大直径单壁碳纳米管制备、纯化及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单壁碳纳米管(SWCNT)具有独特的结构,优异的力学性能和理化性能,在复合材料、纳米电子器件、催化剂载体等各大领域都具有巨大的应用前景。但对实际应用而言,还存在一些技术难题。例如:SWCNT的电子结构与其直径有关,文献中所报道的SWCNT总是不同直径的SWCNT的混合体,导致金属型和半导体型SWCNT混合存在。有效地增大SWCNT的直径进而控制其电学性能成为SWCNT基础研究和应用的瓶颈。又如,电弧法、激光法、催化热解法所制备的原始SWCNT样品中,都含有大量的杂质(如催化剂颗粒),需要利用强氧化方法才能除去,但不可避免地对SWCNT结构产生破坏。如何大规模无损伤纯化SWCNT是个迫切需要解决的难题。再如,碳纳米管表面缺陷少、缺乏活性基团,碳管之间存在较强的范德华引力,易于形成团聚或缠绕,不能在溶液中均匀分散,影响和制约单壁碳纳米管的应用。本文以SWCNT制备--纯化--分散--应用为研究路线,对以上的问题进行深入的研究和探讨。
     本文以乙醇为碳源,二茂铁作为催化剂,噻吩为添加剂成功制备了大直径单壁碳纳米管。在保持其他工艺参数不变的条件下,仅仅通过改变噻吩的含量,有效地增大了SWCNT的平均直径,可从1 nm增加到5.8 nm,而且实现了样品的连续制备,SWCNT原始样品的产量可达1g/h。根据实验结果,提出了增大SWCNT直径的生长模型:噻吩高温下分解出的硫原子被吸附在纳米铁催化剂颗粒的表面,所形成的液相区成为SWCNT的成核点,不同硫的添加量,对应不同大小的成核点以及不同直径的SWCNTs。
     电学性能测试表明:不同直径的SWCNT样品具有不同的电学性能,大直径(LD)SWCNT的电阻率为0.1 m·cm,小直径(SD)SWCNT的电阻率为0.5 m·cm,相差近5倍。伏安测试进一步表明,LD-SWCNTs呈现线性电阻特征,而SD-SWCNT呈现非线性电阻特性,其原因是由于SD-SWCNT样品中可能存在较多的半导体型SWCNT,随着电压的增大,占主要比例的半导体型碳管由于温度效应的影响,使得半导体型碳管中参加导电的载流子数目增多,宏观纤维样品的电阻率随之下降,呈现非线性电阻特征。
     本文探索出一种纯化效果显著对结构无损伤的SWCNT纯化方法。即将原始样品中的金属Fe催化剂颗粒在空气气氛下,低温氧化成氧化铁组织,然后将样品置于氩气气氛下进行高温热处理,使氧化铁与外层包裹的碳发生还原反应,形成金属铁颗粒,最后采用弱酸酸洗反应剩余物,去除金属Fe颗粒,最后达到纯化SWCNT的目的。对纯化前后SWCNT进行了Raman、近红外和热重分析,结果表明:本纯化方法对SWCNT的石墨结构没有明显的破坏。
     SWCNT具有极大的长径比,长度达到微米级,直接制备获得的碳管易缠绕,分散性差。本文制备的LD-SWCNTs样品纯化后不需进行任何复杂表面官能团修饰处理,可以直接均匀分散于溶液中,而SD-SWCNT无法均匀分散,以悬浮状大颗粒的形式存在于溶液中。结合红外光谱和X射线光电子能谱分析测试表明:SD-SWCNT和LD-SWCNT表面均含有相同性质和相同摩尔数的官能团,从而排除碳管样品表面官能团差异性对分散的影响,可以推断纯化后小直径、大直径SWCNT样品在溶液中分散性的差异是由于直径差异所致。
     本论文首次提出低温冷冻法处理SD-SWCNT。以乙醇水溶液为溶剂,液氮作为冷却介质,将获得的冷冻固体高速粉碎,成功地获得SD-SWCNT均匀分散的溶液。低温冷冻处理后SD-SWCNT样品在乙醇溶液中均匀分散,纳米激光粒度分布仪测试结果表明SD-SWCNT在乙醇溶液中分散的颗粒度为165.1nm,较未处理的初始样品,平均分散粒度有了三个数量级的明显减小。
     开展了使用SWCNT作为燃料电池催化剂载体的研究。采用乙二醇还原的方法制备出碳负载型金属Pt颗粒的催化剂。研究了不同直径SWCNT作为载体的Pt颗粒催化剂的催化性能的差异。测试结果表明:LD-SWCNT负载的Pt催化剂具有最高的电化学比表面积,相对于SD-SWCNT和多壁碳纳米管有近一倍的提高。比Johnson Matthey公司的商业化催化剂的催化活性也提高了近50%,这可能归属于LD-SWCNT具有优良的导电性能和分散性能。
Single-walled carbon nanotubes (SWCNTs) have potential applications in many fields, such as composite materials, nano-electronic devices, and catalyst supports, due to their unique structure and good mechanical, physical and chemical properties. However, there exist some technical hurdles for the applications. For example, the electronic structure of a SWCNT is related to its tube diameter. The currently available techniques for CNT synthesis always produce tubes with a wide range of diameters. As a result, metallic and semiconducting SWCNTs are always coexistent. As a matter of fact, it has been a bottleneck for many fundamental studies and applications how to control the electric properties by increasing the diameter of SWCNTs. The second hurdle is that initial SWCNTs synthesized by arc-discharge, laser vaporization, and chemical vapor deposition (CVD) methods contain a large quantity of impurities (catalytic nano-particles). These impurities need to be purified by strong oxidation methods, but during such purification process, structural destruction of SWCNTs is inevitable. Thus, it is necessary to develop techniques for non-destructive purification. A third hurdle concerns dispersion, Current SWCNTs are bound into entangled ropes or masses with bad dispersion. They have to be separated from each other and have good dispersion for many applications. In this dissertation, the research route follows“controllable synthesis-purification- dispersion-application”, and new approaches are proposed to resolve the above-mentioned issues with SWCNTs.
     A CVD method is used for synthesizing SWCNTs in this study. Ethanol is used as the carbon feedstock, ferrocene as the catalyst, and thiophene as the growth promoter. Under keeping the other experimental condition, the diameter of SWCNTs is increased effectively only by changing the amount of thiophene addition. SWCNT samples with different average diameters from 1 to 5.8 nm can be synthesized continuously, with a production rate of about 1 g h-1. Based on experimental results, a growth model is proposed: S atoms from thiophene decomposition are absorbed on the surface of an Fe particle. The absorption leads to the formation of a liquidus region on the metal surface, and this liquidus region becomes the nucleation core of SWCNTs. With changing thiophene addition, the size of the liquidus region and thus the tube diameter change.
     The electrical properties of SWCNTs have been studied. Results show that different-diameter SWCNTs have different electrical properties: the electric resistivity of SD-SWCNTs is 0.5m·cm and that for LD-SWCNTs is 0.1m·cm. Additionally, voltammetry curves suggest that the resistance behavior of SD-SWCNTs is non-linear, but that of LD-SWCNTs is of a linear nature. This may be attributed to the possibility that the SD-SWCNT sample contains a high proportion of semiconducting variants, the number of carrier increases for temperature effects with the increasing of the voltage, and thus the electric resistivity decreases.
     In this dissertation, a high-effective and non-destructive purification method is proposed. Fe catalytic particles are heated to be oxidized at a low temperature in air, and then the sample is heat-treated under the protection of Ar gas at a high temperature to induce the reduction of Fe2O3 by the encapsulating carbon to Fe. Finally, the naked Fe or FeO particles are dissolved easily by HCl. During this purification process, little damage is induced to the graphitic structure of SWCNTs as evidenced by TG, Raman and NIR spectroscopic studies.
     SWCNTs have high length-diameter ratios, and thus are usually bundled and entangled together with low dispersion in any solutions. The LD-SWCNTs, however, are found to be dispersible uniformly in water or ethanol without any modification after purification. In contrast, the purified SD-SWCNTs could not be dispersed. Instead, they tend to form large aggregates in solutions. Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy results indicate that SD- and LD-SWCNTs have the same types and the same quantities (mol) of functional groups on their surfaces. Thus, it may be concluded that the good dispersion observed for LD-SWCNTs is a result of their large diameters.
     To improve the dispersion of SD-SWCNTs, a cryogenic freezing and crushing method is proposed in this dissertation. Ethanol and water were used as solvents, and liquid nitrogen as a freezing medium. The frozen mixture of ethanol, water, and SWCNTs was crushed with high-speed blades. After dissolution and filtering, the obtained SD-SWCNTs could be dispersed uniformly in ethanol. The results of nano-laser particle size analyzer indicate that the average particle size of such SWCNTs is 165.1 nm, which are 3 orders of magnitude smaller than the SD-SWCNTs without the treatment.
     The application of SWCNTs as a catalyst support for fuel cells has been studied. Pt nanoparticles are deposited on LD- and SD-SWCNTs by a glycol reduction method. Electrochemical tests show that the catalytic activity of Pt particles on LD-SWCNTs is 2 times of that for Pt particles on SD-SWCNTs or multi-walled CNTs and also much higher than the commercial catalyst from Johnson Matthey Co. The excellent activity observed for LD-SWCNTs may be attributed to their good electrical conductivity and dispersion property.
引文
[1] Kroto H. W., Heath J. R., O’Brien S. C., et al., C60: Buckminsterfullerene, Nature, 1985, 318, 162-163
    [2] Iijima S., Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58
    [3] Iijima S., Ichibashi T., Single-shell carbon nanotubes of 1nm diameter, Nature, 1993, 363, 603-604
    [4] Benthune D. S., Kiang C. H., de Vries M. S., et al., Cobalt-catalysted growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993, 605-607
    [5] Dresselhaus M. S., Down the straight and narrow, Nature, 1992, 358, 195-196
    [6] Saito R., Dresselhaus M. S, Dresselhaus G. Physical properties of carbon nanotubes, London: Imperial Cooege Press, 1998
    [7] Meyyappan M., Carbon nanotubes science and applications, New York, CRC Press LLC, 2005, 5-6
    [8] Dresselhaus M. S., Dresselhaus G., Avouris P., Carbon nanotubes: synthesis, structure, properties, and applications, Spring, Berlin, New York ,2001
    [9] Tang D. S., Sun L. F., Zhou J. J., Zhou W. Y., et al., Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation, Carbon, 2006, 43, 2812-2816
    [10] Zhao Z. B., Qiu J. S., Wang T. H., Li Y. F., et al., Fabrication of single-walled carbon nanotube ropes from coal by an arc discharge method, New Carbon Materials, 2006, 21, 19-23
    [11] Hsu W. K., Li J., Terrones H., et al., Condensed-phase nanotubes, Nature, 1995,377, 687-689
    [12] Eklund P. C., Pradhan B. K., Kim U. J., et al., Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser, Nano Lett., 2002, 2, 561-566
    [13] Ma J., Wang J. N., Wang X. X., Large-diameter and water-dispersible single-walledcarbon nanotubes: Synthesis, characterization and applications, J. Mater. Chem., 2009, 19, 3033- 3041
    [14] Li S., Liu H., Zhai J., et al., The controlled pattern growth of aligned carbon nanotubes, Synth. Met., 2003, 135-136, 815-816
    [15] Nerushev O. A., Dittmar S., Morjan R. E., et al., Campbell: Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, J. Appl. Phys., 2003, 93, 4185-4190
    [16] Lu C. G., Liu J., Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding, J. Phys. Chem., 2006, 110, 20254-20257
    [17] Ago H., Ohshima S., Uchida K., et al., Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles, J. Phys. Chem. B., 2001, 105, 10453-10456
    [18] Matveev A. T., Golberg D., Novikov V. P., et al., Synthesis of carbon nanotubes below room temperature, Carbon ,2001, 39, 155-158
    [19] Liu Y. L., Pan C. X., Chen W., Diameter-controlling growth of solid-cored carbon nanofibers on a pulse plated iron nanocrystalline substrate in flames, Mater. Res. Bull., 2008, 43, 3397-3407
    [20] Jeong G. H., Suzuki S., Kobayashi Y., et al., Size control of catalytic nanoparticles by thermal treatment and its application to diameter control of single-walled carbon nanotubes, Appl. Phys. Lett., 2007, 90, 043108-(1-3)
    [21] Yudasaka M., Komatsu T., Ichihashi T., et al., Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chem. Phys. Lett., 1997, 278, 102-106
    [22] Vichchulada P., Shim J., Lay M. D., Non-oxidizing purification method for large volumes of long, undamaged single-walled carbon nanotubes, J. Phys. Chem. C, 2008, 112, 19186-19192
    [23] Montoro L. A., Luengo C. A., Rosolen J. M., et al., Study of oxygen influence in theproduction of single-wall carbon nanotubes obtained by arc method using Ni and Y catalyst, Diamond Relat. Mater., 2003, 12, 846-849.
    [24] Kieran M., Oscar D., Andrew T. H., A review of carbon nanotube purification by microwave assisted acid digestion, Sep. Purif. Technol., 2009, 66, 209-222
    [25] Bonard J. M., Stora, Salvetat J. P., et al., Purification and size-selection of carbon nanotubes, Adv. Mater., 1997, 9, 827-829
    [26] Cai Y., Yan Z. H., Zi M., et al., Preparative purification of single walled carbon nanotubes by high speed countercurrent chromatography, J. Liq. Chromatogr. R. T., 2009, 32, 399-406
    [27] Ballesteros B., Tobias G., Shao L., Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes, Small, 2008, 4, 1501-1506
    [28] Suzuki T., Inoue S., Ando Y., Purification of single-wall carbon nanotubes by using high-pressure micro reactor, Diamond Relat. Mater., 2008, 17, 1596-1599
    [29] Hou P. X., Bai S., Yang Q. H., et al. Multi-step purification of carbon nanotubes, Carbon, 2002, 40, 81-85
    [30] Tsang S. C., Chen Y. K., Harris P. J. F., et al., A simple chemical method of opening and filling carbon nanotubes, Nature, 1994, 372, 159-163
    [31] Wu C. X., Li J. X., Dong G. F., et al., Removal of Ferromagnetic Metals for the Large-Scale Purification of Single-Walled Carbon Nanotubes, J. Phys. Chem. C, 2009, 113, 3612-3616
    [32] Lovell C. S., Wise K. E., Kim J. W., et al., Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite, Polymer, 2009, 50, 1925-1932
    [33] Deng C. F., Zhang P., Ma Y. X., et al., Dispersion of multiwalled carbon nanotubes in aluminum powders, Rare Matals, 2009, 28, 175-180
    [34] Rastogi R., Kaushal R., Tripathi S. K., et al., Comparative study of carbon nanotube dispersion using surfactants, J. Colloid. Interf. Sci., 2008, 328, 421-428
    [35] Zhou X. S., Wu T. B., Ding K. L., et al., The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid, Chem. Commun., 2009, 14, 1897-1899
    [36] Rastogi R., Kaushal R., Tripathi S. K., et al., Comparative study of carbon nanotube dispersion using surfactants, J. Colloid. Interf. Sci., 2008, 328, 421-428
    [37] Liu J., Rinzler A. G, Gai H. J., et al., Fullerene pipes, Science, 1998, 280: 1253-1256
    [38] Sano M., Kamino A., Okamura J., Ring closure of carbon nanotubes, Science, 2001, 293, 1299-1301
    [39] Hamon M. A., Chen J., Haddon R. C., et al., Solution properties of single-walled carbon nanotubes (s-SWNTs), J. Am. Chem. Soc., 2001, 123, 733-734
    [40] Star A., Stoddart J. F., Steuerman B., Preparation and properties of polymer-wrapped single-walled carbon nanotubes, Angew. Chem. Int. Ed., 2001, 40, 1721-1725
    [41] O’Connell M. J., Boul P., Ericson L. M., et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping, Chem. Phys. Lett., 2001, 342, 265-271
    [42] Islam M. F., Roils E., Bergey D. M., et al., High weight frac-tion surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 2003, 3, 269-273
    [43] Datsyuk V., Landois P., Fitremann J., et al., Double-walled carbon nanotube dispersion via surfactant substitution, J. Mater. Chem., 2009, 19, 2729-2736
    [44] Sobkowicz M. J., Dorgan J. R., Gneshin K. W., et al., Controlled dispersion of carbon nanospheres through surface functionalization, Carbon, 2009, 47, 622-628
    [45] Jimenez L. L., Henrio P. Y., Lund A., et al., MWNT reinforced melamine- formaldehyde containing alpha-cellulose, Compos. Sci. Technol., 2007, 67, 844-854
    [46] Islam M. F., Roils E., Bergey D. M., et al., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 2003, 3, 269-273
    [47] Lourie O., Wagner H. D., Evaluation of Young's modulus of carbon nanotubes by micro-Raman spectroscopy, J. Mater. Res., 1998, 13, 2418-2422
    [48] Treacy M. J., Ebbesen T. W., Gibson J. M., Exceptionally high Young’s modulusobserved for individual carbon nanotubes, Nature, 1996, 381, 678-680
    [49] Wong E. W., Sheelan P. E., Lieber,C. M., Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, 1997, 277, 1971-1975
    [50] Volodin A., Van Haesendonck C., Tarkiainen R., et al., AFM detection of the mechanical resonances of coiled carbon nanotubes, Appl. Phys. A, 2001, 72, 75-78
    [51] Volodin A., Ahlskog M., Seynaeve E., et al., Imaging the elastic properties of coiled carbon nanotubes with atomic force microscopy, Phys. Rev. Lett., 2000, 84, 3342-3345
    [52] Wang Z. L., Poncharal P., De Heer W. A., Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM, J. Phys. Chem. Solids, 2000, 61, 1025-1030
    [53] Pan Z. W., Xie S. S., Lu L., et al., Tensile tests of ropes of very long aligned multiwall carbon nanotubes, Appl. Phys. Lett., 1999, 74, 3152-3154
    [54] Lu J. P., Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 1997, 79, 1297-1300
    [55] Zhou X., Zhou J. J., Ou-Yang Z. C. Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B, 2000, 62, 13692-13696
    [56] Peng B., Locascio M., Zapol P., et al., Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements, Nat. Nanotechnol., 2008, 10, 626-631
    [57] Salvetat J. P., Briggs G. A. D., Bonard J. M., et al., Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett., 1999, 82, 944-947
    [58] Li F., Cheng H. M., Bai S., et al., Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Appl. Phys. Lett., 2000, 77, 3161-3163
    [59] Vigolo B., Penicaud A., Coulon C., et al., Macroscopic fibers and ribbons of oriented carbon nanotubes, Science, 2000, 290, 1331-1334
    [60] Dresselhaus M. S., Dresselhaus G., Eklund P. C., Science of fullerenes & carbonnanotubes, San Diego, Academic Press, 1996
    [61] Cornwell C. F., Wille L. T., Elastic properties of single-walled carbon nanotubes in compression, Solid State Comm., 1997, 101, 555-558
    [62] Emande E., Goze C., Bernier P., et al., Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett., 1998, 80, 4502-4505
    [63] Sinnott S. B., Shenderova O. A., White C. T., et al., Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations, Carbon, 1998, 36, 1-9
    [64] Lu J. P., Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett., 1997, 79, 1297-1300
    [65] Hall L.J., Coluci V. R., Galv?o D.S. et al., Sign change of Poisson’s ratio for carbon nanotube sheets, Science, 2008, 320, 504 - 507
    [66] Chang T., Dominoes in Carbon Nanotubes, Phys. Rev. Lett., 2008, 101, 175501(1-4)
    [67] Ebbesen T. W., Lezec H. J., Hiura H., et al., Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382, 54-56
    [68] Wildoer J. W. G., Venema L. C., Rinzler A. G.,et al., Electronic structure of atomically resolved carbon nanotubes,Nature, 1998, 391, 59-62
    [69] Odom T. W., Huang J. L., Kim P., Lieber C. M., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62-64
    [70] Fuhrer M. S., Nygard J., Shih L., et al., Crossed nanotube junctions, Science, 2000, 288, 494-497 [ 71 ] Huang Y. H., M. Okada, K. Tanaka, et al., Superconductivity in ropes of single-walled carbon nanotubes, Phys. Rev. Lett., 2001, 86, 2416-2419
    [72] Tang Z. K., Zhang L. Y., Wang N., et al., Superconductivity in 4 angstrom single-walled carbon nanotubes, Science, 2001, 292, 2462-2465
    [73] Yang S. H., Shin W. H., Kang J. K., The nature of graphite- and pyridinelike nitrogen configurations in carbon nitride nanotubes: Dependence on diameter and helicity, Small,2008, 4, 437-441
    [74] Liu K. H., Wang W. L., Xu Z., et al., Chirality-Dependent transport properties of double-walled nanotubes mMeasured in situ on their field-effect transistors, J. Am. Chem. Soc., 2009, 131, 62–63
    [75] Collins P. G., Arnold M. S., Avouris P., Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292, 706-709
    [76] Bachtold A., Hadley P., Nakanishi T., et al., Logic circuits with carbon nanotube transistors, Science, 2001, 294, 1317-1320
    [77] Wei Y. Y., Eres G., Directed assembly of carbon nanotube electronic circuits, Appl. Phys. Lett., 2000, 76, 3759-3761
    [78] Kongkanand A., Kamat P.V., Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions, Nano, 2007, 1, 13-21
    [79] Baughman R.H., Zakhidov A. A., de Heer W. A., et al., Carbon naotubes-the route toward applications, Science, 2002, 297, 787-792
    [80] Collins P. C., Arnold M. S., Avouris P., Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 2001, 292, 706-709
    [81] Hartschuh A., Pedrosa H. N., Novotny L., et al., Simultaneous fluorescence and Raman scattering from single carbon nanotubes, Science, 2003, 301, 1354-1356
    [82] Hagen A., Hertel T., Quantitative analysis of optical spectra from individual single-wall carbon nanotubes, Nano Lett., 2003, 3, 383-388
    [83] Simien D., Fagan J. A., Luo W.,et al., Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks, Acs Nano, 2008, 2, 1879-1884
    [84] Song H. J., Cho Y. S., An M. C., Kang Y. J., et al., A simple approach to the fabrication of transparent single-wall carbon nanotube films of high electrical and optical performance, J. Am. Chem. Soc., 2008, 53, 2111-2114
    [85] Zou Y. G., Liu B. B., Yao M. G., et al., Raman spectroscopy study of carbon nanotubepeapods excited by near-IR laser under high pressure, Phys. Rev. B, 2007, 76, 195417-195422
    [86] Milnera M., Kürti J., Hulman,M., et al., Periodic resonance excitation and intertube interaction from quasicontinuous distributed helicities in single-wall carbon nanotubes, Phys. Rev. Lett., 2000, 84, 1324-1327
    [87] Jorio A., Saito R., Hafner,J. H., et al., Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett., 2001, 86, 1118-1121
    [88] Song L., Ma W. J., Ren Y., Zhou W. Y., et al., Temperature dependence of Raman spectra in single-walled carbon nanotube rings, Appl. Phys. Lett., 2008, 92, 121905-(1-3)
    [89] Chiang I. W., Brinson B. E., Smalley R. E., et al., Purification and characterization of single-wall carbon nanotubes, J. Phys. Chem. B, 2001, 105, 1157-1161
    [90] Liu X., Pichler T., Knupfer M., et al., Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response, Phys. ReV. B, 2002, 66, 045411-045418
    [91] Itkis M. E., Perea D., Niyogi S., et al., Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy, Nano Lett., 2003, 3, 309-314
    [92] Itkis M. E., Perea D., Jung R., et al., Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes, J. Am. Chem. Soc., 2005, 127, 3439-3448
    [93] O’Connell M. J., Bachilo S. M., Huffman C. B., et al., Band gap fluorescence from individual single-walled carbon nanotubes, Science, 2002, 297,593-596
    [94] Bachilo S. M., Strano M. S., Kittrell C., et al., Structure-assigned optical spectra of single-walled carbon nanotubes, Science, 2002, 298, 2361-2366
    [95] Shimamoto D., Sakurai T., Itoh M., et al., Nonlinear optical absorption and reflection of single wall carbon nanotube thin films by Z-scan technique, Appl. Phys. Lett., 2008, 92, 081902(1-3)
    [96] Cao A. Y., Zhang X. F., Xu C. L., et al., Tandem structure of aligned carbon nanotubes on Au and its solar thermal absorption, Sol. Energy Matt. Sol. C, 2002, 70, 481-486
    [97] Ajayan P. M., Terrones M., A. Guardia de la., et al., Nanotubes in flash-Ignition and reconstruction, Science, 2002, 296, 705-705
    [98] Misewich J. A., Martel R., Avouris P., et al., Electrically induced optical emission from a carbon nanotube FET, Science, 2003, 300, 783-786
    [99] Freitag M., Martel Y., Misewich J. A.et al., Photoconductivity of single carbon nanotubes, Nano Lett., 2003, 3, 1067-1071
    [100] O’Connell M. J., Bachilo S. M., Huffman C. B., et al., Band gap fluorescence from individual single-walled carbon nanotubes, Science, 2002, 297, 593-596
    [101] Duong H. M., Papavassiliou D. V., Mullen K. J., et al., Calculated thermal properties of single-walled carbon nanotube suspensions, J. Phys. Chem. C, 2008, 112, 19860-19865
    [102] Savas B., Young K. K., David T., Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 2001, 84, 4613-4616
    [103] Steiner M., Freitag M., Perebeinos V., et al., Phonon populations and electrical power dissipation in carbon nanotube transistors, Nat. Nanotechnol., 2009, 4, 320-324
    [104] Vo T., Wu Y. D., Car R., et al., Structures, interactions, and ferromagnetism of Fe-carbon nanotube systems, J. Phys. Chem. C, 2008, 112, 8400-8407
    [105] Wang Q., Atomic Transportation via Carbon Nanotubes, Nano Lett., 2009, 9, 245-249
    [106] Xiao L., Chen Z., Feng C., et al., Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers, Nano Lett., 2008, 8, 4539-4545
    [107] Frackwiak E., Metenier K., Bertagna V., et al., Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77, 2121-2423
    [108] An K. H., Kim W. S., Park Y. S., et al., Properties of high-power supercapacitor using single-walled carbon nanotube electrodes, Adv. Funct. Mater., 2001, 11, 387-392
    [109] Zhang H., Wang Z. G., Zhang Z. N., et al., Regenerated-cellulose/ multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride, Adv. Mater., 2007, 19, 698-698
    [110] Zhang H., Wu J., Zhang J., et al., 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose, Macromolecules, 2005, 38, 8272-8277
    [111] Dillon A. C., Jones K. M., Bekkedahl T. A., et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 386, 377-379
    [112] Javey A., Shim M., Dai H., Electrical properties and devices of large-diameter single-walled carbon nanotubes, Appl. Phys. Lett., 2002, 80, 1064-1066
    [1] Tang D. S., Sun L. F., Zhou J. J., Zhou W. Y., et al., Two possible emission mechanisms involved in the arc discharge method of carbon nanotube preparation, Carbon, 2006, 43, 2812-2816
    [2] Eklund P. C., Pradhan B. K., Kim U. J., et al., Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser, Nano Lett., 2002, 2, 561-566
    [3] Li S., Liu H., Zhai J., et al., The Controlled pattern growth of aligned carbon nanotubes, Synth. Met., 2003, 135-136, 815-816
    [4] Ma J., Wang J. N., Wang X. X., Large-diameter and water-dispersible single-walled carbon nanotubes: Synthesis, characterization and applications, J. Mater. Chem., 2009, 19, 3033- 3041
    [5] Nerushev O. A., Dittmar S., Morjan R. E., et al., Campbell: Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition, J. Appl. Phys., 2003, 93, 4185-4190
    [6] Kataura H., Kumazawa Y., Maniwa Y.,et al., Diameter control of single-walled carbon nanotubes, Carbon, 2000, 38, 1691-1697
    [7] Jeong G. H., Suzuki S., Kobayashi Y., et al., Size control of catalytic nanoparticles by thermal treatment and its application to diameter control of single-walled carbon nanotubes, Appl. Phys. Lett., 2007, 90, 043108-(1-3)
    [8] Bae J. C., Yoon Y. J., Lee S. J.,et al., Diameter control of single-walled carbon nanotubes by plasma rotating electrode process, Carbon, 2002, 40, 2905-2911
    [9] Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273, 483-487.
    [10] Hertel T., Walkup R. E., Avouris P., Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B., 1998, 58, 13870- 13873
    [11] Dillon A. C., Jones K. M., Bekkedahl T. A., et al., Storage of hydrogen in single-walled carbon nanotubes, Nature, 1997, 386, 377-379
    [12] Javey A., Shim M., Dai H., Electrical properties and devices of large-diameter single-walled carbon nanotubes, Appl. Phys. Lett., 2002, 80, 1064-1066
    [13] Kiang C. H., Growth of large-diameter single-walled carbon nanotubes, J. Phys. Chem. A, 2000, 104, 2454-2456
    [14] Lebedkin S., Schweiss P., Renker B., et al., Single-walled carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization, Carbon, 2002, 40, 417-423
    [15] Yang Q. H., Bai S., Sauvajol J. L., et al., Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition, Adv. Mater., 2003, 15, 792-795
    [16] Lupo F., Rodríguez-Manzo J. A., Zamudio A., et al., Pyrolytic synthesis of long strands of large diameter single-walled carbon nanotubes at atmospheric pressure in the absence of sulphur and hydrogen, Chem. Phys. Lett., 2005, 410, 384-390
    [17] Dresselhaus M. S., Dresselhaus G., Jorio A., et al., Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 2002, 40, 2043-2061
    [18] Wildoer J. W. G., Venema L. C., Rinzler A. G.,et al., Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391, 59-62
    [19] Odom T. W., Huang J. L., Kim P., Lieber C. M., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62-64 [ 20 ] Ding L., Tselev A., Wang J. Y., et al., Selective growth of well-aligned semiconducting single-walled carbon nanotubes, Nano Lett., 2009, 9, 800-805
    [21] Huang C. S., Yeh C. Y., Yuan C. H., et al., The study of a carbon nanotube O2 sensor by field emission treatment, Diam. Relat. Mater., 2009, 18, 461-464
    [22] Pradhan B., Setyowati K., Liu H. Y., et al., Carbon nanotube-polymer nanocomposite infrared sensor, 2008, 8, 1142-1146
    [23] Ralph K., Frank, H., Hilbert V. L, et al., Separation of metallic from semiconducting single-walled carbon nanotubes, Science, 2003, 18, 344-347
    [24] Qian P., Wu Z. Y., Diao P., et al., Electrochemical identification of metallic and semiconducting single-walled carbon nanotubes, J. Phys. Chem. C, 2008, 112, 13346-13348
    [25] Ju S. Y., Utz M., Papadimitrakopoulos F., Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines, J. Am. Chem. Soc., 2009, 131, 6775-6784
    [26] Zhang H. L., Liu Y. Q., Cao L. C., et al., A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction, Adv. Mater., 2009, 21, 813 - 816
    [27] Mandakini K., Helen L., George G., et al., Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions, Science, 2009, 323, 234-237
    [28] Souza Filho A. G., Jorio A., Samsonidze G. G., et al., Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes, Phys. Rev. B, 2003, 67, 035427-(1-7)
    [29] Deepak F. L., Govindaraj A., Rao C. N. R., Synthetic strategies for Y-junction carbon nanotubes, 2001, 345, 5-10
    [30] Zhu H. W., Xu C. L., Wu D.H., et al., Direct synthesis of long single-walled carbon nanotube strands, Science, 2002, 296, 884-886
    [31] Zhou Z., Ci L., Song L., et al., Random networks of single-walled carbon nanotubes, J. Phys. Chem. B, 2004, 108, 10751-10753
    [32] Zhu H., Xu C., Wei B., et al., A new method for synthesizing double-walled carbon nanotubes, Carbon, 2002, 40, 2021-2023
    [33] Wie J., Jiang B., Wu D., Large-scale synthesis of long double-walled carbon nanotubes, J Phys Chem B, 2004, 108, 8844-8847
    [34] Ren W. C., Li F., Bai S., Cheng H. M., The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechno., 2006, 6, 1339-1345
    [35]蔡正千,热分析,北京,高等教育出版社,1993, 12-13
    [36]李余增,热分析,北京,清华大学出版社,1987, 20-25
    [37] Su L, F, Wang J, N, Yu F, et al., Continuous production of single-wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene, Chem. Phys. Lett., 2006, 420, 421-425
    [38] Ren W. C., Li F., Bai S., et al., The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechno., 2006, 6, 1339-1345
    [39] Musumeci A. W., Waclawik E. R., Frost R. L., A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy, Spectrochim Acta A, 2008, 7, 140-142
    [40] Brar V. W., Samsonidze G. G., Santos A. P., et al., Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter, J. Nanosci. Nanotechno., 2005, 5, 209-228
    [41] Dresselhaus M.S., Dresselhaus G., Saito R., et al., Raman spectroscopy of carbon nanotubes, Phys. Rep., 2005, 409, 47-99
    [42] Souza Filho A. G., Jorio A., Samsonidze G. G., et al., Competing spring constant versus double resonance effects on the properties of dispersive modes in isolatedsingle-wall carbon nanotubes, Phys. Rev. B, 2003, 67, 035427-0354413
    [43] Jorio A., Saito R., Hafner,J. H., et al., Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering, Phys. Rev. Lett., 2001, 86, 1118-1121
    [44] Song L., Ma W. J., Ren Y., Zhou W. Y., et al., Temperature dependence of Raman spectra in single-walled carbon nanotube rings, Appl. Phys. Lett., 2008, 92, 121905-(1-3)
    [45] Iijima S., Ichihashi T., Ando Y., Pentagons, heptagons and negative curvature in graphite microtubule growth, Nature, 1992, 356, 776-778
    [46]孟广耀,化学气相淀积与无机新材料,北京:科学出版社, 1984
    [47] Yang Q. H., Bai S., Sauvajol J. L., et al., Large-diameter single-walled carbon nanotubes synthesized by chemical vapor deposition, Adv. Mater., 2003, 15, 792-795
    [48] Kim K. S., Imris M., Shahverdi A., et al., Single-walled carbon nanotubes prepared by large-scale induction thermal plasma process: synthesis, characterization, and purification, J. Phys. Chem. C, 2009, 113, 4340-4348
    [49] Iliev M. N., Litvinchuk A. P., Arepalli S., et al., Fine structure of the low-frequency Raman phonon bands of single-wall carbon nanotubes, Chem. Phys. Lett., 2000, 316, 217-221
    [50] Saito R., Fujita M., Dresselhause G., et al., Electronic structure and growth mechanism of carbon tubules, Mater. Sci. &Eng. B, 1993, 19, 185-191
    [51] Lebedkin S., Schweiss P., Renker B., et al., Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization, Carbon 2002, 40, 417-423
    [52] Wei J. Q., Zhu H. W., Jia Y., The effect of sulfur on the number of layers in a carbon nanotube, Carbon, 2007, 45, 2152-2158
    [53] Liu Q. F., Ren W. C., Chen Z. G., Diameter-selective growth of single-walled carbon nanotubes with high quality by floating catalyst method, Acs Nano, 2008, 2, 1722-1728
    [54] Ren W., Li F., Bai S., et al., The effect of sulfur on the structure of carbon nanotubes produced by a floating catalyst method, J. Nanosci. Nanotechno., 2006, 6, 1339-1345
    [55] Li W. Z., Zhang H., Wang C. Y., et al., Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 1997, 70, 2684-2686
    [56] Tian Y. J., Hu Z., Yang Y., et al., In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor, Am. Chem. Soc., 2004, 126, 1180-1183
    [57] Chen X. H., Wang R. M., Xu J., TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition, Micron, 2004, 35, 455-460
    [58] Kim M. S., Rodriguez N. M., Barker R. T. Z., The interplay between sulfur adsorption and carbon deposit ion on cobalt catalyst, J. Catalysis, 1993, 143, 449-463
    [1] Vichchulada P., Shim J., Lay M. D., Non-oxidizing purification method for large volumes of long, undamaged single-walled carbon nanotubes, J. Phys. Chem. C, 2008, 112, 19186-19192
    [2] Ballesteros B., Tobias G., Shao L., Steam purification for the removal of graphitic shells coating catalytic particles and the shortening of single-walled carbon nanotubes, Small, 2008, 4, 1501-1506
    [3] Suzuki T., Inoue S., Ando Y., Purification of single-wall carbon nanotubes by using high-pressure micro reactor, Diamond Relat. Mater., 2008, 17, 1596-1599
    [4] Cai Y., Yan Z. H., Zi M., et al., Preparative purification of single walled carbon nanotubes by high speed countercurrent chromatography, J. Liq. Chromatogr. R. T., 2009, 32, 399-406
    [5] Kieran M., Oscar D., Andrew T. H., A review of carbon nanotube purification by microwave assisted acid digestion, Sep. Purif. Technol., 2009, 66, 209-222
    [6] Dujardin E., Ebbesen T. W., Krishnan A., et al., Purification of single-shell nanotubes, Adv. Mater., 1998, 10, 611-614
    [7] Hou P. X., Bai S., Yang Q. H., et al. Multi-step purification of carbon nanotubes, Carbon, 2002, 40, 81-85
    [8] Wu C. X., Li J. X., Dong G. F., et al., Removal of Ferromagnetic Metals for the Large-Scale Purification of Single-Walled Carbon Nanotubes, J. Phys. Chem. C, 2009, 113, 3612-3616
    [9]蔡正千,热分析,北京,高等教育出版社,1993,12-13
    [10]李余增,热分析,北京,清华大学出版社,1987,20-25
    [11]王筱留,钢铁冶金学(炼铁部分),北京,冶金工业出版社(第2版),2005,80-81
    [12] Musumeci A. W., Waclawik E. R., Frost R. L., A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy, Spectrochim Acta A,2008, 7, 140-142
    [13] Brar V. W., Samsonidze G. G., Santos A. P., et al., Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter, J. Nanosci. Nanotechno., 2005, 5, 209-228
    [14] Dresselhaus M.S., Dresselhaus G., Saito R., et al., Raman spectroscopy of carbon nanotubes, Phys. Rep. 2005, 409, 47-99
    [15] Itkis M. E., Perea D., Niyogi S., et al., Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy, Nano Lett., 2003, 3, 309-314
    [16] Itkis M. E., Perea D., Jung R., et al., Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes, J. Am. Chem. Soc., 2005, 127, 3439-3448
    [17] Kataura H., Kumazawa Y., Maniwa Y., et al., Optical properties of single-wall carbon nanotubes, Synth. Met., 1999, 103, 2555-2558
    [18] Jost O., Gorbunov A. A., Pompe W., et al., Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, J. Appl. Phys. Lett., 1999, 75, 2217-2219
    [19] Liu X., Pichler T., Knupfer M., et al., Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response, Phys. ReV. B, 2002, 66, 045411-045418
    [20] Zimmerman J. L., Bradley R. K., Huffman C. B., et al., Gas-Phase Purification of Single-Wall Carbon Nanotubes, Chem. Mater., 2000, 12, 1361-1366
    [21] Blackburn J. L., Yan Y., Engtrakul C., et al., Synthesis and characterization of boron-doped single-wall carbon nanotubes produced by the laser vaporization technique, Chem. Mater., 2006, 18, 2558-2566
    [22] Monthioux B.W., Smith A., Claye D. E., Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation, Carbon, 2001, 39, 1251-1272
    [23] Fogden S., Verdejo R., Cottam B., et al., Purification of single walled carbonnanotubes: The problem with oxidation debris, Chem. Phys. Lett., 2008, 460, 162-167
    [1] Lovell C. S., Wise K. E., Kim J. W., et al., Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite, Polymer, 2009, 50, 1925-1932
    [2] Deng C. F., Zhang P., Ma Y. X., et al., Dispersion of multiwalled carbon nanotubes in aluminum powders, Rare Matals, 2009, 28, 175-180
    [3] Rastogi R., Kaushal R., Tripathi S. K., et al., Comparative study of carbon nanotube dispersion using surfactants, J. Colloid. Interf. Sci., 2008, 328, 421-428
    [4] Hamon M. A., Chen J., Haddon R. C., et al., Solution properties of single-walled carbon nanotubes (s-SWNTs), J. Am. Chem. Soc., 2001, 123, 733-734
    [5] Zhou X. S., Wu T. B., Ding K. L., et al., The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid, Chem. Commun., 2009, 14, 1897-1899
    [6] Islam M. F., Roils E., Bergey D. M., et al., High weight frac-tion surfactant solubilization of single-wall carbon nanotubes in water, Nano Lett., 2003, 3, 269-273
    [7] Datsyuk V., Landois P., Fitremann J., et al., Double-walled carbon nanotube dispersion via surfactant substitution, J. Mater. Chem., 2009, 19, 2729-2736
    [8] Sobkowicz M. J., Dorgan J. R., Gneshin K. W., et al., Controlled dispersion of carbon nanospheres through surface functionalization, Carbon, 2009, 47, 622-628
    [9] Lago R. M., Tsang S. C., Green M. L. H., Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups, J. Chem. Soc. Chem. Commun., 1995, 1355-1356
    [10] Jimenez L. L., Henrio P. Y., Lund A., et al., MWNT reinforced melamine- formaldehyde containing alpha- cellulose, Compos. Sci. Technol., 2007, 67, 844-854
    [11] Saito T., Matsushiqe K., Tanaka K., Chemical treatment and modification ofmulti-walled carbon nanotubes, Phys. Rev. B: Condens. Matter., 2002, 323, 280-283
    [12] Porro S., Musso S., Vinante M., Purification of carbon nanotubes grown by thermal CVD, Physica E, 2007, 37, 58-61
    [13] Poirier D.M., Weaver J.H., Carbon (as Graphite, Buckminsterfullerene, and Diamond) by XPS, Surf. Sci. Spectra., 1994, 2, 232 -241
    [14] Wang Z. M., Kanoh H., Kaneko K., et al., Structural and surface property changes of macadamia nut-shell char upon activation and high temperature treatment, Carbon, 2002, 40, 1231-1239
    [15] Biniak S., Szymanski G., Siedlewski J., et al., The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon, 1997, 35, 1799-1810
    [16] Moon Y. K., Lee J., Lee J. K., et al., Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution, Langmuir, 2009, 25, 1739-1743
    [17] Musumeci A. W., Waclawik E. R., Frost R. L., A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy, Spectrochim Acta A, 2008, 7, 140-142
    [18] Brar V. W., Samsonidze G. G., Santos A. P., et al., Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter, J. Nanosci. Nanotechno., 2005, 5, 209-228
    [19] Dresselhaus M.S., Dresselhaus G., Saito R., et al., Raman spectroscopy of carbon nanotubes, Phys. Rep. 2005, 409, 47-99
    [1] Thess A., Lee R., Nikolaev P., et al., Crystalline ropes of metallic carbon nanotubes, Science, 1996, 273, 483 - 487
    [2] Fischer J. E., Dai H., Thess A., et al., Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Phys. Rev. B, 1997, 55, R4921-R4924
    [3] Dresselhaus M. S., Dresselhaus G., Jorio A., et al., Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 2002, 40, 2043-2061
    [4] Wildoer J. W. G., Venema L. C., Rinzler A. G.,et al., Electronic structure of atomically resolved carbon nanotubes, Nature, 1998, 391, 59-62
    [5] Odom T. W., Huang J. L., Kim P., Lieber C. M., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62-64
    [6] Ding L., Tselev A., Wang J. Y., et al., Selective growth of well-aligned semiconducting single-walled carbon nanotubes, Nano Lett., 2009, 9, 800-805
    [7] Huang C. S., Yeh C. Y., Yuan C. H., et al., The study of a carbon nanotube O2 sensor by field emission treatment, Diam. Relat. Mater., 2009, 18, 461-464
    [8] Pradhan B., Setyowati K., Liu H. Y., et al., Carbon nanotube-polymer nanocomposite infrared sensor, 2008, 8, 1142-1146
    [9] Ralph K., Frank, H., Hilbert V. L, et al., Separation of metallic from semiconducting single-walled carbon nanotubes, Science, 2003, 18, 344-347
    [10] Qian P., Wu Z. Y., Diao P., et al., Electrochemical identification of metallic and semiconducting single-walled carbon nanotubes, J. Phys. Chem. C, 2008, 112, 13346-13348
    [11] Ju S. Y., Utz M., Papadimitrakopoulos F., Enrichment mechanism of semiconducting single-walled carbon nanotubes by surfactant amines, J. Am. Chem. Soc., 2009, 131, 6775-6784
    [12] Zhang H. L., Liu Y. Q., Cao L. C., et al., A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction, Adv.Mater., 2009, 21, 813 - 816
    [13] Mandakini K., Helen L., George G., et al., Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions, Science, 2009, 323, 234-237
    [14] Li Q. W., Li Y., Zhang X. F., et al., Structure-dependent electrical properties of carbon nanotube fibers, Adv. Mater., 2007, 19, 3358-3363
    [15] Kawasaki S., Hara T., Iwai Y., et al., Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery, Mater. Lett., 2008, 62, 2917-2920
    [16]蔡正千,热分析,北京,高等教育出版社,1993, 12-13
    [17]李余增,热分析,北京,清华大学出版社,1987, 20-25
    [18] Musumeci A. W., Waclawik E. R., Frost R. L., A comparative study of single-walled carbon nanotube purification techniques using Raman spectroscopy, Spectrochim Acta A, 2008, 7, 140-142
    [19] Brar V. W., Samsonidze G. G., Santos A. P., et al., Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter, J. Nanosci. Nanotechno., 2005, 5, 209-228
    [20] Dresselhaus M.S., Dresselhaus G., Saito R., et al., Raman spectroscopy of carbon nanotubes, Phys. Rep. 2005, 409, 47-99
    [21] Dresselhaus M. S., Dresselhaus G., Intercalation compounds of graphite, Adv. Phys., 1981, 30, 139-326
    [22] Dresselhaus M. S., Dresselhaus G., Intercalation compounds of graphite, Adv. Phys., 2002, 50, 1-186
    [23] Wildoer J. W. G., Venema L. C., Rinzler A. G.,et al., Electronic structure of atomically resolved carbon nanotubes,Nature, 1998, 391, 59-62
    [24] Odom T. W., Huang J. L., Kim P., Lieber C. M., Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, 1998, 391, 62-64
    [1]衣宝廉,燃料电池--原理?技术?应用,北京,化学工业出版社,2003, 5-6
    [2] Appleby A. J., Goulkes F. R., Fuel Cell Hand Book, Van Nostrand Reinhold, New York, 1989
    [3]Antolini E., Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B-environ., 2009, 88, 1-24
    [4] Wang X., Hsing L. M., Yue P. L., Electrochemical characterization of binary carbon supported electrode in polymer electrolyte fuel cells, J. Power Sour., 2001, 96, 282-257
    [5]毛宗强,谢晓峰,王宇新等,燃料电池,北京,化学工业出版社,2005, 11-12
    [6] Giordano N., Passalacqua E., Pino L., et al, Analysis of platinum particle size and oxygen reduction in phosohoric acid, Electrochim. Acta., 1991, 36, 1979-1984
    [7] Matsumoto T., Komatsu T., Arai K., et al., Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, Chem. Commun., 2004, 840-841
    [8] Huang H. X., Chen S. X., Yuan C., Platinum nanoparticles supported on activated carbon fiber, J. Power Sources, 2008, 175, 166-174
    [9] Rocco A. M., da Silva C.A., Macedo M. I. F., et al., Purification of catalytically produced carbon nanotubes for use as support for fuel cell cathode Pt catalyst, J. Mater. SCI., 2008, 43, 557-567
    [10] Zhang G. X., Sun S. H., Yang D. Q., et al., The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment, Carbon , 2008, 46, 196-205
    [11] Li X., Ge S., Hui C. L., et al., Well-dispersed multiwalled carbon nanotubes supported platinum nanocatalysts for oxygen reduction, Electrochem. Solid St., 2004, 7-9, A286-A289
    [12] Wang Y., Xu X., Tian Z., et al ., Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon naotubes in solution, Chem. Eur. J., 2006, 12, 2542-2549
    [13] Jimenez L. L, Henrio P. Y, Lund A., et al., MWNT reinforced melamine-formaldehyde containing alpha- cellulose, Compos. Sci. Technol., 2007, 67, 844-854
    [14] Hui C. L., Li X. G., Hsing I. M., Well-dispersed surfactant-stabilized Pt/C nanocatalysts for fuel cell application: Dispersion control and surfactant removal, Electrochimica Acta, 2005, 51, 711-719
    [15] Guo D. J., Li H. L., High dispersion and electrocatalytic properties of Pt nanoparticles on SWNT bundles, J. Electroanal. Chem., 2004, 573, 197-202
    [16] He Z., Chen J., Liu D., et al., Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation, Mater. Chem. Phys., 2004, 85, 396-401
    [17] Wu G., Chen Y. S., Xu B. Q., Remarkable supported effect of SWNTs in Pt catalyst for methanol electrooxidation, Electrochem. Commun., 2005, 7, 1237-1243
    [18] Zhao Y., Fan L., Zhong H., et al., Platinum nanoparticle clusters immobilized on multiwalled carbon nanotubes: Electrodeposition and enhanced electrocatalytic activity for methanol oxidation, Adv. Funct. Mater., 2007, 17, 1537-1541
    [19] Onoe T., Iwamoto S., Inoue M., Synthesis and activity of the Pt catalyst supported on CNT, Catal. Commun., 2007, 8, 701-706
    [20] Wang J. J., Yin G. P., Zhang J., et al., High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell, Electrochimica Acta, 2007, 52, 7042-7050
    [21] Wang J., Yin G., Shao Y., et al., Platinum deposition on multiwalled carbon nanotubes by ion-exchange method as electrocatalysts for oxygen reduction, J. Electrochem. Soc., 2007, 154, B678-B693
    [22] Zhao Z. W., Guo Z. P., Ding J., et al., Novel ionic liquid supported synthesis of platinum-based electrocatalysts on multiwalled carbon nanotubes, Electrochem. Commun., 2006, 8, 245-250
    [23]Shaijumon M. M., Ramaprabhu S., Platinum/multiwalled carbon nanotubes-platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell, Appl. Phys. Lett., 2006, 88, 253105-253107
    [24] Lizcano-Valbuena W. H., Paganin V. A., Conzalez E. R., Methanol electro-oxidation on gas diffusion electrodes prepared with Pt-Ru/C catalysts, Electrochimica Acta, 2002, 47, 3715-3719
    [25] Rajalakshmi N., Ryu H., Shaijumon M. M., et al., Performance of polymer electrolyte membrane fuel cells with carbon nanotubes as oxygen reduction catalyst support material, J. Power Sour., 2005, 140, 250-257
    [26] Zhang B., Chen L. J., Ge K., Y., et al., Preparation of multiwall carbon nanotubes-supported high loading platinum for vehicular PEMFC application, Chin. Chem. Lett., 2005, 16, 1531-1534
    [27] Liu J. M., Meng H., Li J. I., et al., Preparation of high perfrmance Pt/CNT catalysts stabilized by ethylenediaminetetraacetic acid disodium salt, Fuel cells, 2007, 5, 402-407
    [28] Lee C. L., Ju Y. C., Chou P. T., et al., Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regulated reduction of surfactants and their application as electrochemical catalyst, Electrochem. Commun., 2005, 7, 453-458
    [29] Matsumoto T., Komatsu T., Nakano H., et al., Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catal. Today, 2004, 90, 277-281
    [30] Saha M. S., Li R., Sun X., High loading and monodispersed Pt nanoparticles on multiwalled caobn nanotubes for high performance proton exchange memebrane fuel cells, J. Power Sour., 2008, 177, 314-322
    [31] Wang C., Daimon H., Onodera T., et al., A General Approach to the Size- and Shape-Controlled Synthesis of Platinum Nanoparticles and Their Catalytic Reduction of Oxygen, Angew. Chem. Int. Ed. 2008, 47, 3588 -3591
    [32] Stonehart P., Development of alloy electrocatalysts for phosphoric acid fuel cells (PAFC), J. Appl. Electrochem., 1992, 22, 995-1001
    [33] Delime F., Leger J. M., Lamy C., Optimization of platinum dispersion in Pt-PEM of electrodes: application to the electrooxidation of ethanol, J. Appl. Eclectrochem., 1998, 28, 27-35