改性碳纳米管的制备及其对苯系物和重金属吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前地下水中重金属和有机物环境污染问题备受人们关注。吸附法是一种简单、快速有效去除污染物的方法,其关键问题在于吸附材料。碳纳米管作为一种新型吸附剂,由于具有独特的多孔和空心结构、较大的比表面积以及与污染物间的多种相互作用,对水相中多种无机和有机污染物具有优异的吸附性能,引起学者广泛关注。
     本论文根据碳纳米管孔径结构和表面性质在制备过程中具有广泛调控的特性,通过碳纳米管生长条件的控制和液相氧化、固相活化和磁性修饰等多种化学改性方法,实现碳纳米管表面物理和化学性质的控制,获得一系列新型改性碳纳米管吸附剂。本论文定性定量地系统研究改性碳纳米管的物理、化学性质与污染物吸附特性之间的内在关系。针对实际环境中普遍存在的多种污染物共存现象,结合采用X射线光电子能谱(XPS)、X射线吸收近边结构(XANES)和扩展X射线吸收精细结构光谱(EXAFS)表征手段,从微观分子水平探讨改性碳纳米管与单一污染物的吸附作用及多种污染物共存的竞争吸附机理。并设计出一种制备简单、低成本且高吸附性能的磁性碳纳米管的新方法,为碳纳米管大规模应用提供一种新思路。
     本论文的主要研究结果如下:
     (1)不同含氧量碳纳米管的制备及其表面含氧量对苯系物吸附的影响
     通过控制次氯酸钠氧化剂的浓度,制备具有不同含氧量的多壁碳纳米管(MWCNTs),作为吸附剂研究不同含氧量对苯系物吸附特性的影响。随着改性MWCNTs表面含氧量的增加,苯系物吸附性能呈现先增加后降低的趋势。MWCNTs表面含氧量增加会提高吸附剂在水相中的亲水性和分散性,当含氧量增加到一定程度时其表面形成的水膜会阻碍苯系物与MWCNTs表面发生相互作用。水膜的抑制作用是不同含氧量MWCNTs吸附苯系物的一个主要作用机制,适当控制碳纳米管表面含氧量有利于苯系物吸附。
     (2)活化MWCNTs的制备及其物理化学性质对苯系物吸附的影响
     采用KOH活化法,控制KOH/MWCNTs质量比,制备具有不同比表面积的活化MWCNTs。活化MWCNTs对苯系物的吸附性能均随着KOH/MWCNTs质量比增加而显著提高。采用相关分析法定量地系统研究发现:活化MWCNTs的比表面积、介孔孔容和比表面积归一化的羟基相对含量与苯系物的吸附量、吸附系数均成良好的正线性相关,并得到介孔孔容和羟基官能团与吸附性能的回归方程,介孔填充和氢键作用是活化MWCNTs吸附苯系物的两个主要吸附机理,结果突出了碳纳米管的孔径和表面化学性质的协同作用对苯系物吸附具有重要意义。
     (3)一步法制备具有高吸附性能和良好磁分离效果的磁性碳纳米管
     以含纳米铁的碳纳米管原始样品(APCNTs)为原材料,采用KOH活化一步法制得具有磁分离特性的MWCNTs/FexOy复合材料(APCNTs-KOH),将其用于水相中苯系物吸附。APCNTs-KOH吸附苯系物的能力较APCNTs显著提高,同时APCNTs所含纳米铁催化剂颗粒被转化成磁性Fe_3O_4或γ-Fe_2O_3,从而实现MWCNTs粉体在水相中快速磁分离,减小纳米粉体可能带来的二次污染。该方法大幅度降低制备经济成本,为碳纳米管的大规模应用提供新的科学指导思路。解吸附实验结果表明APCNTs-KOH对五种苯系物存在明显的滞后现象,是由于吸附质进入吸附剂的微孔或刚性区域中而不易解吸出来所导致。
     (4)苯系物和重金属共吸附及其微观作用机理研究
     Pb~(2+)的存在抑制苯系物(TEX)在CNTs-3.2%O上的吸附;随着TEX初始浓度的增大,Pb~(2+)对TEX吸附抑制程度有减小的趋势,Pb~(2+)对甲苯的抑制作用最明显。TEX的同时加入抑制Pb~(2+)或Cu~(2+)在CNTs-5.9%O上的吸附;不同初始浓度TEX对Pb~(2+)吸附抑制作用差异不大;随着Pb~(2+)初始浓度的增大,TEX对其抑制作用减弱。应用XPS、XANES和EXAFS先进的微观表征手段从分子层面研究苯系物、重金属及两者共存时的吸附机理,结果表明:第一,Pb~(2+)与CNTs-3.2%O含氧官能团形成O-Pb键,直接占据CNTs-3.2%O部分吸附位点;由于Pb~(2+)较强的水合作用而在其周围形成致密的水化核,可能挤压、遮蔽CNTs-3.2%O表面位点,间接与苯系物发生位点竞争,从而Pb~(2+)抑制CNTs-3.2%O对TEX吸附。第二,Cu~(2+)与CNTs-5.9%O表面的羧基或羟基形成内层配合物,Pb~(2+)与CNTs-5.9%O含氧官能团形成O-Pb键,TEX与CNTs-5.9%O表面含氧官能团存在一定的相互作用。由于TEX吸附占据CNTs-5.9%O表面吸附位点,直接与Pb~(2+)或Cu~(2+)发生位点竞争,从而TEX抑制CNTs-5.9%O对Pb~(2+)或Cu~(2+)吸附。
Groundwater contamination of organic contaminants and heavy metals has drawnwidespread attention. Adsorption is a simple, fast and efficient method to remove organiccontaminants and heavy metals, and the most critical technical problem is adsorbents.Carbon nanotubes (CNTs) have aroused widespread attention as a new type of adsorbentsdue to their outstanding ability for the removal of various inorganic and organiccontaminants. CNTs have been the focus of considerable research because of their highlyporous and hollow structure, large specific surface areas, and CNTs show stronginteractions with organic compounds.
     The pore structure and surface chemical properties of CNTs can be effectivelycontrolled by adjusting the synthesis parameters and modifying by liquid phase oxidation,solid phase activation and magnetic modification, and then some new types of modifiedmulti-walled carbon nanotubes (MWCNTs) were successfully synthetized in this study.The systematic study of the relationship between physicochemical properties andadsorption characteristics of TEX onto modified MWCNTs by qualitative and quantitativeanalysis has been investigated. Both heavy metals and organic contaminants may coexist atmany contaminated sites. Furthermore, the molecular science techniques were utilized toprobe and elucidate the relevant mechanisms from adsorption sites and coordinationenvironment of adsorbates by X-ray photoelectron spectroscopy (XPS), X-ray absorptionnear edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)spectroscopy. A facile one-pot method for synthesis of low-cost magnetic MWCNTs hasbeen reported, which will be of great significance for large-scale practical applications ofCNTs.
     The important conclusions of this work are summarized as follows:
     (1) Synthesis of MWCNTs with different oxygen contents and the influence of theirsurface oxygen content on TEX adsorption
     MWCNTs with different oxygen contents were prepared by oxidization usingdifferent concentration NaClO solutions. With the increase of surface oxygen content,maximum adsorption capacities of TEX firstly increased, and then, began to decrease. Thesurface functionalization of the oxidized MWCNTs can improve their dispersibility inaqueous solutions, which consequently can be favorable for the aqueous phase adsorption.However, when oxygen content increases to a certain extent, oxygen-containing functionalgroups cause water clusters formation on the surface or tube end of MWCNTs, whichhinder the interaction between TEX and MWCNTs. The decrease indicates that theformation of water clusters plays a more important role than the better dispersion ofMWCNTs for TEX adsorption.
     (2) Synthesis of MWCNTs with different specific surface area and the influence oftheir physicochemical properties on adsorption characteristics of ethylbenzene and xyleneisomers
     MWCNTs with different specific surface area (SSA) by adjusting KOH/MWCNTsmass ratio were prepared using KOH activation. With the increase of KOH/MWCNTsmass ratio, adsorption capacities of ethylbenzene and xylene isomers (EX) greatlyincreased. A systematic quantitative analysis of the relationships between thephysicochemical properties of activated MWCNTs and adsorption characteristics of EXwas studied by correlation analysis. There are strong positive correlations between theadsorption affinity (or capacity) and SSA, mesopore volumes or hydroxyl groups, and theirregression equations have been obtained. Mesopore-filling and hydrogen-bond interactioncould be a predominant mechanism governing monoarmatics adsorption onto activatedMWCNTs. Results highlight the synergetic effects of porosity and surface chemistry incontrolling adsorption of monoaromatics onto MWCNTs in wastewater treatment.
     (3) A facile one-pot method for synthesis of low-cost magnetic MWCNTs and theirapplication for TEX adsorption
     A facile one-pot method was devised to produce magnetic MWCNTs (APCNTs-KOH)by KOH etching method using as-prepared MWCNTs (APCNTs). The adsorptioncapacities of TEX onto APCNTs-KOH are much higher than those onto APCNTs.Meanwhile, Fe nanoparticles of APCNTs were oxidized to Fe_3O_4/γ-Fe_2O_3, andAPCNTs-KOH could be effectively and immediately separated from aqueous solutions bya magnet, which reduces potential risks of CNTs as another source of environmentalpollution. Excellent magnetic materials APCNTs-KOH were prepared based on APCNTswith low cost, which is of great significance for large-scale practical applications of CNTs.Desorption of TEX showed a pronounced hysteresis for APCNTs-KOH, because someadsorbates may enter some micropores or rigid region of adsorbents.
     (4) Mutual effects of heavy metals and TEX adsorption on modified MWCNTs andtheir relevant mechanisms from molecular levels
     Pb~(2+)suppressed the adsorption of TEX onto CNTs-3.2%O, and the degree ofsuppression decreased with the increase of initial concentration of TEX. Among fiveadsorbates, adsorption of toluene was diminished more than others. TEX diminish theadsorption of Pb~(2+)or Cu~(2+)onto CNTs-5.9%O. The differende in initial concentrations ofTEX had little influence on the suppression of Pb~(2+). The degree of suppression decreasedwith the increase of initial concentration of Pb~(2+). The molecular environmental sciencetechniques, such as XPS, XANES and EXAFS, were utilized to probe and elucidate therelevant mechanisms from molecular levels. Pb~(2+)can form the O-Pb bond with surafaceoxygen-containing groups of CNTs-3.2%O, which may directly occupy part of the surfaceadsorption sites of CNTs-3.2%O. The large hydration sphere around surface complexes ofPb~(2+)may also intrude or shield hydrophilic sites, leading to the “crowding out” of TEXaround the metal cations-complexed sites, and thus Pb~(2+)can inhibit TEX adsorption onto CNTs-3.2%O. The results of XPS, NEXAFS and EXAFS indicate that the formation ofsurface or inner-sphere complexes of Cu~(2+)through carboxylic groups (or hydroxyl groups)and hydration of CNTs-5.9%O. Pb~(2+)can also form the O-Pb bond with oxygen-containinggroups of CNTs-5.9%O. There are some interactions between TEX and CNTs-5.9%Oindicated by the shift of bonding energy by XPS analysis, which could result in acompetition for adsorption sites between TEX and heavy metals ions. Thus, TEX directlyor indirectly inhibited Pb~(2+)or Cu~(2+)adsorption onto CNTs-5.9%O.
引文
[1]《全国地下水污染防治规划(2011—2020年)》讨论通过[J].环境保护与循环经济,2011,(08):34.
    [2] Qiu, J. China to Spend Billions Cleaning Up Groundwater[J]. Science,2011,334(6057):745.
    [3] Moussavi, G., Khosravi, R., Farzadkia, M. Removal of petroleum hydrocarbons from contaminatedgroundwater using an electrocoagulation process: Batch and continuous experiments[J]. Desalination,2011,278(1-3):288-294.
    [4]任文杰,周启星,王美娥. BTEX在土壤中的环境行为研究进展[J].生态学杂志,2009,(08):1647-1654.
    [5] Xu, Z., Mulchandani, A., Chen, W. Detection of Benzene, Toluene, Ethyl Benzene, and Xylenes(BTEX) Using Toluene Dioxygenase-Peroxidase Coupling Reactions[J]. Biotechnology Progress,2003,19(6):1812-1815.
    [6] Iijima. Helical microtubules of graphitic carbon[J]. Nature,1991,35456-58.
    [7]马杰.大直径单壁碳纳米管制备、纯化及其应用研究[D].博士,上海交通大学2009.
    [8] Kundrapu, M., Li, J., Shashurin, A., Keidar, M. A model of carbon nanotube synthesis in arcdischarge plasmas[J]. Journal of Physics D-Applied Physics,2012,45(31).
    [9] Zhang, Y. F. Synthesis of few-walled carbon nanotube-Rh nanoparticles by arc discharge: Effect ofselective oxidation[J]. Materials Characterization,2012,68102-109.
    [10] Elmer, J. W., Yaglioglu, O., Schaeffer, R. D., Kardos, G., Derkach, O. Direct patterning ofvertically aligned carbon nanotube arrays to20mu m pitch using focused laser beam micromachining[J].Carbon,2012,50(11):4114-4122.
    [11] Lee, K. Y., Yeoh, W. M., Chai, S. P., Ichikawa, S., Mohamed, A. R. The role of water vapor incarbon nanotube formation via water-assisted chemical vapor deposition of methane[J]. Journal ofIndustrial and Engineering Chemistry,2012,18(4):1504-1511.
    [12] Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Kroto, H. W., Walton, D. R. M.Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-basedaerosols[J]. Chemical Physics Letters,2001,338(2-3):101-107.
    [13] Allaf, R. M., Rivero, I. V., Spearman, S. S., Hope-Weeks, L. J. On the preparation of as-producedand purified single-walled carbon nanotube samples for standardized X-ray diffractioncharacterization[J]. Materials Characterization,2011,62(9):857-864.
    [14] MacKenzie, K., Dunens, O., Harris, A. T. A review of carbon nanotube purification by microwaveassisted acid digestion[J]. Separation and Purification Technology,2009,66(2):209-222.
    [15] Chen, Y., Xu, S. Q., Wang, J. N. Purification of double-walled carbon nanotube macro-films[J].New Journal of Chemistry,2012,36(3):542-545.
    [16] Hou, P. X., Bai, S., Yang, Q. H., Liu, C., Cheng, H. M. Multi-step purification of carbonnanotubes[J]. Carbon,2002,40(1):81-85.
    [17] Chen, C. L., Wang, X. K., Nagatsu, M. Europium Adsorption on Multiwall Carbon Nanotube/IronOxide Magnetic Composite in the Presence of Polyacrylic Acid[J]. Environmental Science&Technology,2009,43(7):2362-2367.
    [18] Machado, F. M., Bergmann, C. P., Fernandes, T. H. M., Lima, E. C., Royer, B., Calvete, T., Fagan,S. B. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubesand activated carbon[J]. Journal of Hazardous Materials,2011,192(3):1122-1131.
    [19] Li, J. X., Chen, S. Y., Sheng, G. D., Hu, J., Tan, X. L., Wang, X. K. Effect of surfactants on Pb(II)adsorption from aqueous solutions using oxidized multiwall carbon nanotubes[J]. Chemical EngineeringJournal,2011,166(2):551-558.
    [20] Tsai, Y. P., Doong, R. A., Yang, J. C., Wu, Y. J. Photo-reduction and adsorption in aqueous Cr(VI)solution by titanium dioxide, carbon nanotubes and their composite[J]. Journal of Chemical Technologyand Biotechnology,2011,86(7):949-956.
    [21] Gatica, S. M., Bojan, M. J., Stan, G., Cole, M. W. Quasi-one-and two-dimensional transitions ofgases adsorbed on nanotube bundles[J]. Journal of Chemical Physics,2001,114(8):3765-3769.
    [22] Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M., Rood, M. J. Structural characterization ofsingle-walled carbon nanotube bundles by experiment and molecular simulation[J]. Langmuir,2005,21(3):896-904.
    [23] Byl, O., Kondratyuk, P., Forth, S. T., FitzGerald, S. A., Chen, L., Johnson, J. K., Yates, J. T.Adsorption of CF4on the internal and external surfaces of opened single-walled carbon nanotubes: Avibrational spectroscopy study[J]. Journal of the American Chemical Society,2003,125(19):5889-5896.
    [24] Heroux, L., Krungleviciute, V., Calbi, M. M., Migone, A. D. CF4on carbon nanotubes:Physisorption on grooves and external surfaces[J]. Journal of Physical Chemistry B,2006,110(25):12597-12602.
    [25] Muris, M., Dufau, N., Bienfait, M., Dupont-Pavlovsky, N., Grillet, Y., Palmari, J. P. Methane andkrypton adsorption on single-walled carbon nanotubes[J]. Langmuir,2000,16(17):7019-7022.
    [26] Muris, M., Dupont-Pavlovsky, N., Bienfait, M., Zeppenfeld, P. Where are the molecules adsorbedon single-walled nanotubes?[J]. Surface Science,2001,492(1-2):67-74.
    [27] Babaa, M. R., Dupont-Pavlovsky, N., McRae, E., Masenelli-Varlot, K. Physical adsorption ofcarbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes[J].Carbon,2004,42(8-9):1549-1554.
    [28] Rols, S., Johnson, M. R., Zeppenfeld, P., Bienfait, M., Vilches, O. E., Schneble, J. Argonadsorption in open-ended single-wall carbon nanotubes[J]. Physical Review B,2005,71(15).
    [29] Agnihotri, S., Rood, M. J., Rostam-Abadi, M. Adsorption equilibrium of organic vapors onsingle-walled carbon nanotubes[J]. Carbon,2005,43(11):2379-2388.
    [30] Rawat, D. S., Calbi, M. M., Migone, A. D. Equilibration time: Kinetics of gas adsorption onclosed-and open-ended single-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2007,111(35):12980-12986.
    [31] Agnihotri, S., Mota, J. P. B., Rostam-Abadi, M., Rood, M. J. Theoretical and experimentalinvestigation of morphology and temperature effects on adsorption of organic vapors in single-walledcarbon nanotubes[J]. Journal of Physical Chemistry B,2006,110(15):7640-7647.
    [32] Yang, K., Zhu, L. Z., Xing, B. S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials[J]. Environmental Science&Technology,2006,40(6):1855-1861.
    [33] Pan, B., Lin, D. H., Mashayekhi, H., Xing, B. S. Adsorption and hysteresis of bisphenol A and17alpha-ethinyl estradiol on carbon nanomaterials[J]. Environmental Science&Technology,2008,42(15):5480-5485.
    [34] Yang, K., Wang, X. L., Zhu, L. Z., Xing, B. S. Competitive sorption of pyrene, phenanthrene, andnaphthalene on multiwalled carbon nanotubes[J]. Environmental Science&Technology,2006,40(18):5804-5810.
    [35] Liu, Y. F., Nguyen, L. D., Tri, T. H., Liu, Y., Romero, T., Janowska, I., Begin, D., Cuong, P. H.Macroscopic shaping of carbon nanotubes with high specific surface area and full accessibility[J].Materials Letters,2012,79128-131.
    [36] Yang, S. Y., Chang, K. H., Huang, Y. L., Lee, Y. F., Tien, H. W., Li, S. M., Lee, Y. H., Liu, C. H.,Ma, C. C. M., Hu, C. C. A powerful approach to fabricate nitrogen-doped graphene sheets with highspecific surface area[J]. Electrochemistry Communications,2012,14(1):39-42.
    [37] Liu, J., Rinzler, A. G., Dai, H. J., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T.,Shelimov, K., Huffman, C. B., Rodriguez-Macias, F., Shon, Y. S., Lee, T. R., Colbert, D. T., Smalley, R.E. Fullerene pipes[J]. Science,1998,280(5367):1253-1256.
    [38] Li, J. Y., Zhang, Y. F. Cutting of multi walled carbon nanotubes[J]. Applied Surface Science,2006,252(8):2944-2948.
    [39] Ji, L. L., Shao, Y., Xu, Z. Y., Zheng, S. R., Zhu, D. Q. Adsorption of monoaromatic compoundsand pharmaceutical antibiotics on carbon nanotubes activated by KOH etching[J]. EnvironmentalScience&Technology,2010,44(16):6429-6436.
    [40] Lee, S. M., Lee, S. C., Jung, J. H., Kim, H. J. Pore characterization of multi-walled carbonnanotubes modified by KOH[J]. Chemical Physics Letters,2005,416(4-6):251-255.
    [41] Cho, J. H., Huh, S. R., Lim, S. T., Yang, C. M., Jung, H. J., Kaneko, K., Kim, G. H. HydrogenAdsorption Property of Pore Structure Controlled Single-Walled Carbon Nanotubes with ElectronIrradiation[J]. Journal of Physical Chemistry C,2010,114(33):13975-13978.
    [42] Herrera, L. F., Fan, C. Y., Nguyen, V., Do, D. D., Horikawa, T., Nicholson, D. A self-consistentmethod to determine accessible volume, area and pore size distribution (APSD) of BPL, Norit andAX-21activated carbon[J]. Carbon,2012,50(2):500-509.
    [43] Xia, X. H., Shi, L., He, Y. D., Yang, L., Liu, H. B. Effect of Carbonization Temperature on PoreStructure and Electrochemical Properties of Tobacco Stem-based Activated Carbon[J]. Acta ChimicaSinica,2011,69(21):2627-2631.
    [44] Lu, C., Su, F., Hu, S. Surface modification of carbon nanotubes for enhancing BTEX adsorptionfrom aqueous solutions[J]. Applied Surface Science,2008,254(21):7035-7041.
    [45] Li, X. N., Zhao, H. M., Quan, X., Chen, S. O., Zhang, Y. B., Yu, H. T. Adsorption of ionizableorganic contaminants on multi-walled carbon nanotubes with different oxygen contents[J]. Journal ofHazardous Materials,2011,186(1):407-415.
    [46] Wang, H. J., Zhou, A. L., Peng, F., Yu, H., Yang, J. Mechanism study on adsorption of acidifiedmultiwalled carbon nanotubes to Pb(II)[J]. Journal of Colloid and Interface Science,2007,316(2):277-283.
    [47] Piao, L. Y., Liu, Q. R., Li, Y. D., Wang, C. Adsorption of L-phenylalanine on single-walled carbonnanotubes[J]. Journal of Physical Chemistry C,2008,112(8):2857-2863.
    [48] Cho, H. H., Smith, B. A., Wnuk, J. D., Fairbrother, D. H., Ball, W. P. Influence of surface oxideson the adsorption of naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science&Technology,2008,42(8):2899-2905.
    [49] Liao, Q., Sun, J., Gao, L. The adsorption of resorcinol from water using multi-walled carbonnanotubes[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,312(2-3):160-165.
    [50] Kuznetsova, A., Mawhinney, D. B., Naumenko, V., Yates, J. T., Liu, J., Smalley, R. E.Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports[J]. ChemicalPhysics Letters,2000,321(3-4):292-296.
    [51] Huang, W. Z., Zhang, X. B., Tu, J. P., Kong, F. Z., Ma, J. X., Liu, F., Lu, H. M., Chen, C. P. Theeffect of pretreatments on hydrogen adsorption of multi-walled carbon nanotubes[J]. MaterialsChemistry and Physics,2003,78(1):144-148.
    [52] Chen, G. C., Shan, X. Q., Wang, Y. S., Pei, Z. G., Shen, X. E., Wen, B., Owens, G. Effects ofCopper, Lead, and Cadmium on the Sorption and Desorption of Atrazine onto and from CarbonNanotubes[J]. Environmental Science&Technology,2008,42(22):8297-8302.
    [53]沈秀娥.多壁碳纳米管对硝基化合物和抗生素的吸附特性研究[D].博士,吉林大学2009.
    [54] Ago, H., Kugler, T., Cacialli, F., Salaneck, W. R., Shaffer, M. S. P., Windle, A. H., Friend, R. H.Work functions and surface functional groups of multiwall carbon nanotubes[J]. Journal of PhysicalChemistry B,1999,103(38):8116-8121.
    [55] Peng, X. J., Li, Y. H., Luan, Z. K., Di, Z. C., Wang, H. Y., Tian, B. H., Jia, Z. P. Adsorption of1,2-dichlorobenzene from water to carbon nanotubes[J]. Chemical Physics Letters,2003,376(1-2):154-158.
    [56] Xie, X., Gao, L., Sun, J. Thermodynamic study on aniline adsorption on chemical modifiedmulti-walled carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,308(1–3):54-59.
    [57] Chin, C. J. M., Shih, L. C., Tsai, H. J., Liu, T. K. Adsorption of o-xylene and p-xylene from waterby SWCNTs[J]. Carbon,2007,45(6):1254-1260.
    [58] Ball, W. P., Cho, H. H., Smith, B. A., Wnuk, J. D., Fairbrother, D. H. Influence of surface oxideson the adsorption of naphthalene onto multiwalled carbon nanotubes[J]. Environmental Science&Technology,2008,42(8):2899-2905.
    [59] Liao, Q., Sun, J., Gao, L. Adsorption of chlorophenols by multi-walled carbon nanotubes treatedwith HNO3and NH3[J]. Carbon,2008,46(3):553-555.
    [60] Saikia, N., Deka, R. C. Density functional calculations on adsorption of2-methylheptylisonicotinate antitubercular drug onto functionalized carbon nanotube[J]. Computationaland Theoretical Chemistry,2011,964(1-3):257-261.
    [61] Pan, B., Xing, B. S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J].Environmental Science&Technology,2008,42(24):9005-9013.
    [62] Zhu, D. Q., Kwon, S., Pignatello, J. J. Adsorption of single-ring organic compounds to woodcharcoals prepared under different thermochemical conditions[J]. Environmental Science&Technology,2005,39(11):3990-3998.
    [63] Ania, C. O., Cabal, B., Pevida, C., Arenillas, A., Parra, J. B., Rubiera, F., Pis, J. J. Effects ofactivated carbon properties on the adsorption of naphthalene from aqueous solutions[J]. Applied SurfaceScience,2007,253(13):5741-5746.
    [64] Chen, W., Duan, L., Wang, L. L., Zhu, D. Q. Response to Comment on "Adsorption of Hydroxyl-and Amino-Substituted Aromatics to Carbon Nanotubes"[J]. Environmental Science&Technology,2009,43(9):3400-3401.
    [65] Zhou, Z., Gao, X. P., Yan, J., Song, D. Y. Doping effects of B and N on hydrogen adsorption insingle-walled carbon nanotubes through density functional calculations[J]. Carbon,2006,44(5):939-947.
    [66] Li, Y. H., Hung, T. H., Chen, C. W. A first-principles study of nitrogen-and boron-assistedplatinum adsorption on carbon nanotubes[J]. Carbon,2009,47(3):850-855.
    [67] Lu, C., Chiu, H. Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+from aqueous solution[J]. Chemical Engineering Journal,2008,139(3):462-468.
    [68] Salam, M. A. Effect of oxidation treatment of multi-walled carbon nanotubes on the adsorption ofpentachlorophenol from aqueous solution: Kinetics study[J]. Arabian Journal of Chemistry,2012,5(3):291-296.
    [69] Fang, Q. L., Chen, B. L. Adsorption of perchlorate onto raw and oxidized carbon nanotubes inaqueous solution[J]. Carbon,2012,50(6):2209-2219.
    [70] Su, F. S., Lu, C. Y., Hu, S. K. Adsorption of benzene, toluene, ethylbenzene and p-xylene byNaOCl-oxidized carbon nanotubes[J]. Colloids and Surfaces a-Physicochemical and EngineeringAspects,2010,353(1):83-91.
    [71] Li, C., Xu, X., Bao, C. L., Wang, H. F., Liu, L., Liu, X. T. Adsorption of Au(III) and Pd(II) inSolution of2,2'-Diaminodiethylamine Modified Multiwalled Carbon Nanotubes[J]. Chemical Journalof Chinese Universities-Chinese,2012,33(3):586-590.
    [72] Deb, A. K. S., Ilaiyaraja, P., Ponraju, D., Venkatraman, B. Diglycolamide functionalizedmulti-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption[J]. Journalof Radioanalytical and Nuclear Chemistry,2012,291(3):877-883.
    [73] Star, A., Stoddart, J. F., Steuerman, D., Diehl, M., Boukai, A., Wong, E. W., Yang, X., Chung, S. W.,Choi, H., Heath, J. R. Preparation and properties of polymer-wrapped single-walled carbonnanotubes[J]. Angewandte Chemie-International Edition,2001,40(9):1721-1725.
    [74] O'Connell, M. J., Boul, P., Ericson, L. M., Huffman, C., Wang, Y. H., Haroz, E., Kuper, C., Tour, J.,Ausman, K. D., Smalley, R. E. Reversible water-solubilization of single-walled carbon nanotubes bypolymer wrapping[J]. Chemical Physics Letters,2001,342(3-4):265-271.
    [75] Wang, S. G., Gong, W. X., Liu, X. W., Yao, Y. W., Gao, B. Y., Yue, Q. Y. Removal of lead(II) fromaqueous solution by adsorption onto manganese oxide-coated carbon nanotubes[J]. Separation andPurification Technology,2007,58(1):17-23.
    [76] Li, Y.-H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D.,Wei, B. Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes[J].Chemical Physics Letters,2001,350(5–6):412-416.
    [77] Ntim, S. A., Mitra, S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid forpotential drinking water purification[J]. Journal of Colloid and Interface Science,2012,375154-159.
    [78] Shao, D. D., Sheng, G. D., Chen, C. L., Wang, X. K., Nagatsu, M. Removal of polychlorinatedbiphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes[J].Chemosphere,2010,79(7):679-685.
    [79] Fraczek-Szczypta, A., Menaszek, E., Blazewicz, S. Some Observations on Carbon NanotubesSusceptibility to Cell Phagocytosis[J]. Journal of Nanomaterials,2011.
    [80] Ngomsik, A. F., Bee, A., Draye, M., Cote, G., Cabuil, V. Magnetic nano-and microparticles formetal removal and environmental applications: a review[J]. Comptes Rendus Chimie,2005,8(6-7):963-970.
    [81]周露,陈君红,于飞,袁志文,马杰.芬顿试剂法制备磁性碳纳米管及其对亚甲基蓝的吸附性能[J].环境化学,2012,(05):669-676.
    [82] Yan, L., Chang, P. R., Zheng, P. W., Ma, X. F. Characterization of magnetic guar gum-graftedcarbon nanotubes and the adsorption of the dyes[J]. Carbohydrate Polymers,2012,87(3):1919-1924.
    [83] Chen, C. L., Hu, J., Shao, D. D., Li, J. X., Wang, X. K. Adsorption behavior of multiwall carbonnanotube/iron oxide magnetic composites for Ni(II) and Sr(II)[J]. Journal of Hazardous Materials,2009,164(2-3):923-928.
    [84] Qu, S., Huang, F., Yu, S., Chen, G., Kong, J. Magnetic removal of dyes from aqueous solutionusing multi-walled carbon nanotubes filled with Fe2O3particles[J]. Journal of Hazardous Materials,2008,160(2-3):643-7.
    [85] Gupta, V. K., Agarwal, S., Saleh, T. A. Chromium removal by combining the magnetic propertiesof iron oxide with adsorption properties of carbon nanotubes[J]. Water Research,2011,45(6):2207-2212.
    [86] Zhang, L., Song, X. Y., Liu, X. Y., Yang, L. J., Pan, F., Lv, J. N. Studies on the removal oftetracycline by multi-walled carbon nanotubes[J]. Chemical Engineering Journal,2011,17826-33.
    [87] Liu, C. H., Li, J. J., Zhang, H. L., Li, B. R., Guo, Y. Structure dependent interaction betweenorganic dyes and carbon nanotubes[J]. Colloids and Surfaces a-Physicochemical and EngineeringAspects,2008,3139-12.
    [88] Vermisoglou, E. C., Georgakilas, V., Kouvelos, E., Pilatos, G., Viras, K., Romanos, G.,Kanellopoulos, N. K. Sorption properties of modified single-walled carbon nanotubes[J]. Microporousand Mesoporous Materials,2007,99(1-2):98-105.
    [89] Gurevitch, I., Srebnik, S. Conformational behavior of polymers adsorbed on nanotubes[J]. Journalof Chemical Physics,2008,128(14).
    [90] Wang, X. B., Liu, Y. Q., Qiu, W. F., Zhu, D. B. Immobilization of tetra-tert-butylphthalocyanineson carbon nanotubes: a first step towards the development of new nanomaterials[J]. Journal of MaterialsChemistry,2002,12(6):1636-1639.
    [91] Yao, P., Zhong, J., Liang, X. Q., Ibrahim, K., Qian, H. J., Wang, J. O., Wu, Z. Y. A comparisonbetween powders and thin films of single-walled carbon nanotubes for the adsorption behaviors ofphenylalanine and glycine by XANES study[J]. Science China-Physics Mechanics&Astronomy,2010,53(8):1449-1452.
    [92] Fakhari, A. R., Ahmar, H. A new method based on headspace adsorptive accumulation using acarboxylated multi-walled carbon nanotubes modified electrode: application for trace determination ofnitrobenzene and nitrotoluene in water and wastewater[J]. Analytical Methods,2011,3(11):2593-2598.
    [93] Pacholczyk, A., Terzyk, A. P., Wisniewski, M., Gauden, P. A., Wesolowski, R. P., Furmaniak, S.,Szczes, A., Chibowski, E., Kruszka, B. Phenol adsorption on closed carbon nanotubes[J]. Journal ofColloid and Interface Science,2011,361(1):288-292.
    [94] Zhao, J. J., Lu, J. P., Han, J., Yang, C. K. Noncovalent functionalization of carbon nanotubes byaromatic organic molecules[J]. Applied Physics Letters,2003,82(21):3746-3748.
    [95] Bina, B., Amin, M. M., Rashidi, A., Pourzamani, H. Benzene and Toluene Removal by CarbonNanotubes from Aqueous Solution[J]. Archives of Environmental Protection,2012,38(1):3-25.
    [96] Salam, M. A., Mokhtar, M., Basahel, S. N., Al-Thabaiti, S. A., Obaid, A. Y. Removal ofchlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamicstudies[J]. Journal of Alloys and Compounds,2010,500(1):87-92.
    [97] Lu, C. Y., Su, F. S. Adsorption of natural organic matter by carbon nanotubes[J]. Separation andPurification Technology,2007,58(1):113-121.
    [98] Deng, J., Shao, Y., Gao, N., Deng, Y., Tan, C., Zhou, S., Hu, X. Multiwalled carbon nanotubes asadsorbents for removal of herbicide diuron from aqueous solution[J]. Chemical Engineering Journal,2012,193–194(0):339-347.
    [99] Helland, A., Wick, P., Koehler, A., Schmid, K., Som, C. Reviewing the environmental and humanhealth knowledge base of carbon nanotubes[J]. Environmental Health Perspectives,2007,115(8):1125-1131.
    [100] Lu, C. S., Chung, Y. L., Chang, K. F. Adsorption of trihalomethanes from water with carbonnanotubes[J]. Water Research,2005,39(6):1183-1189.
    [101] Peng, X. J., Jia, J. J., Gong, X. M., Luan, Z. K., Fan, B. Aqueous stability of oxidized carbonnanotubes and the precipitation by salts[J]. Journal of Hazardous Materials,2009,165(1-3):1239-1242.
    [102] Randhawa, P., Park, J. S., Sharma, S., Kumar, P., Shin, M. S., Sekhon, S. S. Effect of Surfactant(Triton X-100) Concentration on Dispersion and Functionalization of Multiwall Carbon Nanotubes[J].Journal of Nanoelectronics and Optoelectronics,2012,7(3):279-286.
    [103] Bouchard, D., Zhang, W., Powell, T., Rattanaudompol, U. S. Aggregation Kinetics and Transportof Single-Walled Carbon Nanotubes at Low Surfactant Concentrations[J]. Environmental Science&Technology,2012,46(8):4458-4465.
    [104] Wang, L. R., Zhang, L. H., Xue, X., Ge, G. L., Liang, X. J. Enhanced dispersibility and cellulartransmembrane capability of single-wall carbon nanotubes by polycyclic organic compounds aschaperon[J]. Nanoscale,2012,4(13):3983-3989.
    [105] O'Connell, M. J., Bachilo, S. M., Huffman, C. B., Moore, V. C., Strano, M. S., Haroz, E. H.,Rialon, K. L., Boul, P. J., Noon, W. H., Kittrell, C., Ma, J. P., Hauge, R. H., Weisman, R. B., Smalley, R.E. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science,2002,297(5581):593-596.
    [106] Matarredona, O., Rhoads, H., Li, Z. R., Harwell, J. H., Balzano, L., Resasco, D. E. Dispersion ofsingle-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS[J]. Journal ofPhysical Chemistry B,2003,107(48):13357-13367.
    [107] Bandyopadhyaya, R., Nativ-Roth, E., Regev, O., Yerushalmi-Rozen, R. Stabilization ofindividual carbon nanotubes in aqueous solutions[J]. Nano Letters,2002,2(1):25-28.
    [108] Carrillo-Carrion, C., Lucena, R., Cardenas, S., Valcarcel, M. Surfactant-coated carbon nanotubesas pseudophases in liquid-liquid extraction[J]. Analyst,2007,132(6):551-559.
    [109] Gotovac, S., Hattori, Y., Noguchi, D., Miyamoto, J., Kanamaru, M., Utsumi, S., Kanoh, H.,Kaneko, K. Phenanthrene adsorption from solution on single wall carbon nanotubes[J]. Journal ofPhysical Chemistry B,2006,110(33):16219-16224.
    [110] Biesaga, M., Pyrzynska, K. The evaluation of carbon nanotubes as a sorbent for dicambaherbicide[J]. Journal of Separation Science,2006,29(14):2241-2244.
    [111] Griessacher, T., Antrekowitsch, J., Steinlechner, S. Charcoal from agricultural residues asalternative reducing agent in metal recycling[J]. Biomass&Bioenergy,2012,39139-146.
    [112] Chen, R. J., Bangsaruntip, S., Drouvalakis, K. A., Kam, N. W. S., Shim, M., Li, Y. M., Kim, W.,Utz, P. J., Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronicbiosensors[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(9):4984-4989.
    [113] Pyrzynska, K., Stafiej, A., Biesaga, M. Sorption behavior of acidic herbicides on carbonnanotubes[J]. Microchimica Acta,2007,159(3-4):293-298.
    [114] Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T. W., Mioskowski, C. Helicalcrystallization of proteins on carbon nanotubes: A first step towards the development of newbiosensors[J]. Angewandte Chemie-International Edition,1999,38(13-14):1912-1915.
    [115] Chen, W., Duan, L., Zhu, D. Q. Adsorption of polar and nonpolar organic chemicals to carbonnanotubes[J]. Environmental Science&Technology,2007,41(24):8295-8300.
    [116] Lin, D. H., Xing, B. S. Adsorption of phenolic compounds by carbon nanotubes: Role ofaromaticity and substitution of hydroxyl groups[J]. Environmental Science&Technology,2008,42(19):7254-7259.
    [117] Zhu, D. Q., Chen, W., Duan, L. Adsorption of polar and nonpolar organic chemicals to carbonnanotubes[J]. Environmental Science&Technology,2007,41(24):8295-8300.
    [118] Sumanasekera, G. U., Pradhan, B. K., Romero, H. E., Adu, K. W., Eklund, P. C. Giantthermopower effects from molecular physisorption on carbon nanotubes[J]. Physical Review Letters,2002,89(16).
    [119] Xu, Y. J., Arrigo, R., Liu, X., Su, D. S. Characterization and use of functionalized carbonnanotubes for the adsorption of heavy metal anions[J]. New Carbon Materials,2011,26(1):57-62.
    [120] de la Cruz, E. F., Zheng, Y. D., Torres, E., Li, W., Song, W. H., Burugapalli, K. Zeta Potential ofModified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel[J]. InternationalJournal of Electrochemical Science,2012,7(4):3577-3590.
    [121] Lu, C. Y., Liu, C. T. Removal of nickel(II) from aqueous solution by carbon nanotubes[J]. Journalof Chemical Technology and Biotechnology,2006,81(12):1932-1940.
    [122] Fan, Q. H., Shao, D. D., Hu, J., Chen, C. L., Wu, W. S., Wang, X. K. Adsorption of humic acidand Eu(III) to multi-walled carbon nanotubes: Effect of pH, ionic strength and counterion effect[J].Radiochimica Acta,2009,97(3):141-148.
    [123] Li, Y. H., Ding, J., Luan, Z. K., Di, Z. C., Zhu, Y. F., Xu, C. L., Wu, D. H., Wei, B. Q.Competitive adsorption of Pb2+, Cu2+and Cd2+ions from aqueous solutions by multiwalled carbonnanotubes[J]. Carbon,2003,41(14):2787-2792.
    [124] Vukovi, G. D., Marinkovi, A. D., kapin, S. D., Risti, M.., Aleksi, R., Peri-Gruji, A. A.,Uskokovi, P. S. Removal of lead from water by amino modified multi-walled carbon nanotubes[J].Chemical Engineering Journal,2011,173(3):855-865.
    [125] Tan, X. L., Fang, M., Chen, C. L., Yu, S. M., Wang, X. K. Counterion effects of nickel andsodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution[J].Carbon,2008,46(13):1741-1750.
    [126] Soleimani, B., Rostamnia, S., Ahmadi, A. Mathematical Modeling for the Simulation of HeavyMetal Ions Adsorption by Single Wall Carbon Nanotubes (Swcnts) Based on ComputationalCalculation[J]. Digest Journal of Nanomaterials and Biostructures,2010,5(1):153-159.
    [127] Rao, G. P., Lu, C., Su, F. Sorption of divalent metal ions from aqueous solution by carbonnanotubes: A review[J]. Separation and Purification Technology,2007,58(1):224-231.
    [128] Lu, C. Y., Chiu, H. S. Adsorption of zinc(II) from water with purified carbon nanotubes[J].Chemical Engineering Science,2006,61(4):1138-1145.
    [129] Chen, G. C., Shan, X. Q., Wang, Y. S., Wen, B., Pei, Z. G., Xie, Y. N., Liu, T., Pignatello, J. J.Adsorption of2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II)[J]. WaterResearch,2009,43(9):2409-2418.
    [130] Li, Y. H., Wang, S. G., Luan, Z. K., Ding, J., Xu, C. L., Wu, D. H. Adsorption of cadmium(II)from aqueous solution by surface oxidized carbon nanotubes[J]. Carbon,2003,41(5):1057-1062.
    [131] Huang, C. C., Li, H. S., Chen, C. H. Effect of surface acidic oxides of activated carbon onadsorption of ammonia[J]. Journal of Hazardous Materials,2008,159(2-3):523-527.
    [132] Hu, H., Bhowmik, P., Zhao, B., Hamon, M. A., Itkis, M. E., Haddon, R. C. Determination of theacidic sites of purified single-walled carbon nanotubes by acid-base titration[J]. Chemical PhysicsLetters,2001,345(1-2):25-28.
    [133] Gorgulho, H. F., Mesquita, J. P., Goncalves, F., Pereira, M. F. R., Figueiredo, J. L.Characterization of the surface chemistry of carbon materials by potentiometric titrations andtemperature-programmed desorption[J]. Carbon,2008,46(12):1544-1555.
    [134] Boehm, H. P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon,2002,40(2):145-149.
    [135] Ghabbour, E. A., Scheinost, A. C., Davies, G. XAFS studies of cobalt(II) binding by solid peatand soil-derived humic acids and plant-derived humic acid-like substances[J]. Chemosphere,2007,67(2):285-291.
    [136] Lee, S. W., Anderson, P. R. EXAFS study of Zn sorption mechanisms on hydrous ferric oxideover extended reaction time[J]. Journal of Colloid and Interface Science,2005,286(1):82-89.
    [137] Raines, D. E., Gioia, F., Claycomb, R. J., Stevens, R. J. The N-methyl-D-aspartate receptorinhibitory potencies of aromatic inhaled drugs of abuse: Evidence for modulation by cation-piinteractions[J]. Journal of Pharmacology and Experimental Therapeutics,2004,311(1):14-21.
    [138] Feng, Z. C., Shao, Z. Z., Yao, J. R., Huang, Y. F., Chen, X. Protein adsorption and separation withchitosan-based amphoteric membranes[J]. Polymer,2009,50(5):1257-1263.
    [139] Al-Johani, H., Salam, M. A. Kinetics and thermodynamic study of aniline adsorption bymulti-walled carbon nanotubes from aqueous solution[J]. Journal of Colloid and Interface Science,2011,360(2):760-767.
    [140] Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., Krimissa, M. Sorptionisotherms: A review on physical bases, modeling and measurement[J]. Applied Geochemistry,2007,22(2):249-275.
    [141] Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal ofthe American Chemical Society,1918,40(9):1361-1403.
    [142] Freundlich, H. M. F. Over the adsorption in solution[J]. Journal of chemical physics,1906,57385-471.
    [143] Sonawane, G. H., Shrivastava, V. S. Removal of hazardous dye from synthetic textile dyeing andprinting effluents by Archis hypogaea L. shell: a low cost agro waste material[J]. Desalination andWater Treatment,2011,29(1-3):29-38.
    [144] Jovanovic, B. M., Vukasinovic-Pesic, V. L., Rajakovic, L. V. Enhanced Arsenic Sorption byHydrated Iron (III) Oxide-Coated Materials-Mechanism and Performances[J]. Water EnvironmentResearch,2011,83(6):498-506.
    [145] Panda, G. C., Das, S. K., Guha, A. K. Jute stick powder as a potential biomass for the removal ofcongo red and rhodamine B from their aqueous solution[J]. Journal of Hazardous Materials,2009,164(1):374-379.
    [146] Niwas, R., Gupta, U., Khan, A. A., Varshney, K. G. The adsorption of phosphamidon on thesurface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2000,164(2–3):115-119.
    [147] Zhu, Z. Z., Wang, Z., Li, H. L. Functional multi-walled carbon nanotube/polyaniline compositefilms as supports of platinum for formic acid electrooxidation[J]. Applied Surface Science,2008,254(10):2934-2940.
    [148] Ying, Y. M., Saini, R. K., Liang, F., Sadana, A. K., Billups, W. E. Functionalization of carbonnanotubes by free radicals[J]. Organic Letters,2003,5(9):1471-1473.
    [149] Wei, J. Q., Jiang, B., Zhang, X. F., Zhu, H. W., Wu, D. H. Raman study on double-walled carbonnanotubes[J]. Chemical Physics Letters,2003,376(5-6):753-757.
    [150] Park, Y. S., Choi, Y. C., Kim, K. S., Chung, D. C., Bae, D. J., An, K. H., Lim, S. C., Zhu, X. Y.,Lee, Y. H. High yield purification of multiwalled carbon nanotubes by selective oxidation duringthermal annealing[J]. Carbon,2001,39(5):655-661.
    [151] Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis,C. Chemical oxidation of multiwalled carbon nanotubes[J]. Carbon,2008,46(6):833-840.
    [152] Davis, W. M., Erickson, C. L., Johnston, C. T., Delfino, J. J., Porter, J. E. Quantitative FourierTransform Infrared spectroscopic investigation of humic substance functional group composition[J].Chemosphere,1999,38(12):2913-2928.
    [153] Hoferkamp, L. A., Weber, E. J. Nitroaromatic reduction kinetics as a function of dominantterminal electron acceptor processes in natural sediments[J]. Environmental Science&Technology,2006,40(7):2206-2212.
    [154] Wu, D., Pan, B., Wu, M., Peng, H., Zhang, D., Xing, B. Coadsorption of Cu andsulfamethoxazole on hydroxylized and graphitized carbon nanotubes[J]. Science of the TotalEnvironment,2012,427–428(0):247-252.
    [155] Mazov, I., Kuznetsov, V. L., Simonova, I. A., Stadnichenko, A. I., Ishchenko, A. V., Romanenko,A. I., Tkachev, E. N., Anikeeva, O. B. Oxidation behavior of multiwall carbon nanotubes with differentdiameters and morphology[J]. Applied Surface Science,2012,258(17):6272-6280.
    [156] Su, F., Lu, C., Hu, S. Adsorption of benzene, toluene, ethylbenzene and p-xylene byNaOCl-oxidized carbon nanotubes[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2010,353(1):83-91.
    [157] Villacanas, F., Pereira, M. F. R., Orfao, J. J. M., Figueiredo, J. L. Adsorption of simple aromaticcompounds on activated carbons[J]. Journal of Colloid and Interface Science,2006,293(1):128-136.
    [158] Chin, C.-J. M., Shih, M.-W., Tsai, H.-J. Adsorption of nonpolar benzene derivatives onsingle-walled carbon nanotubes[J]. Applied Surface Science,2010,256(20):6035-6039.
    [159] Wang, X., Liu, Y., Tao, S., Xing, B. Relative importance of multiple mechanisms in sorption oforganic compounds by multiwalled carbon nanotubes[J]. Carbon,2010,48(13):3721-3728.
    [160] Karanfil, T., Zhang, S. J., Shao, T., Bekaroglu, S. S. K. The Impacts of aggregation and surfacechemistry of carbon nanotubes on the adsorption of synthetic organic compounds[J]. EnvironmentalScience&Technology,2009,43(15):5719-5725.
    [161] Li, X., Zhao, H., Quan, X., Chen, S., Zhang, Y., Yu, H. Adsorption of ionizable organiccontaminants on multi-walled carbon nanotubes with different oxygen contents[J]. J Hazard Mater,2011,186(1):407-15.
    [162] Allen-King, R. M., Grathwohl, P., Ball, W. P. New modeling paradigms for the sorption ofhydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J].Advances in Water Resources,2002,25(8-12):985-1016.
    [163] Pignatello, J. J., Xing, B. S. Mechanisms of slow sorption of organic chemicals to naturalparticles[J]. Environmental Science&Technology,1996,30(1):1-11.
    [164]马长文.地下水中四氯乙烯迁移归宿与修复技术研究[D].博士,上海交通大学2007.
    [165] Chen, G. C., Shan, X. Q., Zhou, Y. Q., Shen, X. E., Huang, H. L., Khan, S. U. Adsorption kinetics,isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes[J].Journal of Hazardous Materials,2009,169(1-3):912-8.
    [166] Yao, Y., Bing, H., Feifei, X., Xiaofeng, C. Equilibrium and kinetic studies of methyl orangeadsorption on multiwalled carbon nanotubes[J]. Chemical Engineering Journal,2011,170(1):82-89.
    [167] Yao, Y., Xu, F., Chen, M., Xu, Z., Zhu, Z. Adsorption behavior of methylene blue on carbonnanotubes[J]. Bioresource Technology,2010,101(9):3040-6.
    [168] Aivalioti, M., Papoulias, P., Kousaiti, A., Gidarakos, E. Adsorption of BTEX, MTBE and TAMEon natural and modified diatomite[J]. J Hazard Mater,2011.
    [169] Guibal, E., McCarrick, P., Tobin, J. M. Comparison of the sorption of anionic dyes on activatedcarbon and chitosan derivatives from dilute solutions[J]. Separation Science and Technology,2003,38(12-13):3049-3073.
    [170] Ozcan, A., Ozcan, A. S. Adsorption of Acid Red57from aqueous solutions ontosurfactant-modified sepiolite[J]. Journal of Hazardous Materials,2005,125(1-3):252-259.
    [171] Sheha, R. R., Metwally, E. Equilibrium isotherm modeling of cesium adsorption onto magneticmaterials[J]. Journal of Hazardous Materials,2007,143(1-2):354-361.
    [172] Wu, C. H. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics andthermodynamics[J]. Journal of Hazardous Materials,2007,144(1-2):93-100.
    [173] Yao, Y. J., He, B., Xu, F. F., Chen, X. F. Equilibrium and kinetic studies of methyl orangeadsorption on multiwalled carbon nanotubes[J]. Chemical Engineering Journal,2011,170(1):82-89.
    [174] Parida, K., Das, D. P., Das, J. Physicochemical characterization and adsorption behavior ofcalcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueoussolution[J]. Journal of Colloid and Interface Science,2003,261(2):213-220.
    [175] Wu, M., Tian, Y., Liu, R. G., Wang, D. Q., Lin, X. B., Liu, W. L., Ma, L., Li, Y. D., Huang, Y.Modified native cellulose fibers-A novel efficient adsorbent for both fluoride and arsenic[J]. Journal ofHazardous Materials,2011,185(1):93-100.
    [176] Xu, D., Tan, X., Chen, C., Wang, X. Removal of Pb(II) from aqueous solution by oxidizedmultiwalled carbon nanotubes[J]. Journal of Hazardous Materials,2008,154(1-3):407-16.
    [177] Hameed, B. H., Foo, K. Y. Preparation of oil palm (Elaeis) empty fruit bunch activated carbon bymicrowave-assisted KOH activation for the adsorption of methylene blue[J]. Desalination,2011,275(1-3):302-305.
    [178] Huang, C. C., Chen, C. H. Hydrogen storage by KOH-modified multi-walled carbonnanotubes[J]. International Journal of Hydrogen Energy,2007,32(2):237-246.
    [179] Song, S. Q., He, C. X., Liu, J. C., Maragou, V., Tsiakaras, P. KOH-activated multi-walled carbonnanotubes as platinum supports for oxygen reduction reaction[J]. Journal of Power Sources,2010,195(21):7409-7414.
    [180] Raymundo-Pinero, E., Azais, P., Cacciaguerra, T., Cazorla-Amoros, D., Linares-Solano, A.,Beguin, F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with differentstructural organisation[J]. Carbon,2005,43(4):786-795.
    [181] Lillo-Rodenas, M. A., Juan-Juan, J., Cazorla-Amoros, D., Linares-Solano, A. About reactionsoccurring during chemical activation with hydroxides[J]. Carbon,2004,42(7):1371-1375.
    [182]江奇,卢晓英,赵勇,朱晓彤,蔡玉冬,钱兰.活化条件对活性碳纳米管比表面积的影响[J].物理化学学报,2006,(01):43-47.
    [183] Niwas, R., Gupta, U., Khan, A. A., Varshney, K. G. The adsorption of phosphamidon on thesurface of styrene supported zirconium (IV) tungstophosphate: a thermodynamic study[J]. Colloids andSurfaces a-Physicochemical and Engineering Aspects,2000,164(2-3):115-119.
    [184] Wang, X. L., Tao, S., Xing, B. S. Sorption and competition of aromatic compounds and humicacid on multiwalled carbon nanotubes[J]. Environmental Science&Technology,2009,43(16):6214-6219.
    [185] Yu, F., Ma, J., Wu, Y. Q. Adsorption of toluene, ethylbenzene and m-xylene on multi-walledcarbon nanotubes with different oxygen contents from aqueous solutions[J]. Journal of HazardousMaterials,2011,192(3):1370-1379.
    [186] Costa, A. S., Rom o, L. P. C., Araújo, B. R., Lucas, S. C. O., Maciel, S. T. A., Wisniewski Jr, A.,Alexandre, M. R. Environmental strategies to remove volatile aromatic fractions (BTEX) frompetroleum industry wastewater using biomass[J]. Bioresource Technology,2012,105(0):31-39.
    [187] Moura, C. P., Vidal, C. B., Barros, A. L., Costa, L. S., Vasconcellos, L. C. G., Dias, F. S.,Nascimento, R. F. Adsorption of BTX (benzene, toluene, o-xylene, and p-xylene) from aqueoussolutions by modified periodic mesoporous organosilica[J]. Journal of Colloid and Interface Science,2011,363(2):626-634.
    [188] Mangun, C. L., Yue, Z., Economy, J., Maloney, S., Kemme, P., Cropek, D. Adsorption of organiccontaminants from water using tailored ACFs[J]. Chemistry of Materials,2001,13(7):2356-2360.
    [189] Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S. Adsorption of benzene andtoluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence ofsurface chemistry on adsorption[J]. Journal of Hazardous Materials,2007,146(1-2):237-42.
    [190] Huang, Z. H., Zheng, X. Y., Lv, W., Wang, M., Yang, Q. H., Kang, F. Y. Adsorption of Lead(II)Ions from Aqueous Solution on Low-Temperature Exfoliated Graphene Nanosheets[J]. Langmuir,2011,27(12):7558-7562.
    [191] Wang, X. L., Liu, Y., Tao, S., Xing, B. S. Relative importance of multiple mechanisms in sorptionof organic compounds by multiwalled carbon nanotubes[J]. Carbon,2010,48(13):3721-3728.
    [192] Wang, X. L., Xing, B. S. Sorption of organic contaminants by biopolymer-derived chars[J].Environmental Science&Technology,2007,41(24):8342-8348.
    [193] Cho, H. H., Wepasnick, K., Smith, B. A., Bangash, F. K., Fairbrother, D. H., Ball, W. P. Sorptionof aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containingfunctional groups and graphenic carbon[J]. Langmuir,2010,26(2):967-81.
    [194] Wang, X. L., Shu, L., Wang, Y. Q., Xu, B. B., Bai, Y. C., Tao, S., Xing, B. S. Sorption of PeatHumic Acids to Multi-Walled Carbon Nanotubes[J]. Environmental Science&Technology,2011,45(21):9276-9283.
    [195] Zhu, D. Q., Pignatello, J. J. Characterization of aromatic compound sorptive interactions withblack carbon (charcoal) assisted by graphite as a model[J]. Environmental Science&Technology,2005,39(7):2033-2041.
    [196] Lin, D. H., Xing, B. S. Tannic acid adsorption and its role for stabilizing carbon nanotubesuspensions[J]. Environmental Science&Technology,2008,42(16):5917-5923.
    [197] Chen, C., Hu, J., Shao, D., Li, J., Wang, X. Adsorption behavior of multiwall carbonnanotube/iron oxide magnetic composites for Ni(II) and Sr(II)[J]. Journal of Hazardous Materials,2009,164(2-3):923-8.
    [198] Gao, X., Yu, K. M. K., Tam, K. Y., Tsang, S. C. Colloidal stable silica encapsulatednano-magnetic composite as a novel bio-catalyst carrier[J]. Chemical Communications,2003,(24):2998-2999.
    [199] Ding, G. W., Novak, J. M., Herbert, S., Xing, B. S. Long-term tillage effects on soil metolachlorsorption and desorption behavior[J]. Chemosphere,2002,48(9):897-904.
    [200] Drori, Y., Aizenshtat, Z., Chefetz, B. Sorption-desorption behavior of atrazine in soils irrigatedwith reclaimed wastewater[J]. Soil Science Society of America Journal,2005,69(6):1703-1710.
    [201] Altfelder, S., Streck, T., Richter, J. Nonsingular sorption of organic compounds in soil: The roleof slow kinetics[J]. Journal of Environmental Quality,2000,29(3):917-925.
    [202] Chen, G.-C., Shan, X.-Q., Wang, Y.-S., Pei, Z.-G., Shen, X.-E., Wen, B., Owens, G. Effects ofCopper, Lead, and Cadmium on the Sorption and Desorption of Atrazine onto and from CarbonNanotubes[J]. Environmental Science&Technology,2008,42(22):8297-8302.
    [203] Yang, K., Xing, B. Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials inwater[J]. Environmental Pollution,2007,145(2):529-537.
    [204] Huang, W. L., Ping, P. A., Yu, Z. Q., Fu, H. M. Effects of organic matter heterogeneity onsorption and desorption of organic contaminants by soils and sediments[J]. Applied Geochemistry,2003,18(7):955-972.
    [205] Li, J., Chen, S., Sheng, G., Hu, J., Tan, X., Wang, X. Effect of surfactants on Pb(II) adsorptionfrom aqueous solutions using oxidized multiwall carbon nanotubes[J]. Chemical Engineering Journal,2011,166(2):551-558.
    [206] Chen, J. Y., Zhu, D. Q., Sun, C. Effect of heavy metals on the sorption of hydrophobic organiccompounds to wood charcoal[J]. Environmental Science&Technology,2007,41(7):2536-2541.
    [207] Korshin, G. V., Frenkel, A. I., Stern, E. A. EXAFS study of the inner shell structure in copper(II)complexes with humic substances[J]. Environmental Science&Technology,1998,32(18):2699-2705.
    [208] Morton, J. D., Semrau, J. D., Hayes, K. F. An X-ray absorption spectroscopy study of thestructure and reversibility of copper adsorbed to montmorillonite clay[J]. Geochimica et CosmochimicaActa,2001,65(16):2709-2722.
    [209] Salavati-Niasari, M., Bazarganipour, M. Synthesis, characterization and catalytic oxidation
    properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex[J].
    Applied Surface Science,2009,255(17):7610-7617.
    [210] Lim, S.-F., Zheng, Y.-M., Zou, S.-W., Chen, J. P. Characterization of copper adsorption onto an
    alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study[J].
    Environmental Science&Technology,2008,42(7):2551-2556.