氧化锌及其纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)具有如下三大优点:首先,它是半导体材料,具有较宽的带隙(3.37 eV)和较大的激子结合能(60 meV),它是一种重要的功能氧化物,具有良好的近紫外散射和透明传导性能;其次,ZnO因其非中心对称的晶体结构而具有压电性,这是其用于机电耦合的传感器和转换器中应具备的关键特性;最后,ZnO具有良好的生物适应性,可以直接应用于生物医学领域而无需被覆。正因为这三大特点,ZnO很有可能在将来的研究和应用中成为最重要的纳米材料之一。本文应用基于第一原理的密度泛函理论,对ZnO尤其是其低维纳米结构的压电性能、弹性性能、结构特性、能量特性等基态性能进行了系统地计算分析,主要包括以下内容:
     (1)二维ZnO纳米薄膜的压电性能研究。通过基于密度泛函理论的Berry相极化计算方法,对ZnO纳米薄膜的压电性能的尺寸效应进行了计算和分析。研究发现,对于二维ZnO纳米薄膜,随着厚度的增加,其等效压电系数单调地增加。当其厚度达到10个Zn-O双层(约2.4 nm)时,其等效压电系数已开始超过体块值3%左右。当薄膜的厚度继续增加至12个Zn-O双层(约2.9 nm)时,其等效压电系数可超过体块值11%以上。这是因为在低维纳米结构中,量子受限效应凸显作用,对于本文研究的最大厚度仅有几个纳米的薄膜来说,电子被强烈地限制在薄膜以内。这时,随着厚度的增加,存在于Zn-O双层间的自发极化将不断地累加,从而导致结构达到一定厚度时,其极化变化率(即压电系数)超过了体块的值。然而随着厚度继续增加,量子受限效应逐渐减弱,此时,纳米薄膜的等效压电系数将随着表面效应的减弱逐渐趋向体块的值。此外,我们的理论结果与实验中发现的ZnO纳米带沿同一方向的压电系数超出体块值的结果相吻合。
     (2)一维ZnO纳米线的压电性能研究。通过密度泛函理论计算对不同直径(0.4 nm~3.0 nm)的沿[0001]方向生长的一维ZnO纳米线的压电性能进行了研究。研究发现,ZnO纳米线的等效压电系数随着直径的增加而增大,但至少在本文计算能力所能达到的范围内数值上要远低于相应的体块值。分析表明,ZnO纳米线内部的结构重构以及不可避免的量子受限效应是这种尺寸效应存在的主要原因。电子结构计算得到ZnO纳米线的能带隙随着直径的增加从2.8下降到1.1 eV。
     (3)二维ZnO纳米薄膜和一维ZnO纳米线的弹性系数计算。通过计算分析ZnO二维纳米薄膜和一维纳米线的等效弹性系数,发现它们在有限尺寸范围内均具有明显的尺寸效应。对于厚度小于6个Zn-O双层的ZnO纳米薄膜,其等效弹性系数远小于相应的体块值,而当薄膜厚度继续增大,其等效弹性系数逐渐趋近于体块值,且基本不再变化。对于沿[0001]方向生长的ZnO纳米线,其相应的等效弹性系数在直径非常小时也远低于体块值,而随着纳米线的直径逐渐增大,其等效弹性系数基本呈线性地接近体块值。由于计算量太大,我们研究的最大直径的ZnO纳米线直径仅为约2.4 nm,其等效弹性系数达到体块值的88%。低维纳米结构中大的表面/体积比率值是造成这种尺寸效应的主要原因。在论文成文时这部分工作仍在继续中。
     (4)零维ZnO纳米团簇的结构和特殊物性研究。通过对六棱柱形ZnO零维纳米团簇的结构优化和能级分析,发现结构弛豫使Zn原子朝团簇中心运动,而O原子则朝相反的方向移动,这对确定实验中何时施加使结构中悬键钝化的表面活性剂是十分重要的,因为往往它们会与O原子优先成键。此外,我们还发现一种由48个原子构成的ZnO团簇在结构优化后发生了由四配位的纤维锌矿结构到六配位的岩盐结构的相变,这表明为保证直接从体块结构中分割出的团簇结构的稳定性,应使其含有尽可能少的悬键。
     (5)II-VI族半导体材料的电光张量计算。应用密度泛函微扰理论对具有纤维锌矿和闪锌矿结构的II-VI族半导体化合物分别进行了电光系数的计算。并得到了ZnO在不同应变下的电光张量和非线性光学系数。结果表明,在具有纤维锌矿的II-VI族化合物中,ZnO明显具有最高的弹性系数和压电系数,以及最大的电光系数。具有闪锌矿结构的II-VI族化合物的压电系数明显低于纤维锌矿结构约一个数量级。ZnO的电光系数和非线性光学系数的绝对值均随着应变的增加而几乎线性地减小,应变由-1%增加到1%,其电光系数减小了约9.5%,非线性光学系数相应的减小幅度约为8.2%。
Zinc oxide (ZnO) has three key advantages. First, it is a semiconductor, with a direct wide band gap of 3.37 eV and a large exciton binding energy (60 meV). It is an important functional oxide, exhibiting near-ultraviolet emission and transparent conductivity. Secondly, because of its noncentral symmetry, ZnO is piezoelectric, which is a key property in building electromechanical coupled sensors and transducers. Finally, ZnO is bio-safe and biocompatible, and can be used for biomedical applications without coating. With these three unique characteristics, ZnO could be one of the most important nanomaterials in future research and applications. In this thesis, first-principles density-functional theory (DFT) calculations are systematically performed to study the various ground-state properties, such as piezoelectric properties, elastic properties, structural features, energy properties, etc., of ZnO and especially its nanostructures. The main contents are listed below:
     (1) Study on Piezoelectricity of two-dimensional ZnO nanofilms. Size-dependent piezoelectricity of ZnO nanofilms is calculated and analyzed by using DFT based Berry phase polarization computational method. It is found that the effective piezoelectric constant of the ZnO nanofilms increases with increasing thickness, and becomes higher than that of bulk ZnO when the number of Zn-O double layers increases to 10 (2.4 nm in thickness). And the piezoelectric response can be 11% higher than the bulk value when the number of the Zn-O double layers is increased to 12. Because the quantum confinement effect is raised in the low-dimensional nanostructures, for the nanofilms of several nanometers in thickness, the electrons are strongly confined within the slab. The spontaneous polarizations existing between the Zn-O double layers will be accumulated with the increasing film thickness, which may result in higher change rates of polarizations for very thin nanofilms. However, with the film thickness continually increasing, after a possible critical point, the accumulation will not dominate the piezoelectric property. Then the surface effect will trail off, and the piezoelectric constant will approach to the bulk value. In addition, our result coincides with the experimental result that the effective piezoelectric coefficient of ZnO nanobelt with the (0001) top surface could be higher than that of the bulk ZnO.
     (2) Study on Piezoelectricity of one-dimensional ZnO nanowires. Size-dependent piezoelectricity in [0001]-oriented ZnO nanowires (0.4~3.0 nm in diameter) is investigated using DFT calculations. The effective piezoelectric constant of ZnO nanowires is found to increase with increasing diameter, but the values are much smaller than that of bulk ZnO, at least in the limited size studied in the present calculations. Both the structure reconstruction and quantum confinement in ZnO nanowire are considered to be the main contributions to this size effect. Energy bands calculations show that with increasing diameter, the band gap of the ZnO nanowires decreases from 2.8 to 1.1 eV.
     (3) Calculations on the elastic constants of 2D ZnO nanofilms and 1D ZnO nanowires. The effective elastic constants of ZnO nanofilms and nanowires are calculated and analyzed. Obvious size effects are also found in the limited sizes for both the two cases. For the nanofilms with less than 6 Zn-O double layers, their effective elastic constants are much lower than the corresponding bulk value. While the film thickness continues increasing, the obtained result becomes almost invariable and approaches to the bulk value. For the [0001]-oriented ZnO nanowires, their corresponding effective elastic constants are also much lower than the bulk value when the diameter is very small. However, with increasing diameter, the elastic constant increases almost linearly to approach the bulk value. In our limited computational scale, the obtained effective elastic constant of the nanowires increases to around 88% of the corresponding bulk value when the diameter is about 2.4 nm. This size effect is mainly due to the increased surface/volume ratio in nanoscale. This work is still ongoing when completing the present thesis.
     (4) Study on the structures and properties of zero-dimensional ZnO nanoclusters. Through structural optimizations and energy levels analysis on zero-dimensional ZnO nanoclusters with hexagonal prism configurations, we found that the structural relaxations led to zinc atoms moving toward the center of the cluster, whereas oxygen atoms moving outward. This is important to know when attempting to passivate dangling bonds at the surfaces with surfactants, since they will then be bonded first of all to oxygen atoms. In addition, the shape-driven phase transition from the four-coordinate wurtzite to the six-coordinate rocksalt structure is found in a ZnO cluster with 48 atoms, which implies that cutting out a stoichiometric cluster with more favorable structure, the dangling bonds should be as few as possible.
     (5) Calculations on electro-optic tensors of II-VI semiconducting materials. The electro-optic coefficients of the II-VI semiconducting compounds with wurtzite and zinc-blende structures are calculated by using DFT perturbation theory. Especially, the electro-optic tensors and the nonlinear optical constants of ZnO with different strains are also obtained. It is shown that among the II-VI compounds ZnO has the highest elastic constant, piezoelectric constant, and electro-optic coefficient. The piezoelectric constants of the II-VI compounds with zinc-blende structure are almost one order smaller than that of the materials with wurtzite structure. With increasing strains from -1% to 1%, both the electro-optic coefficient and the absolute value of the nonlinear optical constant of ZnO decrease almost linearly by 9.5% and 8.2%, respectively.
引文
[1] 张立德,解思深,纳米材料和纳米结构-国家重大基础研究项目新进展,北京,化学工业出版社(材料科学与工程出版中心),2005.
    [2] 中国基础学科发展报告,国家科学技术部,国家自然科学基金委,2001.4.
    [3] 白春礼,纳米科技及其发展前景,科学通报,2001,46 (2),89.
    [4] R. F. Service, Nanoscientists look to the future, Science 2001, 294, 1448-1449.
    [5] 张立德,牟季美,纳米材料和纳米结构,北京,科学出版社,2001.
    [6] 张志琨,崔作林,纳米技术与纳米材料,北京,国防工业出版社,2000.
    [7] 刘吉平,郝向阳,纳米科学与技术,北京,科学出版社,2002.
    [8] L. Lu, M. L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Sciecne 2000, 287, 1463.
    [9] G. Friesecke and R. D. James, A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods, J.Mech.Phys.Solids 2000, 48, 1519.
    [10] Z. L. Wang, Nanostructures of zinc oxide, Materials Today 2004, 7, 26~33.
    [11] X.Y. Kong, Y. Ding, R.S. Yang, and Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts, Science 2004, 303, 1348.
    [12] M. H. Zhao, Z. L. Wang, and S. X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoelectric force microscope, Nano Lett. 2004, 4, 587~590.
    [13] P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, and Z. L. Wang, Conversion of zinc oxide nanobelts into superlattice-structured nanohelices, Science 2005, 309, 1700~1704.
    [14] I. Shalish, H. Temkin, and V. Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B 2004, 69, 245401.
    [15] M. Usuda, N. Hamada, T. Kotani, and M.V. Schilfgaarde, All-electron GW calculation based on the LAPW method: Application to wurtzite ZnO, Phys. Rev. B 66, 125101(2002).
    [16] B. Meyer, and D. Marx, Density-functional study of the structure and stability of ZnO surfaces, Phys. Rev. B 2003, 67, 035403.
    [17] L. G. Wang and A. Zunger, Cluster-doping approach for wide-gap semiconductors: The case of p-type ZnO, Phys. Rev. Lett. 2003, 90, 256401.
    [18] P. X. Gao and Z.L. Wang, Nanopropeller arrays of zinc oxide, Appl. Phys. Lett. 2004, 84, 2883.
    [19] Z. L. Wang, and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science 2006, 312, 242.
    [20] X. Wang, J. Song, J. Liu, and Z. L. Wang, Direct-current nanogenerator driven byultrasonic waves, Science 2007, 316, 102.
    [21] X. H. Zhang, Y. Zhang, J. Xu, et al., Peculiar ZnO nanopushpins and nanotubes synthesized via simple thermal evaporation, Appl. Phys. Lett. 2005, 87, 123111.
    [22] X. D. Bai, P. X. Gao, and Z. L. Wang, Dual-mode mechanical resonance of individual ZnO nanobelts, Appl. Phys. Lett. 2003, 82, 4806.
    [23] J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, and Z. L. Wang, Large-Scale Ni-Doped ZnO Nanowire Arrays and Electrical and Optical Properties, J. Am. Chem. Soc. 2005, 127 16376.
    [24] S. J. Chen, Y. C. Liu, C. L. Shao, C. S. Xu, Y. X. Liu, L. Wang, B. B. Liu, and G. T. Zouet, Pressure-dependent photoluminescence of ZnO nanosheets, J. Appl. Phys. 2005, 98, 106106.
    [25] A. Wander, F. Schedin, P. Steadman, et al., Stability of polar oxides surfaces, Phys. Rev. Lett. 2001, 86, 3811~3814.
    [26] G. Kresse, O. Dulub, and U. Diebold, Competing stabilization mechanism for the polar ZnO(0001)-Zn surfaces, Phys. Rev. B 2003, 68, 245409.
    [27] X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Single nanowire injection lasers, Nature 2003, 421, 241.
    [28] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and H. Q. Yan, One-dimensional nanostructures: Synthesis characterization and applications, Adv. Mater. 2003, 15, 353.
    [29] J. Song, X. Wang, E. Riedo, and Z. L. Wang, Elastic property of vertically aligned nanowires, Nano Lett. 2005, 5, 1954~1958.
    [30] Y. J. Ma, Z. Zhang, F. Zhou, L. Lu, A. Jin, and C. Gu, Hopping conduction in single ZnO nanowires, Nanotechnology 2005, 16, 746.
    [31] X. Lü, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, Cluster modeling of metal oxides: how to cut a cluster, Chem. Phys. Lett. 1998, 291, 445.
    [32] Jon M. Matxain, Joseph E. Fowler, and Jesus M. Ugalde, Small clusters of II-VI materials: ZniOi , i=1–9, Phys. Rev. A 2000, 62, 053201.
    [33] Jan-Ole Joswig, Sudip Roy, Pranab Sarkar, Michael Springborg, Stability and bandgap of semiconductor clusters, Chem. Phys. Lett. 2002, 365, 75.
    [34] Jain, V. Kumar, and Y. Kawazoe, Ring structures of small ZnO clusters, Comp. Mater. Sci. 2006, 36, 258.
    [35] 谢希德,陆栋,固体能带理论,上海,复旦大学出版社,1998.
    [36] D. R. Hartree, A practical method for the numerical solution of differential equations, Proc. Cam. Phil. Soc. 1928, 24, 89.
    [37] V. Fock, Noherungsmethode zur Losung des quantenmechanischen mehrkorper- problems,Z. Phys. 1930, 61, 126.
    [38] P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 1964, 136, B864.
    [39] W. Kohn, and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 1965, 140, A1133.
    [40] H. Thomas, The calculation of atomic fields, Proc. Camb. Phil. Soc. 1927, 23, 542.
    [41] E. Fermi, Un metodo statistico per la determinazione di alcune priorieta dell'atome, Accad. Naz. Lincei 1927, 6, 602.
    [42] 阎守胜,固体物理基础(第二版),北京,北京大学出版社,2003.
    [43] J. Callaway, and N. H. March, Solid State Phys. Edited by H. Ehrenreich, F. Seitz, and D. Turnball, Academic Press, New York, 1984, 38, 135.
    [44] W. Kohn, Nobel Lecture: Electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys. 1999, 71, 1253.
    [45] P. A. M. Dirac, Note on the exchange phenomena in the Thomas atom, Proc. Cambridge Philos. Soc. 1930, 26, 376.
    [46] J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 1951, 81, 385.
    [47] J. P. Perdew, and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 1981, 23, 5048.
    [48] J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 1992, 45, 13244.
    [49] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 1996, 77, 3865.
    [50] F.A. Hamprecht, A.J. Cohen, D.J. Tozer, and N.C. Handy, Development and assessment of new exchange-correlation functionals, J. Chem. Phys. 1998, 109, 6264.
    [51] J. C. Phillips, Energy-band interpolation scheme based on a pseudopotential, Phys. Rev. 1958, 112, 685.
    [52] J. C. Phillips, and L. Kleinman, New method for calculating wave functions in crystals and molecules, Phys. Rev. 1959, 116, 287.
    [53] M. L. Cohen, and V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application, Solid State Physics 1970, 24, 37.
    [54] http://cmt.dur.ac.uk/sjc/thesis_ppr/node18.html#fig.psp.
    [55] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL http://www.abinit.org).
    [56] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation, J. Phys.-Condens. Mat. 2002, 14, 2745.
    [57] http://opium.sourceforge.net/index.html.
    [58] A. García, ATOM User Manual Jan. 2006, Ver. 3.2.2.
    [59] N. A. Hill, and U. Waghmare, First-principles study of strain-electronic interplay in ZnO: Stress and temperature dependence of the piezoelectric constants, Phys. Rev. B 2000, 62, 8802~8810.
    [60] A. Bril, and H. A. Klasens, New phosphors for flying-spot cathode-ray tubes, Phil. Res. Rep. 1952, 7, 421.
    [61] A. D. Corso, M. Posternak, R. Resta, and A. Baldereschi, Ab initio study of piezoelectricity and spontaneous polarization in ZnO, Phys. Rev. B 1994, 50, 10715~10721.
    [62] http://cst-www.nrl.navy.mil/lattice/struk/b4.html.
    [63] S. Desgreniers, High-density phases of ZnO: Structural and compressive parameters, Phys. Rev. B 1998, 58, 14102.
    [64] H. Karzel, W. Potzel, M. K?fferlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, M. P. Pasternak, Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures, Phys. Rev. B 1996, 53, 11425.
    [65] Robert R. Reeber, Lattice parameters of ZnO from 4.2° to 296°K, J. Appl. Phys. 1970, 41, 5063.
    [66] M. Catti, Y. Noel, and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations, J. Phys. Chem. Solids 2003, 64, 2183~2190.
    [67] J. E. Jaffe and A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B 1993, 48, 7903.
    [68] Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, Ph. D'Arco, and R. Dovesi, Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches, Phys. Rev. B 2001, 65, 014111.
    [69] C. H. Bates, W. B. White, and R. Roy, New high-pressure polymorph of zinc oxide, Science 1962, 137, 993.
    [70] J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO, Phys. Rev. B 2000, 62, 1660.
    [71] R. Ahuja, Lars Fast, O. Eriksson, J. M. Wills, and B. Johansson, Elastic and high pressure properties of ZnO, J. Appl. Phys. 1998, 83, 8065.
    [72] A. Zaoui and W. Sekkal, Pressure-induced softening of shear modes in wurtzite ZnO: A theoretical study, Phys. Rev. B 2002, 66, 174106.
    [73] T. B. Bateman, Elastic moduli of single-crystal zinc oxide, J. Appl. Phys. 1962, 33, 3309.
    [74] G. Carlotti, D. Fioretto, G. Socino, and E. Verona, Brillouin scattering determination of the whole set of elastic constants of a single transparent film of hexagonal symmetry, J. Phys.: Condens. Matter 1995, 7, 9147.
    [75] G. Carlotti, G. Socino, A. Petri, and E. Verona, Acoustic investigation of the elastic properties of ZnO films, Appl. Phys. Lett. 1987, 51, 1889.
    [76] T. Azuhata, M. Takesada, T. Yagi, A. Shikanai, SF. Chichibu, K. Torii, A. Nakamura, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, Brillouin scattering study of ZnO, J. Appl. Phys. 2003, 94, 968.
    [77] I. B. Kobiakov, Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures, Solid State Commun. 1980, 35, 305.
    [78] CRC Handbook of Chemistry and Physics, 58th ed. (CRC, Boca Raton, 1977).
    [79] R?ssler, Energy bands of hexagonal II-VI semiconductors, Phys. Rev. 1969, 184, 733~738.
    [80] S. Bloom, and I. Ortenburger, Pseudopotential band structure of zinc (II) oxide, Phys. Status Solidi B 1973, 58, 561~566.
    [81] J. R. Chelikowsky, An oxygen pseudopotential: Application to the electronic structure of ZnO, Solid State Commun. 1977, 22, 351~354.
    [82] I. Ivanov, and J. Pollmann, Electronic structure of ideal and relaxed surfaces of ZnO: A prototype ionic wurtzite semiconductor and its surface properties, Phys. Rev. B 1981, 24, 7275~7296.
    [83] Elastic, Piezoelectric, Pyroelectric, Piezooptic, Electrooptik Constants, and Nonlinear Dielectric Susceptibilities of Crystals, edited by K. H. Hellwege and A. M. Hellwege, Landolt-B?rnstein, New Series, Group III, Vol. 11 (Springer, Berlin, 1979).
    [84] Y. W. Heo, L. C. Tien, D. P. Norton, B. S. Kang, F. Ren, B. P. Gila, and S. J. Pearton, Electrical transport properties of single ZnO nanorods, Appl. Phys. Lett. 2004, 85, 2002~2004.
    [85] C. X. Xu, X. W. Sun, B. J. Chen, P. Shum, S. Li, and X. Hu, Nanostructural zinc oxide and its electrical and optical properties, J. Appl. Phys. 2004, 95, 661.
    [86] W. L. Hughes, and Z. L. Wang, Nanobelts as nanocantilevers, Appl. Phys. Lett. 2003, 82, 2886.
    [87] H. Fu, and L. Bellaiche, First-principles determination of electromechanical responses of solids under finite electric fields, Phys. Rev. Lett. 2003, 91, 057601.
    [88] X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B 1997, 55, 10337~10354.
    [89] X. Gonze, and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B 1997, 55, 10355~10368.
    [90] D. R. Hamann, X. Wu, K. M. Rabe, and D. Vanderbilt, Metric tensor formulation of strain in density-functional perturbation theory, Phys. Rev. B 2005, 71, 035117.
    [91] http://cms.mpi.univie.ac.at/vasp.
    [92] R. D. King-Smith, and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 1993, 47, 1651.
    [93] R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 1994, 66, 899.
    [94] Zhonglin Wang, Nanowires and Nanobelts-Materials, Properties and Devices Vol I: Metal and Semiconductor Nanowires, 北京,清华大学出版社,2004. 3.
    [95] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Ultraviolet-emitting ZnO na nowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett. 2001, 78, 407.
    [96] C. M. Lieber, One-dimensional nanostructures: Chemistry, physics & applications, Solid State Commun. 1998, 107, 607.
    [97] C. C. Chen, and C. C. Yeh, Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires, Adv. Mater. 2000, 12, 738.
    [98] X. L. Chen, J. Y. Li, Y. G. Cao, Y. C. Lan, H. Li, M. He, C. Y. Wang, Z. Zhang, and Z. Y. Qiao, Straight and Smooth GaN Nanowires, Adv. Mater. 2000, 12, 1432.
    [99] L. Y. Lao, J. G. Wen, and Z. F. Ren, Hierarchical ZnO Nanostructures, Nano Lett. 2002, 2, 1287.
    [100] S. C. Lyu, Y. Zhang, H. R. Lee, H. W. Shim, E. K. Suh, and C. J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett. 2002, 363, 134.
    [101] H. Ishikura, T. Abe, N. Fukuda, H. Kasada, and K. Ando, Stable avalanche-photodiode operation of ZnSe-based p+–n structure blue-ultraviolet photodetectors, Appl. Phys. Lett. 2000, 76, 1069.
    [102] D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou, and T. J. Mountziaris, Characterization of vapor-phase-grown ZnSe nanoparticles, Appl. Phys. Lett. 2002, 80, 4024.
    [103] H. P. Wagner, H. P. Tranitz, R. Schuster, G. Bacher, and A. Forchel, Biexciton binding energy and exciton–LO-phonon scattering in ZnSe quantum wires, Phys. Rev. B 2001, 63, 155311.
    [104] X. F. Duan, Y. Huang, and C. M. Lieber, Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires, Nano Lett. 2002, 2, 487.
    [105] X. F. Duan, and C. M. Lieber, General Synthesis of Compound Semiconductor Nanowires, Adv. Mater. 2000, 12, 298.
    [106] J. C. Johnson, H. Q. Yan, and R. D. Schaller, Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires, Nano Lett. 2002, 2, 279.
    [107] J. Y. Park, D. J. Lee, and S. S. Kim, Size control of ZnO nanorod arrays grown by metalorganic chemical vapor deposition, Nanotechnology 2005, 16, 2044~2047.
    [108] N. Pan, X. P. Wang, K. Zhang, H. L. Hu, B. Xu, F. Q. Li, and J. G. Hou, An approach to control the tip-shapes and properties of ZnO nanorods, Nanotechnology 2005, 16, 1069~1072.
    [109] Z. P. Zhang, H. D. Yu, X. Q. Shao, and M. Y. Han, Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal, Chem. Eur. J. 2005, 11, 3149~3154.
    [110] Y. Zhang, R. E. Russo, and S. S. Mao, Quantum efficiency of ZnO nanowire nanolasers, Appl. Phys. Lett. 2005, 87, 043106.
    [111] G. C. Yi, C. Wang, and W. I. Park, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol. 2005, 20, S22~S34.
    [112] M. H. Huang, S. Mao, H. Feick, et al., Room-temperature ultraviolet nanowire nanolasers, Science 2001, 292, 1897~1899.
    [113] W. I. Park, J. S. Kim, G. C. Yi, High-performance electronics based on ZnO nanowires, Appl. Phys. Lett. 2004, 85, 5052~5054.
    [114] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, Hydrogen-selective sensing at room temperature with ZnO nanorods, Appl. Phys. Lett. 2005, 86, 243503.
    [115] B. S. Kang, Y. W. Heo, L. C. Tien, et al., Hydrogen and ozone gas sensing using multiple ZnO nanorods, Appl. Phys. A 2005, 80, 1029~1032.
    [116] Y. J. Ma, Z. Zhang, F. Zhou, L. Lu, A. Jin, and C. Gu, Hopping conduction in single ZnO nanowires, Nanotechnology 2005, 16, 746.
    [117] I. Shalish, H. Temkin, and V. Narayanamurti, Size dependent surface luminescence in ZnO nanowires, Phys. Rev. B 2004, 69, 245401.
    [118] J. Wang, X. An, Q. Li, and R. F. Egerton, Size-dependent electronic structures of ZnO nanowires, Appl. Phys. Lett. 2005, 86, 201911.
    [119] J. Li, and L. W. Wang, Band-structure-corrected local density approximation study of semiconductor quantum dots and wires, Phys. Rev. B 2005, 72, 125325.
    [120] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Size dependence of Young's modulus in ZnO nanowires, Phys. Rev. Lett. 2006, 96, 075505.
    [121] H. J. Xiang, J. Yang, J. G. Hou, and Q. Zhu, Piezoelectricity in ZnO nanowires: A first-principles study, Appl. Phys. Lett. 2006, 89, 223111.
    [122] C. Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy, and J. E. Fischer, Diameter-dependent electromechanical properties of GaN nanowires, Nano Lett. 2006, 6, 153.
    [123] P. Villain, P. Beauchamp, K. F. Badawi, P. Goudeau, and P. O. Renault, Atomistic calculation of size effects on elastic coefficients in nanometre-sized tungsten layers and wires, Scripta Mater. 2004, 50, 1247.
    [124] P. S. Branicio, and J. P. Rino, Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study, Phys. Rev. B 2000, 62, 16950.
    [125] W. Li, R. K. Kalia, and P. Vashishta, Dynamical fracture in SiSe2 nanowires---a molecular-dynamics study, Europhys. Lett. 1996, 35, 103.
    [126] 邓志杰,郑安生,半导体材料,北京,化学工业出版社,2004.
    [127] L. Guo, S. Yang, C. Yang, et al., High monodisperse polymer-capped ZnO nanoparticles preparation and optical properties, Appl. Phys. Lett. 2000, 76, 2901.
    [128] D. W. Bahnemann, C, Kormann, and M. R. Hoffmann, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study, J. Phys. Chem. 1987, 91, 3789.
    [129] E. A. Muelenkamp, Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B 1998, 102, 5566.
    [130] S. Mahamuni, K. Borgohain, B. S. Bendre, et al., Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots, J. Appl. Phys. 1999, 85, 2861.
    [131] E. M. Wong, and P. C. Searson, Electrophoretic deposition of ZnO quantum particle thin films, Appl. Phys. Lett. 1999, 74, 2939.
    [132] A. Dijken, E. A. Muelenkamp, D. Vanmaekelbergh, and A. Meijerink, The kinetics of the radiative and nonradiative processes in nanocrystalline ZnO particles upon Photoexcitation, J. Phys. Chem. B 2000, 104, 1715.
    [133] A. Wood, M. Giersig, M. Hilgendorff, et al., Size effects in ZnO: The cluster to quantum dot transition, Aust. J. Chem. 2003, 56, 1051.
    [134] H. Zhou, H. Alves, D. M. Hofmann, et al., ehind the weak excitonic emission of ZnO quantum dots: ZnO/Zn (oh) 2 core-shell structure, Appl. Phys. Lett. 2002, 80, 210.
    [135] V. A. Fonoberov, and A. A. Balandin, Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes, Appl. Phys. Lett. 2004, 85, 5971.
    [136] A. Ecker, E. Weckert, and H. Schnockel, Synthesis and structural characterization of an AI77 cluster, Nature 1997, 387, 379.
    [137] R. Rousseau, G. Dietrich, S. Kruckeberg, K. Lutzenkirchen, D. Marx, L. Schweikhard, and C. Walther, Probing cluster structures with sensor molecules: methanol adsorbed onto gold clusters, Chem. Phys. Lett. 1998, 295, 41.
    [138] J. Cizeron and M.P. Pileni, Solid solution of CdyZn1-yS nanosized particles: photophysical properties, J. Phys. Chem. B 1997, 101, 8887.
    [139] B. Guo, K. Kerns, and A. Castleman, Ti8C12+-Metallo-Carbohedrenes: A new class of molecular clusters? Science 1992, 255, 1411.
    [140] B. Guo, S. Wei, J. Purnell, S. Buzza, and A. Castleman, Metallo-Carbohedrenes [M8C12+ (M = V, Zr, Hf, and Ti)]: A class of stable molecular cluster Ions, Science 1992, 256, 515.
    [141] A. Tomasulo and M.V. Ramakrishna, Spin orbital angular momentum coupling effects on the electronic structure of nanocrystalline semiconductor clusters, Chem. Phys. 1996, 210, 55.
    [142] M. Haser, U. Schneider, and R. Ahlrichs, Clusters of phosphorus: a theoretical investigation, J. Am. Chem. Soc. 1992, 114, 9551.
    [143] L. Lou, T. Guo, P. Nordlander, and R.E. Smalley, Electronic structure of the hollow-cage M8X12 clusters, J. Chem. Phys. 1993, 99, 5301.
    [144] Jan-Ole Joswig, Michael Springborg, and Gotthard Seifert, Structural and electronic properties of cadmium sulfide clusters, J. Phys. Chem. B 2000, 104, 2617.
    [145] Jain, V. Kumar, and Y. Kawazoe, Ring structures of small ZnO clusters, Comp. Mater. Sci. 2006, 36, 258.
    [146] X. Lü, X. Xu, N. Wang, Q. Zhang, M. Ehara, and H. Nakatsuji, Cluster modeling of metal oxides: how to cut a cluster, Chem. Phys. Lett. 1998, 291, 445.
    [147] Jon M. Matxain, Joseph E. Fowler, and Jesus M. Ugalde, Small clusters of II-VI materials: ZniOi , i=1–9, Phys. Rev. A 2000, 62, 053201.
    [148] Jan-Ole Joswig, Sudip Roy, Pranab Sarkar, Michael Springborg, Stability and bandgap of semiconductor clusters, Chem. Phys. Lett. 2002, 365, 75.
    [149] Z. C. Tu, and X. Hu, Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible singlewalled nanotubes, Phys. Rev. B 2006, 74, 035434.
    [150] S. H. Tolbert, and A. P. Alivisatos, Size dependence of a first order solid-solid phase transtion: the wurtzite to rock salt transformation in CdSe nanocrystals, Science 1994, 265, 373.
    [151] M. Grunwald, E. Rabani, and C. Dellago, Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals, Phys. Rev. Lett. 2006, 96, 255701.
    [152] 赵连城,国凤云,信息功能材料学,哈尔滨,哈尔滨工业大学出版社,2005.
    [153] P. A. Franken, A. E. Hill, C. W. Perters, et al., Generation of optical harmonics, Phys. Rev. Lett. 1961, 7, 118~119.
    [154] 刘思敏,郭儒,许京中,光折变非线性光学及其应用,北京,科学出版社,2004.
    [155] A. Ashkin, Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3, Appl. Phys. Lett. 1966, 9, 72.
    [156] F. S. Chen, Holographic storage in lithium niobate, Appl. Phys. Lett. 1968, 13, 223.
    [157] B. F. Levine, Bond-charge calculation of nonlinear optical sus- ceptibilities for variouscrystal structures, Phys. Rev. B 1973, 7, 2600~2626.
    [158] 陈创天,氧化物型晶体光电和非线性光学效应的阴离子配位基团理论,中国科学 1977,6,579~593.
    [159] R. W. Nunes, and X. Gonze, Berry-phase treatment of the homogeneous electric field perturbation in insulators, Phys. Rev. B 2001, 63, 155107.
    [160] M. Veithen, X. Gonze, and P. Ghosez, First-principles study of the electro-optic effect in ferroelectric oxides, Phys. Rev. Lett. 2004, 93, 187401.
    [161] M. Veithen, X. Gonze, and P. Ghosez., Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory, Phys. Rev. B 2005, 71, 125107.
    [162] X. Gonze, Adiabatic density-functional perturbation theory, Phys. Rev. A 1995, 52, 1096~1114.
    [163] X. Gonze, Perturbation expansion of variational principles at arbitrary order, Phys. Rev. A 1995, 52, 1086~1095.
    [164] 刘恩科,朱秉升,罗晋生等,半导体物理学,西安,西安交通大学出版社,2005.
    [165] S. Iijima, Helical microtubes of graphitic carbon, Nature 1991, 354, 56~58.
    [166] Y. Liu, W. Hu, X. Wang, et al., Carbon nanorods, Chem. Phys. Lett. 2000, 331, 31~34.
    [167] A. Maiti, Mechanical deformation in carbon nanotubes-bent tubes vs tubes pushed by atomically sharp tips, Chem. Phys. Lett. 2000, 331, 21~25.
    [168] C. Bower, R. Rosen, L. Jin, et al., Deformation of carbon nanotubes in nanotubepolymer composites, Appl. Phys. Lett. 1999, 74, 3317~3319.
    [169] T. Chang, and H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids 2003, 51, 1059~1074.
    [170] W. Guo, Y. Guo, and L. Wang, Molecular dynamics and quantum mechanics investigation on machanic-electric behaviors of nanotubes, International Journal of Nonlinear Science and Numerical Simulation 2002, 3, 469~472.
    [171] Y. Guo, and W. Guo, Mechanical and electrostatic properties of carbon nanotubes under tensile loading and electric field, J. Phys. D: Appl. Phys. 2003, 36, 1~7.
    [172] C. Cornwell, and L. Willie, Elastic properties of single-walled carbon nanotubes in compression, Solid State Commun. 1997, 101, 555~558.
    [173] B. Yakobson, C. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond the linear response, Phys. Rev. Lett. 1996, 76, 2511~2514.
    [174] T. Hertel, R. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface van der Waals forces, Phys. Rev. B 1998, 58, 13870~13873.
    [175] G. Gao, T. ?a?in, and W. Goddard III, Energetics, structure, mechanical and vibrational properties of singlewalled carbon nanotubes, Nanotechnology 1998, 9, 184~191.
    [176] E. Hernández, C. Goze, P. Bernier, and A. Rubio, Elastic properties of single-wall nanotubes, Appl. Phys. A 1999, 68, 287~292.
    [177] A. Rochefort, P. Avouris, F. Lesage, and D. Salahub, Electrical and mechanical properties of distorted carbon nanotubes, Phys. Rev. B 1999, 60, 13824~13830.
    [178] D. Sánchez-Portal, E. Artacho, J. Soler, A. Rubio, and P. Ordejón, Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Phys. Rev. B 1999, 59, 12678~12688.
    [179] G. V. Lier, C. V. Alsenoy, V. V. Doren, and P. Geerlings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene, Chem. Phys. Lett. 2000, 326, 181~185.
    [180] G. Zhou, W. Duan, and B. Gu, First-principles study on morphology and mechanical properties of single-walled carbon nanotube, Chem. Phys. Lett. 2001, 333, 344~349.
    [181] M. Arroyo, and T. Belytschko, Large deformation atomistic-based continuum analysis of carbon nanotubes, AIAA Paper 2002, 1317.
    [182] N. Chopra, L. Benedict, V. Crespi, M. Cohen, S. Louie, and A. Zettl, Fully collapsed carbon nanotubes, Nature 1995, 377, 135~138.
    [183] K. Sohlberg, B. Sumpter, R. Tuzun, and D. Noid, Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures, Nanotechnology 1998, 9, 30~36.
    [184] O. Y. Zhong-can, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett. 1997, 78, 4055~4058.
    [185] M. Yu, T. Kowalewski, and R. Ruo, Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy, Phys. Rev. Lett. 2001, 86, 87~90.
    [186] M. Arroyo, and T. Belytschko, An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids 2002, 50, 1941~1977.
    [187] C. Ru, Elastic buckling of single-walled carbon nanotube ropes under high pressure, Phys. Rev. B 2000, 62, 10405~10408.
    [188] R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 1992, 60, 2204~2206.
    [189] Y. Jin, and F. Yuan, Elastic properties of single-walled carbon nanotubes, AIAA Paper 2002, 1430.
    [190] C. Ru, Effective bending stiffness of carbon nanotubes, Phys. Rev. B 2000, 62, 9973~9976.
    [191] Abaqus theory manual, example problems manual and Abaqus/Standard user’s manual,Hibbitt, Karlsson and Sorensen, Inc. 2001.
    [192] R. A. Smith, Fatigue in transport: background, solutions and problems. Fatigue’99: Proceeding of the Seventh International Fatigue Congress, Vol. Ⅳ. Wu Xue-Ren, Wang Zhong-Guang, editors. Beijing, P. R. China, 1999.
    [193] C. Seife, Columbia disaster underscores the risky nature of risk analysis, Science 2003, 299, 1001~1002.
    [194] U. G. Goranson, Fatigue issues in aircraft maintenance and repairs, Int. J. Fatigue 1998, 20, 413~431.
    [195] P. Shi, and S. Mahadevan, Damage tolerance approach for probabilistic pitting corrosion fatigue life prediction, Engineering Fracture Mechanics 2001, 68, 1493~1507.
    [196] T. Lassen, and J. D. Sorensen, A probabilistic damage tolerance concept for welded joints Part 1: data base stochastic modeling, Marine Structure 2002, 15, 599~613.
    [197] C. Proppe, G. I. Schu?ller, J. Hartl, and H. Kargl, Probabilistic design of mechanical components, Structure Safety 2002, 24, 363~376.
    [198] S. Mahadevan, and K. Ni, Damage tolerance reliability analysis of automotive spot-welded joints, Reliability Engineering and System Safety 2003, 81, 9~21.
    [199] J-T Kim, Y-S Ryu, H-M Cho, and N. Stubbs, Damage identification in beam-type structures: frequency-based method vs. mode-shape-based method. Eng. Struct. 2003, 25(1), 57~67.
    [200] G. Nicoletto, Approximate stress intensity factors for cracked gear tooth, Eng. Fract. Mech. 1993, 44(2), 231~242.
    [201] B. Aber?ek, and J. Fla?ker, Stress intensity factor for cracked gear tooth, Theor. Appl. Fract. Mech. 1994, 20(2), 99~104.
    [202] V. G. Sfakiotakis, D. E. Katsareas, and N. K. Anifantis, Boundary element analysis of gear teeth fracture, Eng. Anal. Bound. Elem. 1997, 20(2), 169~175.
    [203] K. Inoue, and M. Kato, Crack growth resistance due to shot peening in carburized gears, Presented at the 30th AIAA/ASME/SAE/ASEE joint propulsion conference, Indianapolis, IN; 1994, Paper No. AIAA 94-2935.
    [204] A. Blarasin, M. Guagliano, and L. Vergani, Fatigue crack growth prediction in specimens similar to spur gear teeth, Fatigue Fract. Eng. Mater. Struct. 1997, 20(8), 1171~1182.
    [205] S. Glode?, S. Pehan, and J. Fla?ker, Experimental results of the fatigue crack growth in a gear tooth root, Int. J. Fatigue 1998, 20(9), 669~675.
    [206] B. Aber?ek, and J. Fla?ker, Experimental analysis of propagation of fatigue crack on gears, Exp. Mech. 1998, 38(3), 226~230.
    [207] J. Fla?ker, S. Glode?, and S. Pehan, Influence of contact area on the service life of gears with crack in tooth root, Commun. Numer. Meth. Eng. 1995, 11, 49~58.
    [208] ANSYS, Inc, Theory Manual, 001369, Twelfth Edition, SAS IP, Inc.?
    [209] 吴学仁,飞机结构金属金属材料力学性能手册,卷二:损伤容限,北京,航空工业出版社,1996.
    [210] S. Glode?, M. ?raml, and J. Kramberger, A computational model for determination of service life of gears, International Journal of Fatigue 2002, 24(10), 1013~1020.
    [211] D. G. Lewicki, Gear crack propagation path studies-guidelines for ultra-safe design, Journal of the American Helicopter Society 2002, 47(1), 64~72.
    [212] MA-B Abdo, and M. Hori, A numerical study of structural damage detection using changes in the rotation of mode shapes, Journal of Sound and Vibration 2002, 251(2), 227~239.
    [213] J. B. Kosmatka, and J. M. Ricles, Damage detection in structures by model vibration characterization, Journal of Structural Engineering 1999, 125(12), 1384~1392.