge [J]. J. Appl. Phys.2008,103:094318–8.
    [20] Keidar M, Waas AM. On the conditions of carbon nanotube growth in the arc discharge [J].Nanotechnology2004,15:1571–1575.
    [21] Fetterman AJ, Raitses Y, Keidar M. Enhanced ablation of small anodes in a carbon nanotube arcplasma [J]. Carbon2008,46:1322–1326.
    [22] Su YJ, Wei H, Yang Z, et al. Highly compressible carbon nanowires synthesized by coatingsingle-walled carbon nanotubes [J]. Carbon2011,49(11):3579–3584.
    [23] Dresselhaus MS, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes [J]. Phys.Reports2005,409:47–99.
    [24] Jorio A, Souza Filho AG, Dresselhaus G, et al. G-band resonant Raman study of62isolatedsingle-wall carbon nanotubes [J]. Phys. Rev. B2002,65:155412–9.
    [25] Brown SDM, Jorio A, Corio P, et al. Origin of the Breit-Wigner-Fano lineshape of the tangentialG-band feature of metallic carbon nanotubes [J]. Phys. Rev. B2001,63:155414–8.
    [26] Keidar M, Levchenko I, Arbel T, et al. Increasing the length of single-wall carbon nanotubes in amagnetically enhanced arc discharge [J]. Appl. Phys. Lett.2008,92:043129–3.
    [27] Li HP, Benilov MS. Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas [J]. J.Phys. D: Appl. Phys.2007,40:2010–2017.
    [1] Burghard M, Klauk H, Kern K. Carbon-based field-effect transistors for nanoelectronics [J]. Adv.Mater.2009,21:2586–2600.
    [2] Rinki M, Johansson A, Paraoanu GS, et al. High-speed memory from carbon nanotube field-effecttransistors with high-κ gate dielectric [J]. Nano Lett.2009,9:643–647.
    [3] Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: areview of fundamental and applied aspects [J]. Adv. Mater.2009,21:29–53.
    [4] Kim SN, Rusling JF, Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemicaldetection of biomolecules [J]. Adv. Mater.2007,9:3214–3228.
    [5] LeMieux MC, Roberts M, Barman S, et al. Self-sorted, aligned nanotube networks for thin-filmtransistors [J]. Science2008,321:101–104.
    [6] Odom TW, Huang JL, Kim P, et al. Structure and electronic properties of carbon nanotubes [J]. J. Phys.Chem. B2000,104:2794–2809.
    [7] Durrer L, Greenwald J, Helbling T, et al. Narrowing SWNT diameter distribution using size-separatedferritin-based Fe catalysts [J]. Nanotechnology2009,20:355601–7.
    [8] Kondo D, Sato S, Awano Y. Low-temperature synthesis of single-walled carbon nanotubes with anarrow diameter distribution using size-classified catalyst nanoparticles [J]. Chem. Phys. Lett.2006,422:481–487.
    [9] Jeong GH, Yamazaki A, Suzuki S, et al. Cobalt-filled apoferritin for suspended single-walled carbonnanotube growth with narrow diameter distribution [J]. J. Am. Chem. Soc.2005,127:8238–8239.
    [10] Jeong HJ, An KH, Lim SC, et al. Narrow diameter distribution of single walled carbon nanotubesgrown on Ni–MgO by thermal chemical vapor deposition [J]. Chem. Phys. Lett.2003,380:263–268.
    [11] Wang B, Poa C H P, Wei L, et al.(n, m) selectivity of single-walled carbon nanotubes by differentcarbon precursors on Co–Mo catalyst [J]. J. Am. Chem. Soc.2007,129:9014–9019.
    [12] Chiang W H, Sankaran R M. Linking catalyst composition to chirality distributions of as-grownsingle-walled carbon nanotubes by tuning NixFe1xnanoparticles [J]. Nat. Mater.2009,8:882–886.
    [13] Lu C, Liu J. Controlling the diameter of carbon nanotubes in chemical vapor deposition method bycarbon feeding [J]. J. Phys. Chem. B2006,110:20254–20257.
    [14] B Wang, L Wei, L Yao, et al. Pressure-induced single-walled carbon nanotube (n,m) selectivity onCo–Mo catalysts [J]. J. Phys. Chem. C2007,111:14612–14616.
    [15] Liu Y, Hong J, Zhang Y, et al. Flexible orientation control of ultralong single-walled carbonnanotubes by gas flow [J]. Nanotechnology2009,20:185601–6.
    [16] T Saito, S Ohshima, T Okazaki, et al. Selective diameter control of single-walled carbon nanotubes inthe gas-phase synthesis [J]. J. Nanosci. Nanotechnol.2008,8(11):6153–6157.
    [17] Takizawa M, Bandow S, Yudasaka M, et al. Change of tube diameter distribution of single wallcarbon nanotubes induced by changing the bimetallic ratio of Ni and Y catalysts [J]. Chem. Phys. Lett.2000,326:351–357.
    [18] Saito Y, Tani Y, Kasuya A, Diameters of single-wall carbon nanotubes depending on helium gaspressure in an arc discharge [J]. J. Phys. Chem. B2000,104:2495–2499.
    [19] Bae J C, Yoon Y J, Lee S J, et al. Diameter control of single-walled carbon nanotubes by plasmarotating electrode process [J]. Carbon2002,40:2905–2911.
    [20] Kataura H, Kumazawa Y, Maniwa Y, et al. Optical properties of single-wall carbon nanotubes [J].Synthetic Metals1999,103:2555–2558.
    [21] Dresselhaus MS, Dresselhaus G, Jorio A, et al. Raman spectroscopy on isolated single wall carbonnanotubes [J]. Carbon2002,40:2043–2061.
    [22] Anisimov AS, Nasibulin AG, Jiang H, et al. Mechanistic investigations of single-walled carbonnanotube synthesis by ferrocene vapor decomposition in carbon monoxide [J]. Carbon2010,48:380–388.
    [23] Chen Y, Ciuparu D, Yang YH, et al. Single-wall carbon nanotube synthesis by CO disproportionationon nickel-incorporated MCM-41[J]. Nanotechnology2005,16:S476–S483.
    [24] Mann DJ, Halls MD, Hase WL. Direct dynamics studies of CO-assisted carbon nanotube growth [J]. J.Phys. Chem. B2002,106:12418–12425.
    [25] Chen Y, Ciuparu D, Lim S, et al. Synthesis of uniform diameter single wall carbon nanotubes inCo-MCM-41: effects of CO pressure and reaction time [J]. J. Catal.2004,226:351–362.
    [26] Seo K, Kim C, Kim B, et al Growth energetics of single-wall carbon nanotubes with carbon monoxide[J]. J. Phys. Chem. B2004,108:4308–4313.
    [27] Jorio A, Pimenta MA, Souza Filho AG, et al. Characterizing carbon nanotube samples with resonanceRaman scattering [J]. New J. Phys.2003,5:139–17.
    [28] Jorio A, Souza Filho AG, Dresselhaus G, et al. G-band resonant Raman study of62isolatedsingle-wall carbon nanotubes [J]. Phys. Rev. B2002,65:155412–9.
    [29] Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes [J]. Phys.Reports2005,409:47–99.
    [30] Li N, Ma YF, Wang B, et al. Synthesis of semiconducting SWNTs by arc discharge and theirenhancement of water splitting performance with TiO2photocatalyst [J]. Carbon2011,49(15):5132–5141.
    [31] Du F, Ma YF, Lv X, et al. The synthesis of single-walled carbon nanotubes with controlled length andbundle size using the electric arc method [J]. Carbon2006,44:1298–1352.
    [1] Odom TW, Huang JL, Kim P, et al. Structure and electronic properties of carbon nanotubes [J]. J. Phys.Chem. B2000,104:2794–2809.
    [2] Liu X, Pichler T, Knupfer M, et al. Detailed analysis of the mean diameter and diameter distribution ofsingle-wall carbon nanotubes from their optical response [J]. Phys. Rev. B2002,66:045411–8.
    [3] Zhang L, Tu XM, Welsher K, et al. Optical characterizations and electronic devices of nearly pure(10,5) single-walled carbon nanotubes [J]. J. Am. Chem. Soc.2009,131:2454–2455.
    [4] Umeyama T, Tezuka N, Seki S, et al. Selective formation and efficient photocurrent generation of [70]fullerene–single-walled carbon nanotube composites [J]. Adv. Mater.2010,22:1767–1770.
    [5] Zhang YF, Wang YF, Chen N, et al. Photovoltaic enhancement of Si solar cells by assembled carbonnanotubes [J]. Nano-Micro Lett.2010,2:22–25.
    [6] Barone PW, Baik S, Heller DA, et al. Near-infrared optical sensors based on single-walled carbonnanotubes [J]. Nat. Mater.2005,4:86–92.
    [7] Miyata Y, Kawai T, Miyamoto Y, et al. Chirality-dependent combustion of single-walled carbonnanotubes [J]. J. Phys. Chem. C2007,111:9671–9677.
    [8] Ghosh S, Bachilo SM, Weisman RB. Advanced sorting of single-walled carbon nanotubes by nonlineardensity-gradient ultracentrifugation [J]. Nat. Nanotechnol.2010,5:443–450.
    [9] Green AA, Hersam MC. Nearly single-chirality single-walled carbon nanotubes produced viaorthogonal iterative density gradient ultracentrifugation [J]. Adv. Mater.2011,23:2185–2190.
    [10] Tanaka T, Jin H, Miyata Y, et al. Simple and scalable gel-based separation of metallic andsemiconducting carbon nanotubes [J]. Nano Lett.2009,9(4):1497–1500.
    [11] Li XL, Tu XM, Zaric S, et al. Selective synthesis combined with chemical separation of single-walledcarbon nanotubes for chirality selection [J]. J. Am. Chem. Soc.2007,129(51):15770–15771.
    [12] Liu HP, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbonnanotubes by simple gel chromatography [J]. Nat. Comm.2011,2:309.
    [13] Chiang WH, Sankaran RM. Linking catalyst composition to chirality distributions of as-grownsingle-walled carbon nanotubes by tuning NixFe1-xnanoparticles [J]. Nat. Mater.2009,8:882–886.
    [14] Jeong GH, Suzuki S, Kobayashi Y, et al. Size control of catalytic nanoparticles by thermal treatmentand its application to diameter control of single-walled carbon nanotubes [J]. App. Phys.Lett.2007,90(4):043108–3.
    [15] Song W, Jeon C, Kim YS, et al. Synthesis of bandgap-controlled semiconducting single-walled carbonnanotubes [J]. ACS Nano.2010,4:1012–1018.
    [16] S Bandow, S Asaka, Y Saito, et al. Effect of the growth temperature on the diameter distribution andchirality of single-wall carbon nanotubes [J]. Phys. Rev. Lett.,1998,80:3779–3782.
    [17] Y Chen, D Ciuparu, S Lim, et al. Synthesis of uniform diameter single-wall carbon nanotubes inCo-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures [J]. J. Catal.2004,225:453–465.
    [18] Zhang YN, Zheng LX. Towards chirality-pure carbon nanotubes [J]. Nanoscale2010,2:1919–1929.
    [19] Wang B, Poa C H P, Wei L, et al.(n, m) selectivity of single-walled carbon nanotubes by differentcarbon precursors on Co–Mo catalyst [J]. J. Am. Chem. Soc.2007,129:9014–9019.
    [20] Keidar M, Shashurin A, Li J, et al. Arc plasma synthesis of carbon nanostructures: where is thefrontier?[J] J. Phys. D: Appl. Phys.2011,44:174006–6.
    [21] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arc discharge [J]. J. Phys. D:Appl. Phys.2007,40:2388–2393.
    [22] Volotskova O, Fagan JA, Huh JY, et al. Tailored distribution of single-wall carbon nanotubes from arcplasma synthesis using magnetic fields [J], ACS Nano2010,4:5187–5192.
    [23] Rao AM, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes incarbon nanotubes [J] Science1997,275:187–191.
    [24] Huang LP, Zhang HL, Wu B, et al. A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV vis NIR characterization[J]. J. Phys. Chem. C2010,114(28):12095–12098.
    [25] Huang HJ, Kajiura H, Maruyama R, et al. Relative optical absorption of metallic and semiconductingsingle-walled carbon nanotubes [J]. J. Phys. Chem. B2006,110(10):4686–4690.
    [26] Keidar M, Beilis I, Boxman RL, et al.2-D expansion of the low-density interelectrode vacuum arcplasma jet in an axial magnetic field [J] J. Phys. D: Appl. Phys.1996,29:1973–1983.
    [27] Wang WZ, Rong MZ, Murphy AB, et al. Thermophysical properties of carbon–argon andcarbon–helium plasmas [J]. J. Phys. D: Appl. Phys.2011,44:355207–18.
    [28] Keidar M, Levchenko I, Arbel T, et al. Magnetic-field-enhanced synthesis of single-wall carbonnanotubes in arc discharge [J]. J. Appl. Phys.2008,103:094318–8.
    [29] Gamaly EG, Ebbesen TW. Mechanism of carbon nanotube formation in the arc discharge [J]. Phys.Rev. B1995;52:2083–2089.
    [30] Keidar M, Levchenko I, Arbel T, et al. Increasing the length of single-wall carbon nanotubes in amagnetically enhanced arc discharge [J]. Appl Phys Lett2008;92:043129–3.
    [1] Bethune DS, Kiang CH, Devries MS, et al. Cobalt-catalysed growth of carbon nanotubes withsingle-atomic-layer walls [J]. Nature1993,363:605–607.
    [2] Cassell AM, Raymakers JA, Kong J, et al. Large scale CVD synthesis of single-walled carbonnanotubes [J]. J. Phys. Chem. B1999,103:6484–6492.
    [3] Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single-walled carbonnanotubes from carbon monoxide [J]. Chem. Phys. Lett.1999,313:91–97.
    [4] Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-freesingle-walled carbon nanotubes [J]. Science2004,306:1362–1364.
    [5] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J], Science1996,273:483–487.
    [6] Vichchulada P, Shim J, Lay MD. Non-oxidizing purification method for large volumes of long,undamaged single-walled carbon nanotubes [J]. J. Phys. Chem. C2008,112:19186–19192.
    [7] Shelimov KB, Esenaliev RO, Rinzler AG, et al. Purification of single-wall carbon nanotubes byultrasonically assisted filtration [J]. Chem. Phys. Lett.1998,282(5-6):429–434.
    [8] Duesberg GS, Muster J,Krstic V, et al. Chromatographic size separation of single-wall carbonnanotubes [J]. Appl. Phys. A1998,67(1):l17–l19
    [9] Yamamoto K, Akita S, Nakayama Y. Orientation of carbon nanotubes using electrophoresis [J]. Jpn. J.Appl. Phys.1996,35(2):L917–L918.
    [10] Ballesteros B, Tobias G, Shao L. Steam purification for the removal of graphitic shells coatingcatalytic particles and the shortening of single-walled carbon nanotubes [J]. Small2008,4:1501–1506.
    [11] Zimmerman JL, Bradley RK, Huffman CB, et al. Gas-phase purification of single-wall carbonnanotubes [J]. Chem. Mater.2000,12(5):1361–1366.
    [12] Jeong T, Kim WY, Hahn YB. A new purification method of single-wall carbon nanotubes using H2Sand O2mixture gas [J]. Chem. Phys. Lett.2001,344(1-2):18–22.
    [13] Huang HJ, Kajiura H, Yamada A, et al. Purification and alignment of arc-synthesis single-walledcarbon nanotube bundles [J]. Chem. Phys. Lett.2002,356(5-6):567–572.
    [14] Hou PX, Bai S, Yang QH, et al. Multi-step purification of carbon nanotubes [J]. Carbon2002,40:81–85.
    [15] Dujardin E, Ebbesen TW, Krishnan A, et al. Purification of single-shell nanotubes [J]. Adv. Mater.1998,10:611–614.
    [16] Wu CX, Li JX, Dong GF, et al. Removal of ferromagnetic metals for the large-scale purification ofsingle-walled carbon nanotubes [J]. J. Phys. Chem. C2009,113:3612–3616.
    [17] Vaccarini L, Goze C, Aznar R, et al. Purification procedure of carbon nanotubes [J]. Synthetic Met.1999,103(1-3):2492–2493.
    [18] Fogden S, Verdejo R, Cottam B, et al. Purification of single walled carbon nanotubes: the problemwith oxidation debris [J]. Chem. Phys. Lett.2008,460:162–167.
    [19] Yang YL, Zou HL, Wu B, et al. Enrichment of large-diameter single-walled carbon nanotubes byoxidative acid treatment [J]. J. Phys. Chem. B2002,106(29):7160–7162.
    [20] Monthioux BW, Smith A, Claye DE. Sensitivity of single-wall carbon nanotubes to chemicalprocessing:an electron microscopy investigation [J]. Carbon2001,39:1251–1272.
    [1] Avouris P, Martel R. Progress in carbon nanotube electronics and photonics [J]. MRS Bull.2010,35:306–313.
    [2] Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: areview of fundamental and applied aspects [J]. Adv. Mater.2009,21:29–53.
    [3] Close GF, Yasuda S, Paul B, et al. A1GHz integrated circuit with carbon nanotube interconnects andsilicon transistors [J]. Nano Lett.2008,8(2):706–709.
    [4] Tans SJ, Devoret MH, Dai HJ, et al. Individual single-wall carbon nanotubes as quantum wires [J].Nature1997,386:474–477.
    [5] Quinn BM, Lemay SG. Single-walled carbon nanotubes as templates and interconnects fornanoelectrodes [J]. Adv. Mater.2006,18(7):855–859.
    [6] Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors [J]. Nature2003,424:654–657.
    [7] Nougaret L, Happy H, Dambrine G, et al.80GHz field-effect transistors produced using high puritysemiconducting single-walled carbon nanotubes [J]. Appl. Phys. Lett.2009,94:243505–3.
    [8] McEuen PL, Fuhrer MS, Hongkun P. Single-walled carbon nanotube electronics [J]. IEEE Trans.Nanotechnol.2002,1(1):78–85.
    [9] Lee JU, Gipp PP, Heller CM. Carbon nanotube pn junction diodes [J]. Appl. Phys. Lett.2004,85:145–147.
    [10] Guldi DM, Rahman GMA, Prato M, et al. Single-wall carbon nanotubes as integrative building blocksfor solar-energy conversion [J]. Angew. Chem.2005,117(13):2051–2054.
    [11] Kong J, Franklin NR, Zhou C, et al. Nanotube molecular wires as chemical sensors [J]. Science2000,287(5453):622–625.
    [12] Li J, Lu Y, Ye Q, et al. Carbon nanotube sensors for gas and organic vapor detection [J]. Nano Lett.2003,3(7):929–933.
    [13] Cassell AM, Raymakers JA, Kong, J, et al. Large scale CVD synthesis of single-walled carbonnanotubes [J]. J. Phys. Chem. B1999,103:6484–6492.
    [14] Hata K, Futaba DN, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-freesingle-walled carbon nanotubes [J]. Science2004,306:1362–1364.
    [15] Chen B, Zhao X, Inoue S, et al. Fabrication and dispersion evaluation of single-wall carbon nanotubesproduced by FH-Arc discharge method [J]. J. Nanosci. Nanotechnol.2010,10(6):3973–3977.
    [16] Hong G, Zhang B, Peng BH, et al. Direct growth of semiconducting single-walled carbon nanotubearray [J]. J. Am. Chem. Soc.2009,131:14642–14643.
    [17] Qu LT, Du F, Dai LM. Preferential syntheses of semiconducting vertically aligned single-walledcarbon nanotubes for direct use in FETs [J]. Nano Lett.2008,8:2682–2687.
    [18] Ding L, Tselev A, Wang JY, et al. Selective growth of well-aligned semiconducting single-walledcarbon nanotubes [J]. Nano Lett.2009,9:800–805.
    [19] Green AA, Hersam MC. Nearly single-chirality single-walled carbon nanotubes produced viaorthogonal iterative density gradient ultracentrifugation [J]. Adv. Mater.2011,23:2185–2190.
    [20] Li XL, Tu XM, Zaric S, et al. Selective synthesis combined with chemical separation of single-walledcarbon nanotubes for chirality selection [J]. J. Am. Chem. Soc.2007,129(51):15770–15771.
    [21] Liu HP, Nishide D, Tanaka T, et al. Large-scale single-chirality separation of single-wall carbonnanotubes by simple gel chromatography [J]. Nat. Comm.2011,2:309.
    [22] Xu Z, Lu WG, Wang WL, et al. Converting metallic single-walled carbon nanotubes intosemiconductors by boron/nitrogen co-doping [J]. Adv. Mater.2008,20:3615–3619.
    [23] Gomez LM, Kumar A, Zhang Y, et al. Scalable light-induced metal to semiconductor conversion ofcarbon nanotubes [J]. Nano Lett.2009,9:3592–3598.
    [24] Tu XM, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition andseparation of carbon nanotubes [J]. Nature2009,460:250–253.
    [25] Zhang GY, Qi PF, Wang XR, et al. Hydrogenation and hydrocarbonation and etching of single-walledcarbon nanotubes [J]. Science2006,314:974–977.
    [26] Zheng G, Li QQ, Jiang KL, et al. Transition of single-walled carbon nanotubes from metallic tosemiconducting in field-effect transistors by hydrogen plasma treatment [J]. Nano Lett.2007,7:1622–1625.
    [27] Huang LP, Zhang HL, Wu B, et al. A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization [J].J. Phys. Chem. C2010,114(28):12095–12098.
    [28] Huang HJ, Kajiura H, Maruyama R, et al. Relative optical absorption of metallic and semiconductingsingle-walled carbon nanotubes [J]. J. Phys. Chem. B2006,110(10):4686–4690.
    [29] Talyzin AV, Luzan S, Anoshkin IV, et al. Hydrogenation, purification and unzipping of carbonnanotubes by reaction with hydrogen gas [J]. ACS Nano2011,5:5132–5140.