低维结构和器件的物理力学耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在纳米尺度,许多物质和材料都具有非常奇特的物理、化学、力学性能和规律,而根据这些特性制成的各类纳米器件和结构拥有非常广阔的应用前景。本文使用以量子力学为基础的密度泛函理论、Hartree-Fork从头算理论以及半经验量子力学算法,结合经验的分子动力学模拟和量子分子动力学模拟,并配合连续介质力学建模方法,针对关键纳米材料结构和系统中的碳纳米管力电耦合效应和失效行为、单壁碳纳米管电致伸缩变形、基于碳纳米管振荡器中的能量转换和耗散、铜纳米线在碳纳米管内的结构相变与破坏、多壁碳纳米管各层手性存在的特殊规律和生长方式、以及生物纳米复合材料结构中缺陷的自修复等一系列极为重要的低维结构的物理力学问题进行模拟计算和创新原理设计。在分子物理力学理论研究指导下,利用大规模并行计算模拟和力学理论建模,尝试探索碳纳米管系统中特异的物理力学耦合行为以及纳尺度材料的结构性能和生长机理,并理解生物材料自优化机理,主要有以下一些新的发现:
     1.纳米机电系统的发展要求智能材料具有大的应变和高功率密度以获得优良的能量转换能力,碳纳米管因其优越的物理力学性能以及对外场(光、电、磁等)的高敏感性很有可能成为满足上述要求的纳智能材料。我们通过基于Roothaan-Hall方程的半经验量子力学计算和量子分子动力学模拟,揭示出机械载荷和电场共同作用下碳纳米管的特殊物理力学耦合行为、电致破坏机理和力电耦合作用对纳米管电学性能的重要影响。然后使用更为精确的Hartree-Fork从头算法和密度泛函理论,发现单壁碳纳米管在沿其轴向的外加电场作用下,碳纳米管的轴向具有超过10%的巨电致伸缩变形,所得到的单位体积功率密度要比已报道的铁电、电致和磁致伸缩材料以及电致驱动聚合物高出近3个量级以上,而单位质量功率密度比其它已知材料高出4个量级以上。
     2.多壁碳纳米管因其极低的层间相互作用,在纳米轴承和高频纳米振荡器方面有着潜在的应用前景。对于碳纳米管振荡器中存在的能量耗散问题,我们通过纳秒量级的分子动力学模拟,发现双层碳纳米管的层间相互作用和摩擦力是与其手性和结构以及环境温度密切相关的,对于手性匹配的双层碳纳米管振荡器系统,它在振荡中的能量耗散率要明显地大于手性不匹配系统的能量耗散率。手性匹配的双层碳纳米管系统在低温条件下的振荡时间只能持续几个纳秒,而手性不匹配的双层碳纳米管系统在低温条件下振荡时间却能达到几十个纳秒。但在较高温度条件下,系统的能量耗散率显著提高,温度对层间摩擦力的影响会远高于碳纳米管手性造成的差异。
At nanoscale, many kinds of materials and structures have superior mechanical, electronic and chemical characteristics and the advanced functional nano-elements become more and more important in potential applications. Atomistic simulations have been played important roles in scaling down to nanoscale and can help in the elucidation of their properties and in the development of new methods for their fabrications and applications. In the thesis, exceptional properties and behaviors and the coupled effects of low-dimensional materials and structures have been investigated by using the atomistic methods including molecular mechanics and quantum mechanics as well as the continuum theory.
     Using the semi-emprical quantum mechanics as well as quantum-molecular dynamics techniques based on the Roothaan–Hall equations and the Newton motion laws, we have investigated the coupled mechanical and electronic behaviours of single-walled open carbon nanotubes (CNTs) under applied electric field and tensile loading. Different failure mechanisms and mechanical properties are found for CNTs subjected to electric fields and that subjected to tensile load. Electronic polarization and mechanical deformation induced by an electric field and tension load can significantly change the electronic properties of a CNT. The coupling of mechanical and electrical behaviours is an important characteristic of CNTs. Mechanisms for converting electrical energy into mechanical energy are essential for the design of diverse nanoscale devices such as sensors, actuators, artificial muscles, robotics, optical fiber switches and so on. Materials having special piezoelectric, electrostrictive and electrochemical properties play important roles in conversion between electrical and mechanical energy. Our researches have found that single-walled carbon nanotubes have exceptionally high axial electrostrictive deformation using ab initio and density functional quantum mechanics simulations.
     Both armchair and zigzag open-ended tubes and a capped tube are modeled and in all of them external electric fields induced axial strains can be greater than 10% for field strength within 1V/?. The corresponding volumetric and gravimetric work capacities are predicted to be three and six orders higher than that of the best known ferroelectric, electrostrictive, magnetostrictive materials and elastomers respectively.
     Multiwalled carbon nanotubes (MWNTs) have broad prospects as components in nanomechanical devices due to many exceptional electrical and mechanical
引文
[1] 中国基础学科发展报告,国家科学技术部,国家自然科学基金委,2001.4; 白春礼,纳米科技及其发展前景,科学通报 2001,46(2),89-92;R. F. Service, Nanoscientists Look to the Future, Science 2001, 294, 1448-1449;R. F. Service, Atom-Scale Research Gets Real, Science 2000, 290, 1524-1531.
    [2] 郑哲敏, 周恒, 张涵信, 黄克智, 白以龙, 21 世纪初的力学发展趋势, 力学进展 1995, 25, 433-441; 自然科学学科发展战略调研报告:力学,国家自然科学基金委员会.科学出版社,1997.
    [3] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001;张志琨,崔作林,纳米技术与纳米材料,国防工业出版社,2000;刘吉平,郝向阳,纳米科学与技术,科学出版社,2002.
    [4] L. Lu, M. L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science, 2000, 287, 1463-1466.
    [5] G, Friesecke, and R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J.Mech.Phys.Solids. 2000, 48, 1519-1540.
    [6] Z. Suo, Evolving material structures of small feature sizes, Int. J. Solids and Struct. 2000, 37, 367-378.
    [7] 纳米科技研究成果汇编,国家自然科学基金委成立 15 周年系列文集,2001.
    [8] 黄克智,肖纪美主编, 材料的损伤断裂机理和宏微观力学理论, 清华大学出版社,1999.
    [9] 傅敏,王会才,洪友士,微米/纳米尺度的材料力学性能测试,力学进展 2000, 3, 391-399.
    [10] 杨卫等, 纳米力学进展,力学进展 2002, 32 (2), 161-174.
    [11] K. Jiang, Q. Q. Li, S. S. Fan, Nanotechnology: pinning continuous carbon nanotube yarns. Nature 2002, 419, 801-801.
    [12] Bai, Chun-Li, The Advancement of Nanoscience and Nanotechnology in China, AsiaNANO2002, Nov.28, 2002, Tokyo
    [13] O. Inganas, I. Lundstrum, Carbon Nanotube Muscles, Science, 1999, 284, 1281-1282.
    [14] W. Lu, A. G. Fadeev, B. Qi et al., Use of Ionic Liquids for -Conjugated Polymer Electrochemical Devices, Science, 2002, 297, 983-987.
    [15] Q. M. Zhang, H. Li, M. Poh et al., An all-organic composite actuator material with a high dielectric constant, Nature 2002, 419, 284-287.
    [16] Q. M. Zhang, V. Bharti, X. Zhao, Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly Copolymer, Science 1998, 280, 2101-2104.
    [17] R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%, Science 2000, 287, 836-839.
    [18] E. W. H. Jager, E. Smela, O. Inganas, Microfabricating conjugated polymer actuators, Science 2000, 290, 1540-1545.
    [19] E. W. H. Jager, E. Smela, O. Inganas, I. Lundstrum, Microrobots for micrometer-size objects in aqueous media, Science 2000, 288, 2335-2338.
    [20] S. E. Lyshevski, Integrated control of microactuators and integrated circuits: a new turning approach in MEMS technology. Proc. IEEE Conf.Decision and Control 1999, 3, 2611-2616.
    [21] N. Shigyo, H. Tanimoto, New quantum effect model for practical device simulation. IEEE Transactions on Electron Devices 2000, 47(5), 1010-1012.
    [22] R. B. Vallee, P. Hook, A magnificent machine, Nature 2003, 421, 701; S. A. Burgess et al., Dynein structure and power stroke, Nature 2003, 421, 715-718.
    [23] 陈会明,碳纳米管合成与性能,科学出版社,2002.
    [24] Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Carbon Nanotubes—the Route Toward Applications, Science 2002, 297, 787-792.
    [25] R. F. Service, Superstrong Nanotubes Show They Are Smart, Too, Science 1998, 281, 940-942.
    [26] J. Cumings, A. Zettl, Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes, Science 2000, 289, 602-604.
    [27] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science 2000, 287, 637-640; M.-F. Yu, B. I. Yakobson, R. S. Ruoff, Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes, Journal of Physical Chemistry B 2000, 104, 8764-8767.
    [28] N. Kolmogorov, V. H. Crespi, Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes, Physical Review Letters 2000, 85, 4727-4730.
    [29] Takanori Fukushima. Atsuko Kosaka, Yoji Ishimura, Takashi Yamamoto, Toshikazu Takigawa, Noriyuki Ishii, and Takuzo Aida, Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes, Science 2003, 300, 2072-2074
    [30] A. Keith, Williams Peter T. M. Veenhuizen, Beatriz G. de la Torre, Ramon Eritja, Cees Dekker, Nanotechnology: Carbon nanotubes with DNA recognition, Nature 2002, 420,761-761.
    [31] Cyrille Richard, Fabrice Balavoine, Patrick Schultz, Thomas W. Ebbesen, Charles Mioskowski, Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes, Science 2003, 300, 775-778.
    [32] J. Kong, N. R. Franklin, C.Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai, Nanotube molecular wires as chemical sensors, Science 2000, 287, 622-625; S. Ghosh, A.K.Sood, N. Kumar, Carbon nanotube flow sensors, Science 2003, 299, 1042-1044.
    [33] P. G. Collins, K. Bradley, I. Masa, A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 2000, 287, 1801-1804.
    [34] J. Kong, N. R. Franklin, C. W. Zhou et al., Nanotube Molecular Wires as Chemical Sensors, Science 2000, 287, 622-625.
    [35] C. Liu, Y. Y. Fan, M. Liu et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature, Science 1999, 286, 1127-1129.
    [36] T. Fukushima, A. Kosaka, Y. Ishimura et al., Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes, Science 2003, 300, 2072-2074.
    [37] A. Bachtold, S. Christoph, J. P. Salvetat et al., Aharonov–Bohm oscillations in carbon nanotubes, Nature 1999, 397, 673-675.
    [38] Marc S. Lavine, Nanotubes in the groove, Science 2002, 298, 499-499.
    [39] Z. L. Wang, R. P. Gao, P. Poncharal et al., Mechanical and electrostatic properties of carbon nanotubes and nanowires, Materials Science and Engineering C 2001, 16, 3-10.
    [40] R. H. Baughman, C. Cui, A. A. Zakhidov et al., Carbon nanotube actuators, Science 1999, 284, 1340-1344.
    [41] C. Dillon, K. M. Jones, T. A. Bekkedahl, C .H. Klang, D. S. Bethune, and M. J. Heben, Storage of hydrogen in single-walled carbon nanotubes, Nature 1997, 386, 377-379.
    [42] S. M. Lee and Y. H. Lee, Hydrogen storage in single-walled carbon nanotubes, Appl. Phys. Lett. 2000, 76, 2877-2879.
    [43] M. C. Gordillo, J. Boronat, and J. Casulleras, Zero-Temperature Equation of State of Quasi-One-Dimensional H2, Phys. Rev. Lett. 2000, 85, 2348-2351.
    [44] X. Fan, E. C. Dickey, P. C. Eklund et al., Atomic Arrangement of Iodine Atoms inside Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 2000, 84, 4621-4624.
    [45] Kenichiro Koga, G. T. Gao, Hideki Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 2001, 412, 802-805.
    [46] Yutaka Maniwa, Hiromichi Kataura, Masatoshi Abe et al., Phase Transition in Confined Water Inside Carbon Nanotubes, Journal of Physical Society of Japan 2002, 71,2863-2866.
    [47] E. Dujardin, T. W. Ebbesen, H. Hiura, K. Tanigaki, Capillarity and wetting of carbon nanotubes, Science 1994, 265, 1850-1852.
    [48] R. S. Lee, H. Kim, J. E. Fisher, A. Thess, R. E. Smalley, Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br, Nature 1997, 388, 255-257.
    [49] G. Gao, T. Cagin, A. William, III. Goddard, Position of K Atoms in Doped Single-Walled Carbon Nanotube Crystals, Phys. Rev. Lett. 1998, 80, 5556-5559.
    [50] Vincent Meunier, Jeremy Kephart, Christopher Roland, and Jerry Bernholc, ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems, Phys. Rev. Lett. 2002, 88, 075506 1-4.
    [51] T. Pichler, H. Kuzmany, H. Kataura, and Y. Achiba, Metallic Polymers of C60 Inside Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 2001, 87, 267401 1-4.
    [52] K. Suenaga et al., Direct Imaging of Sc2@C84 Molecules Encapsulated Inside Single-Wall Carbon Nanotubesby High Resolution Electron Microscopy with Atomic Sensitivity. Phys. Rev. Lett. 2003, 90, 055506 1-4.
    [53] K. Suenaga et al., One-Dimensional Metallofullerene Crystal Generated Inside Single-Walled Carbon Nanotubes. Phys. Rev. Lett. 2000, 85, 5384-5387.
    [54] Boris Ni et al., Compression of Carbon Nanotubes Filled with C60, CH4, or Ne: Predictions from Molecular Dynamics Simulations. Phys. Rev. Lett. 2002, 88, 205505 1-4.
    [55] Zugang Mao and Susan B. Sinnott, Predictions of a Spiral Diffusion Path for Nonspherical Organic Moleculesin Carbon Nanotubes. Phys. Rev. Lett. 2002, 89, 278301 1-4.
    [56] Won Young Choi, Jeong Won Kang, and Ho Jung Hwang, Structures of ultrathin copper nanowires encapsulated in carbon nanotubes. Phys. Rev. B 2003, 68, 193405 1-4.
    [57] S. Arcidiacono, J. H. Walther, D. Poulikakos, D. Passerone, et al. Solidification of Gold Nanoparticles in Carbon Nanotubes. Phys. Rev. Lett. 2005, 94, 105502 1-4.
    [58] J.W. Kang and H. J. Hwang, Structural properties of caesium encapsulated in carbon nanotubes, Nanotechnology 2004, 15, 115-119.
    [59] J.W. Kang and H. J. Hwang, Potassium Structures in Carbon Nanotubes, J. Phys. Soc. Jpn. 2004, 73, 738-744.
    [60] Y. H. Gao, and Y. Bando, Nanotechnology: Carbon nanothermometer containing gallium, Nature 2002, 415, 599-599.
    [61] Z. W. Liu, Yoshio Bando, Masanori Mitome et al., Unusual Freezing and Melting of Gallium Encapsulated in Carbon Nanotubes, Phys. Rev. Lett. 2004, 93, 095504 1-4.
    [62] P. M. Ajayan, V. Ravikumar, J. C. Charlier, Surface Reconstructions and DimensionalChanges in Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 1998, 81, 1437-1440.
    [63] C. H. Kiang, Electron irradiation induced dimensional change in bismuth filled carbon nanotubes, Carbon 2000, 38, 1699-1701.
    [64] T. Belytschko, S. P. Xiao, G. C. Schatz et al., Atomistic simulations of nanotube fracture, Phys. Rev. B 2002, 65, 235430 1-8.
    [65] B. Beatrice, Agnès Claye, Brian W. Smith et al., Abundance of encapsulated C60 in single-wall carbon nanotubes, Chem. Phys. Lett. 1999, 310, 21-24.
    [66] T. W. Ebbessen, P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 1992, 358, 220-222.
    [67] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diamete, Nature 1993, 363, 603-605.
    [68] S. Bandow, M. Takizawa, K. Hirahara et al., Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes, Chem Phys Lett. 2001, 337, 48-54.
    [69] de Heer W A, W. S. Bacsa, A. Chatelain et al., Aligned carbon nanotube films: production and optical and electronic properties, Science 1995, 268, 845-847.
    [70] J. W. Mintmire, B. I. Dunlap, C. T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 1992, 68, 631-634.
    [71] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 1992, 68, 1579-1581.
    [72] R. Saito, M. Fujita, G. Dresselhaus, M. Dresselhaus, Electronic structure of graphene tubules based on C60, Phys. Rev. B 1992, 46, 1804-1811.
    [73] C. Dekker, Carbon Nanotubes as Molecular Quantum Wires, Phys. Today 1999, 52(5), 22-28.
    [74] Min Ouyang, Jin-Lin Huang, Chin Li Cheung et al., Energy Gaps in “metallic” Single-Walled Carbon Nanotubes. Science 2001, 292, 702-705.
    [75] Z. K. Tang, Lingyun Zhang, N. Wang et al., Superconductivity in 4-Angstrom Single-Walled Carbon Nanotubes. Science 2001, 292, 2462-2465.
    [76] W. C. P. Henk, Tijs Teepen, Zhen Yao et al. Carbon Nanotube Single-Electron Transistors at Room Temperature, Science 2001, 293, 76-79.
    [77] Gary stix, Nanotube in the clean room, Scientific American 2005, 292, 82.
    [78] T. Rueckes, Kyoungha Kim, Ernesto Joselevich et al. Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science 2000, 289, 94-97.
    [79] Y. Kwon, K. Birgitta Whaley, “Bucky Shuttle” Memory Device: Synthetic Approach andMolecular Dynamics Simulations. Phys. Rev. Lett. 1999, 82, 1470-1473.
    [80] B. K. Laszlo, M. A. Pulickel, Terrabyte flash memory with carbon nanotubes. Appl. Phys. Lett. 2005, 86, 093106-093107.
    [81] R. Krupke, Frank Hennrich, Hilbert v. L?hneysen, et al., Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes, Science 2003, 301, 344-347.
    [82] G. Y. Zhang, X. Jiang, E. G. Wang, Tubular Graphite Cones, Science 2003, 300, 472-474; J. Luo, J. Zhu, H. Ye, Comment on "Tubular Graphite Cones",Science 2004, 303, 766c-766.
    [83] S. Weiner, and L. Addadi, Design strategies in mineralized biological materials, J. Mater. Chem. 1997, 7(5), 689-702.
    [84] S. Weiner, A. Veis, E. Beniash, T. Arad, J. W. Dillon, B. Sabsay and F. Siddiqui, Peritubular Dentin Formation: Crystal Organization and the Macromolecular Constituents in Human Teeth, J. Struct. Biol. 1999, 126, 27–41.
    [85] J. Y. Rho, L. Kuhn-Spearing and P. Zioupos, Mechanical properties and the hierarchical structure of bone, Med. Eng. Phys. 1998, 20, 92–102.
    [86] S. Weiner and H. D. Wagner, THE MATERIAL BONE: Structure-Mechanical Function Relations, Annu. Rev. Mater. Sci. 1998, 28, 271–298.
    [87] R. Menig, M. H. Meyers, M. A. Meyers and K. S. Vecchio, Quasi-static and dynamic mechanical response of Strombus gigas (conch) shells, Mater. Sci. Eng: A. 2001, 297, 203–211.
    [88] S. Kamat, X. Su, R. Ballarini and A. H. Heuer, Structural basis for the fracture toughness of the shell of the conch Strombus gigas, Nature 2000, 405, 1036–1040.
    [89] X. D. Li, W. C. Chang, Y. J. Chao, R. Z. Wang and M. Chang, Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone, Nano. Lett. 2004, 4, 613-617.
    [90] A. P. Jackson, J. F. V. Vincent and R. M. Turner, Proc. R. Soc. London Ser. B 1988, 234, 415–440.
    [91] R. Z.Wang, Z. Sou, A. G. Evans, N. Yao and I. A. Askay, Deformation mechanisms in nacre, J. Mater. Res. 2001, 16, 2485-2493.
    [92] H. Kessler, R. Ballarini, R. L. Mullen, L. T. Kuhn and A. H. Heuer, A biomimetic example of brittle toughening: (I) steady state multiple cracking, Comput. Mater. Sci. 1996, 5, 157–166.
    [93] B. L. Smith, Tilman E. Sch?ffer, Mario Viani et al., Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites, Nature 1999, 399, 761–763.
    [94] K. Okumura and P. G. de Gennes, Why is nacre strong? Elastic theory and fracturemechanics for biocomposites with stratified structures, Eur. Phys. J. E 2001, 4, 121–127.
    [95] I. Jaeger and P. Fratzl, Mineralized Collagen Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles, Biophys. J. 2000, 79, 1737–1746.
    [96] H. J. Gao, B. H. Ji, I. L. Jager, E. Arzt and P. Fratzl, From the Cover: Materials become insensitive to flaws at nanoscale: Lessons from nature, Proc. Natl. Acad. Sci. 2003, 100, 5597-5600.
    [97] A. N. Kolmogorov, V. H. Crespi, Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 2000, 85, 4727-4730.
    [98] A. N. Kolmogorov et al., Nanotube-Substrate Interactions: Distinguishing Carbon Nanotubes by the Helical Angle. Phys. Rev. Lett. 2004, 92, 085503 1-4.
    [99] A. R. Leach, 1996 Molecular Modelling (London: Addison Wesley Longman Limited).
    [100] J. J. P. Stewart, Optimization of Parameters for Semi-Empirical Methods I-Method, J. Comput. Chem. 1989, 10 209-220.
    [101] J. J. P. Stewart, MOPAC: A Semiempirical Molecular Orbital Program, J. Aided Mol. Design 1990, 4 1-105.
    [102] 阎守胜. 固体物理基础, 北京大学出版社. 2000.
    [103] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, UK, 1987.
    [104] M. P. Allen, D. J. Tildesley (Eds.), Computer Simulation in Chemical Physics, Kluwer Academic Publishers, Amsterdam, 1993.
    [105] J.M. Haile. Molecular Dynamics Simulation. Wiley & Sons, New York, 1992.
    [106] W.G. Hoover. Molecular Dynamics. Springer-Verlag, Berlin, 1986.
    [107] D.C. Rapaport. The Art of Molecular Dynamics Simulation. Cambridge University Press, New York, 1995.
    [108] W. K. Liu, E. G. Karpov, S. Zhang et al., An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering, 2004, 193,1529-1578.
    [109] H. J. C. Berendsen, J. P.M. Postma, W. F. van Gunsteren et al. Molecular dynamics with coupling to an external bath, J. Chem. Phys. 1984, 81, 3684-3690.
    [110] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 1984, 81, 511-519.
    [111] S. Nose, Constant temperature molecular dynamics methods, Prog. Theor. Phys. Suppl. 1991, 103, 1-46.
    [112] D. M. Bylander, L. Kleinman, Energy fluctuations induced by the Nosé thermostat, Phys.Rev. B 1992, 46, 13756-13761.
    [113] J. E. Jones, On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature. Proc. Roy. Soc. 1924, 106, 441~462.
    [114] J.E. Jones, On the determination of molecular fields. II. From the equation of state of a gas. Proc. Roy. Soc. 1924, 106, 463~477.
    [115] L. A. Girifalco,V. G. Weizer .Application of the Morse Potential Function to Cubic Metals. Phys. Rev, 1959, 114, 687-690.
    [116] J. Tersoff, New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37(12), 6991~7000.
    [117] J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 1986, 56(6), 632~635.
    [118] J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 1988, 61, 2879-2882.
    [119] D. W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 1990, 42(15), 9458~9471.
    [120] D. W. Brenner, O. A. Shenderova, J. A. Harrison et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter 2002, 14, 783-802.
    [121] M. W. Finnis, J.E. Sinclair, A simple empirical N-body potential for transition metals. Philos. Mag. 1984, 50(1), 45-55.
    [122] M. S. Daw, M. I. Baskes, Embedded-atom method: Derivation and application to impurities and other defects in metals. Phys. Rev. B, 1984, 29, 6443–6453.
    [123] M. I. Baskes, Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 1992, 46, 2727–2742.
    [124] Stott MJ, Zaremba E, Quasiatoms: An approach to atoms in nonuniform electronic systems, Phys. Rev. B, 22: 1564-1583, 1980.
    [125] A. F. Voter, S. P. Chen in: R. W. Siegel, J. R. Weertman, R. Sinclair (Eds.), MRS Symposia Proceedings No. 82, Materials Research Society, Pittsburgh, Characterization of Defects in Materials, PA, 1987, p. 175.
    [126] M. I. Baskes, J. E. Angelo, C. L. Bison, Atomistic calculations of composite interfaces. Modell. Simul. Mater. Sci. Engng. 1994, 2, 505–518.
    [127] K. Gall, M. F. Horstemeyer, M. Van Schilfgaarde, M. I. Baskes, Atomistic simulations on the tensile debonding of an aluminum–silicon interface, Journal of the Mechanics and Physics of Solids 2000, 48(10), 2183-2212.
    [128] Tan HL, Yang W, Atomistic/continuum simulation of interface fracture, Part II, Acta Mechanica Sinica 1994, 16, 237-249.
    [129] 杨卫,宏微观断裂力学,国防工业出版社,北京,1995, p. 290; 杨卫, 微纳米尺度的力学行为,世界科技研究与发展 2004, 26, 2-6.
    [130] S. Li, K. W. Gao, L. J. Qiao, F. X. Zhou, W. Y. Chu, Molecular dynamics simulation of microcrack healing in copper, Computational Materials Science 2001, 20(2) 143-150.
    [131] S. J. Zhou, P. S. Lomdahl, A. F. Voter, B. L. Holian, Three-dimensional fracture via large-scale molecular dynamics, Eng. Fract. Mech. 1998, 61, 173-187.
    [132] M. C. Fallis, M. S. Daw, C. Y. Fong, Energetics of small Pt clusters on Pt(111): Embedded-atom-method calculations and phenomenology, Phys. Rev. B 1995, 51, 7817-7826.
    [133] C. L. Liu, J. B. Adams, Structure and diffusion of clusters on Ni surfaces, Surf. Sci. 1992, 268, 73-86.
    [134] C. L. Liu, J. B. Adams, Reply to "Comment on ‘Structure and diffusion of clusters on Ni surfaces’ by C. Massobrio" , Surf. Sci. 1993, 289, L641.
    [135] R. C. Longo, C. Rey, L. J. Gallego, Structure and melting of small Ni clusters on Ni surfaces, Surface Science 1999, 424(2-3), 311-321.
    [136] T. A. Weber, F. H. Stillinger, Local order and structural transitions in amorphous metal-metalloid alloys, Phys. Rev. B 1985, 31, 1954-1963.
    [137] W. Wunderlich, H. Awaji, Molecular dynamics simulations of the fracture toughness of sapphire, Materials and Design 2001, 22, 53-59.
    [138] H. S. Lim, H. K. Ong, F. Ercolessi, Stability of face-centered cubic and icosahedral lead clusters, Surf. Sci. 1992, 269, 1109-1115.
    [139] A. Landa, H. H?kkinen, R. N. Barnett, P. Wynblatt, U. Landman, Disordering of the Pb (110) surface, Materials and Design 1998, 11(4), 245-251.
    [140] X. M. Duan, D. Y. Sun, X. G. Gong, Hypermolecular dynamics simulations of monovacancy diffusion, Computational Materials Science 2001, 20(2), 151-156.
    [141] H. W. Kroto, J. R. Health, S. C. O’Brien et al. C60: Buckminster-fullerene. Nature 1985, 318, 162-163.
    [142] S. Iijima, Helical microtubes of graphite carbon. Nature 1991, 354, 56-58.
    [143] C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, A transferable tight-binding potential for carbon, J. Phys. Condens. Matter 1992, 4, 6047.
    [144] D. Porezag, Th. Frauenheim, Th. Ko. hler, G. Seifert and R. Kaschner, Construction of tight-binding-like potentials on the basis of density-functional theory: Application tocarbon, Phys. Rev. B 1995, 51, 12947-12957.
    [145] Adam H. R. Palser, Interlayer interactions in graphite and carbon nanotubes. Phys. Chem. Chem. Phys. 1999, 1, 4459-4464.
    [146] D. H. Robertson, D. W. Brenner and J. W. Mintmire, Energetics of nanoscale graphitic tubules, Phys. Rev. B 1992, 45, 12592-12595.
    [147] R. S. Ruoff and D. C. Lorents Mechanical and thermal properties of carbon nanotubes, Carbon 1995, 33, 925-930.
    [148] M. M. Treacy, T. W. Ebbesen and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 1996, 381, 678-680.
    [149] M. R. Falvo, G. J. Clary, R. M. Taylor et al., Bending and buckling of carbon nanotubes under large strain, Nature 1997, 389, 582-584.
    [150] Eric W. Wong, Paul E. Sheehan, Charles M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science 1997, 277, 1971-1975.
    [151] N. Yao and V. Lordi, Young's modulus of single-walled carbon nanotubes, J. Appl. Phys. 1998, 84, 1939-1943.
    [152] B. I. Yakobson, M. P. Campbell, C. J. Brabec and J. Bernholc, Comput. Mater. Sci. 1997, 8, 341-348.
    [153] O. Lourie, D. M. Cox and H. D. Wagner, Buckling and Collapse of Embedded Carbon Nanotubes, Phys. Rev. Lett. 1998, 81, 1638-1641.
    [154] H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett. 1998, 72, 188-190.
    [155] C. Dekker, Carbon nanotubes as molecular quantum wires, Phys. Today 1999, 52, 22-28.
    [156] H. W. Ch Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Carbon Nanotube Single-Electron Transistors at Room Temperature, Science 2001, 293, 76-79.
    [157] T. Rueckes, Kyoungha Kim, Ernesto Joselevich et al., Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing, Science 2000, 289, 94-97.
    [158] A. G. Rinzler, J. H. Hafner, P. Nikolaevet al., Unraveling nanotubes: field emission from an atomic. Wire, Science 1995, 269, 1550-1553.
    [159] Zhou G, Duan W H and Gu B L 2001 Electronic Structure and Field-Emission Characteristics of Open-Ended Single-Walled Carbon Nanotubes, Phys. Rev. Lett. 87, 095504-095508.
    [160] S. Vera, Yuval Yaish, Hande üstünel et al., A tunable carbon nanotube electromechanical oscillator, Nature 2004, 431, 284-287.
    [161] A. M. Fennlmore, T. D. Yuzvinsky, Wei-Qiang Han et al., Rotational actuators based on carbon nanotubes. Nature 2003, 424, 408-410.
    [162] A. Hansson, M. Paulsson and S. Stafstroml, Effect of bending and vacancies on the conductance of carbon nanotubes, Phys. Rev. B 2000, 62, 7639-7643.
    [163] N. M. Buongiorno, Electronic transport in extended systems: Application to carbon nanotubes, Phys. Rev. B 1999, 60, 7828-7833.
    [164] D. Tekleab, D. L. Carroll, G. G. Samsonidze and B. I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B 2001, 64, 035419-035424.
    [165] Q. S. Zheng and Q. Jiang, Multiwalled Carbon Nanotubes as Gigahertz Oscillators, Phys. Rev. Lett. 2002, 88, 045503-045503.
    [166] G. Y. Zhang and E. G. Wang, Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation, Appl. Phys. Lett. 2003, 82, 1926-1928.
    [167] T.Gao, G. W. Meng, J. Zhang et al., Template synthesis of single-crystal Cu nanowire arrays by electrodeposition, Appl. Phys. A 2001, 73, 251-254.
    [168] J. W. Kang and H. J. Hwang, Molecular dynamics simulations of ultra-thin Cu nanowires, Comp. Mat. Sci. 2003, 27, 305-312.
    [169] H. J. Hwang and J. W. Kang, Structures of Cylindrical Ultrathin Copper Nanowires, J. Korean Phys. Soc. 2002, 40, 283-288.
    [170] J. W. Kang and H. J. Hwang, Pentagonal multi-shell Cu nanowires, J. Phys.: Condens. Matter 2002, 14, 2629-2636.
    [171] H. J. Hwang and J. W. Kang, Melting and breaking of ultrathin copper nanobridges, Surface Science 2003, 532, 536-543.
    [172] J. W. Kang and H. J. Hwang, Molecular Dynamics Simulation Study of the Melting ofUltra-Thin Copper Nanowires, J. Korean Phys. Soc. 2002, 40, 946-948.
    [173] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B 1989, 39, 5566-5568.
    [174] F. Cleri, S. Yip, D. Wolf, and S. R. Phillpot, Atomic-Scale Mechanism of Crack-Tip Plasticity: Dislocation Nucleation and Crack-Tip Shielding, Phys. Rev. Lett. 1997, 79, 1309-1312.
    [175] D. Wolf and J. F. Lutsko, Structurally-induced elastic anomalies in a superlattice of (001) twist grain boundaries, J. Mater. Res. 1989, 4, 1427-1427.
    [176] D. Wolf and K. Merkle, in Materials Interfaces, edited by D. Wolf and S. Yip (Chapman and Hall, London, 1992), p. 87.
    [177] Y. Kondo, K. Takayanagi, Synthesis and Characterization of Helical Multi-Shell Gold Nanowires, Science 2000, 289, 606-608.
    [178] J. R. Morris, X. Y. Song, The melting lines of model systems calculated from coexistence simulations, J. Chem. Phys. 2002, 116, 9352-9358.
    [179] J. Q. Broughton, G. H. Gilmer, Molecular dynamics investigation of the crystal–fluid interface. I. Bulk properties, J. Chem. Phys. 1983, 79, 5095-5104.
    [180] T. H. Fang, C. I.Weng, J. G. Chang, Molecular dynamics simulation of nano-lithography process using atomic force microscopy, Surf. Sci. 2002, 501, 138-147.
    [181] L. J. Lewis, P. Jensen, N. Combe, J. L. Barrat, Diffusion of gold nanoclusters on graphite, Phys. Rev. B 2000, 61, 16084-16090.
    [182] J. Warnock, D. D. Awschalom, M. W. Shafer, Geometrical Supercooling of Liquids in Porous Glass, Phys .Rev. Lett. 1986, 57, 1753-1756.
    [183] J. H. Strange, M. Rahan, E. G. Smith, Characterization of porous solids by NMR, Phys. Rev. Lett. 1993, 71, 3589-3591.
    [184] M. S. P. Sansom, P. C. Biggin, Biophysics: Water at the nanoscale, Nature 2001, 414, 156-159.
    [185] F. Banhart, Irradiation effects in carbon nanostructures, Rep. Prog. Phys. 1999, 62, 1181-1222.
    [186] T. Belytschko, S. P. Xiao, G. C. Schatz, R. S. Ruoff, Atomistic simulations of nanotube fracture, Phys. Rev. B 2002, 65, 235430-235437.
    [187] B. Solange, L. B. Fagan, D. Silva, R. Mota, Ab initio Study of Radial Deformation Plus Vacancy on Carbon Nanotubes: Energetics and Electronic Properties, Nano Lett. 2003, 3, 289-291.
    [188] J. C. Charlier, Defects in Carbon Nanotubes, Acc. Chem. Res. 2002, 35, 1063-1069.
    [189] Fengqi Song, Min Han, Minda Liu, Bang Chen, Jianguo Wan, and Guanghou Wang, Experimental Observation of Nanojets Formed by Heating PbO-Coated Pb Clusters, Phys. Rev. Lett. 2005, 94, 093401 1-4.
    [190] M. Moseler and U. Landman, Formation, Stability, and Breakup of Nanojets, Science 2000, 289, 1165-1169.
    [191] J. W. Mintmire, B. I. Dunlap, C. T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 1992, 68, 631-634.
    [192] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 1992, 60, 2204-2206.
    [193] N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors: Graphiticmicrotubules, Phys. Rev. Lett. 1992, 68, 1579-1581.
    [194] L. C. Seung, Liu, B. C.; Lee, C. J, et al., High-Quality Double-Walled Carbon Nanotubes Produced by Catalytic Decomposition of Benzene, Chem. Mater. 2003, 15, 3951-3954.
    [195] H. J. Huang, H. Kajiura, S.Tsutsui, et al., High-Quality Double-Walled Carbon Nanotube Super Bundles Grown in a Hydrogen-Free Atmosphere, J. Phys. Chem. B 2003, 107, 8794-8798.
    [196] L. Feng, S. G. Chou, Wencai Ren, et al., Identification of the constituents of double-walled carbon nanotubes based on Raman spectra using different laser-excitation energies, J. Mater. Res. 2003, 18, 1251-1258.
    [197] R. R. Bacsa, A. Peigney, Ch. Laurent, et al., Chirality of internal metallic and semiconducting carbon nanotubes, Phys. Rev. B 2002, 65, 161404-161407.
    [198] M. Kociak, K. Suenaga, K. Hirahara et al., Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes, Phys. Rev. Lett. 2002, 89, 155501-155504.
    [199] J. M. Zuo, I. Vartanyants, M. Gao, R. Zhang, et al., Atomic Resolution Imaging of a Carbon Nanotube from Diffraction Intensities, Science 2003, 300, 1419-1421.
    [200] D. P. DiVincenzo, E. J. Mele, N. A. W. Holzwarth, Density-functional study of interplanar binding in graphite, Phys. Rev. B 1983, 27, 2458-2469.
    [201] J. H. Lii, N. L. Allinger, Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons, J. Am. Chem. Soc. 1989, 111, 8576-8582.
    [202] M. C. Schabel, J. L. Martins, Energetics of interplanar binding in graphite, Phys. Rev. B 1992, 46, 7185-7188.
    [203] S. B. Trickey, F. Müller, G. H. F. Diercksen, J. C. Boettger, Interplanar binding and lattice relaxation in a graphite dilayer, Phys. Rev. B 1992, 45, 4460-4468.
    [204] J. C. Charlier, X. Gonze, J. P. Michenaud, Graphite Interplanar Bonding: Electronic Delocalization and van der Waals Interaction, Europhys. Lett. 1994, 28, 403-408.
    [205] H. Rydberg, M. Dion, N. Jacobson et al., Van der Waals Density Functional for Layered Structures, Phys. Rev. Lett. 2003, 91, 126402-126402.
    [206] L. A. Girifalco, R. A. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, J. Chem. Phys. 1956, 25, 693-397.
    [207] L. X. Benedict, Nasreen G. Chopra, Marvin L. Cohen, et al., Microscopic determination of the interlayer binding energy in graphite, Chem. Phys. Lett. 1998, 286, 490-496.
    [208] C. T. White, D. H. Robertson, J. W. Mintmire, Helical and rotational symmetries ofnanoscale graphitic tubules, Phys. Rev. B 1993, 47, 5485-5488.
    [209] A. Charlier, E. McRae, R. Heyd et al., Classification for double-walled carbon nanotubes , Carbon 1999, 37, 1779-1783.
    [210] G. Y. Zhang, X. D. Bai, E. G. Wang et al., Monochiral tubular graphite cones formed by radial layer-by-layer growth. Phys. Rev. B 2005, 71, 113411 1-4.
    [211] M. S. Gudiksen, L. J. Lauhon, J. F. Wang, D. C. Smith, and C. M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics, Nature 2002, 415, 617-620.
    [212] S. Iijima, Helical microtubules of graphitic carbon, Nature 1991, 354, 56-58.
    [213] M. R. Buitelaar, A. Bachtold, T. Nussbaumer, M. Iqbal and C. Sch?nenberger, Multiwall Carbon Nanotubes as Quantum Dots, Phys. Rev. Lett. 2002, 88, 156801 1-4.
    [214] A. V. Ellis, K. Vijayamohanan, R. Goswami, N. Chakrapani, L. S. Ramanathan, P. M. Ajayan and G. Ramanath, Hydrophobic Anchoring of Monolayer-Protected Gold Nanoclusters to Carbon Nanotubes, Nano. Lett. 2003, 3, 279-282.
    [215] H. H. Yu and Z. Suo, A model of wafer bonding by elastic accommodation, J. Mech. Phys. Solids 1998, 46, 829-844.
    [216] S. Han and J. Ihm, Role of the localized states in field emission of carbon nanotubes, Phys. Rev. B 2000, 61, 9986-9989.
    [217] Z. Xu, X. D. Bai, E. G. Wang and Z. L. Wang, Quantifying the field emssion properties of a nanotube with well-defined tip structure, submitted to Appl. Phys. Lett.
    [218] S. B. Legoas, V. R. Coluci, S. F. Braga et al., Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators, Phys. Rev. Lett. 2003, 90, 055504 1-4.
    [219] Y. Zhao, C. C. Ma, G, H, Chen et al., Energy Dissipation Mechanisms in Carbon Nanotube Oscillators, Phys. Rev. Lett. 2003, 91, 175504 1-4.
    [220] Wan.Guo, W. Zhong, Y. Dai et al., Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes, Phys. Rev. B 2005, 72, 075409 1-10.
    [221] P.Tangney, S. G. Louie, and M. L. Cohen, Dynamic Sliding Friction between Concentric Carbon Nanotubes, Phys. Rev. Lett. 2004, 93, 065503 1-4.