可降解PLA-PBT共聚酯的合成与改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪合成高分子材料的问世及其快速发展极大地改善了人类生活,但同时大量塑料废弃物也造成了严重的环境污染。近年来随着人类环保意识的增强,可降解高分子材料的研究与开发越来越引起人们的高度重视。脂肪族聚酯由于具有良好的生物降解性能已成为可降解高分子材料领域研发的热点,然而较差的热稳定性和力学性能以及较高的生产成本制约了其进一步发展。芳香族聚酯虽不具备生物降解性能,却具有优异的热稳定性和力学性能。因此,结合脂肪族聚酯和芳香族聚酯各自优点,设计、合成新型可降解脂肪族-芳香族共聚酯材料已成为人们关注重点。在此背景下,本论文主要开展了两大部分的研究工作:第一部分为可降解脂肪族-芳香族共聚酯的合成及性能研究;第二部分则采用纳米粒子杂化的方法对可降解脂肪族-芳香族共聚酯进行改性。
     在第一部分工作中,首先以对苯二甲酸(TPA)、1,4-丁二醇(BDO)和乳酸低聚体(OLLA)为原料,采用经济性和环保性更佳的直接酯化熔融缩聚法合成了一系列具有不同组成配比的可降解脂肪族-芳香族共聚酯(PBTL)。通过NMR、FT-IR、DSC、TG、XRD、DMA等手段对其结构与性能进行了表征,研究发现共聚酯的玻璃化转变温度、热稳定性以及力学性能随着共聚酯中脂肪族乳酸组分含量的减少而逐步增加。共聚酯的降解实验表明,乳酸链段的引入赋予共聚酯良好的降解性能,且该材料的降解性能可通过调节共聚酯中乳酸的含量而方便地调控。
     其次,为了进一步提高可降解共聚酯的热稳定性和力学性能,在TPA、BDO和OLLA共聚反应基础上添加共聚组分刚性二元醇环已烷二甲醇(CHDM),通过直接熔融缩聚反应合成了一系列具有不同CHDM含量的可降解脂肪族-芳香族共聚酯(PBCTL),并对其结构与性能进行了表征。研究发现CHDM的反应活性比BDO高,当CHDM含量为5 mo1%时,产物的重均分子量高达89400 g/mol。CHDM刚性环结构的引引入能有效地提高共聚酯的热性能和力学性能,当CHDM含量由0 mmo1%增加至5 mo1%时,共聚酯的玻璃化转变温度、初始分解温度以及拉伸强度分别由26.9℃,282.5℃和6.4 MPa大幅提升至36.2℃,309.7℃和19 MPa。
     第三,为了进一步改善共聚酯的降解性能,在TPA、BDO和OLLA共聚反应基础上加入亲水性二元醇聚乙二醇(PEG),采用熔融缩聚反应合成了一系列具有不同PEG分子量和含量的可降解脂肪族-芳香族共聚酯(PBTLG),并对其结构与性能进行了表征。研究发现柔性PEG的加入降低了反应体系粘度,促进了缩聚反应充分进行,最终得到重均分子量高达177000 g/mol的可降解共聚酯材料。吸水率和水接触角测试表明PEG亲水链段的引引入极大地改善了共聚酯的亲水性,进而显著地提高了共聚酯的降解性能,其中PBTLG1000-1.0在60℃的PBS溶液中降解40天质量损失达39%。
     在第二部分工作中,首先采用Si02作为纳米粒子源,在TPA、BDO和OLLA共聚反应基础上,通过原位熔融缩聚反应将Si02纳米粒子引入到聚合物中制备得到一类含Si02粒子的可降解脂肪族-芳香族共聚酯纳米复合材料,并对其结构与性能以及粒子形貌进行了表征。研究发现在缩聚反应过程中,Si02粒子表面的硅羟基与反应生成的共聚酯发生原位缩合反应,使Si02粒子表面接枝上共聚酯分子链。Si02粒子表面的聚合物链不仅有效地阻碍纳米粒子自身的团聚使其均匀分散,同时增强Si02无机相与共聚酯基体有机相的界面粘合力,大幅提高了复合材料的热稳定性和力学性能。水降解实验表明,Si02粒子的存在未对复合材料的降解性能产生显著影响。
     其次,从分子设计出发,以氨基POSS化合物(AI-POSS)和羟乙基丙烯酸酯(HEA)为原料,采用Michael加成反应合成了一种新型双官能团POSS化合物(BH-POSS),并在TPA、BDO和OLLA共聚反应基础上,通过原位共缩聚将BH-POSS和另外两种POSS化合物(AI-POSS与PEG-POSS)引引入到聚合物中制备得到一类含POSS笼形结构的可降解脂肪族-芳香族共聚酯纳米杂化复合材料,同时对其结构与性能以及POSS粒子分散状况进行了表征。研究发现AI-POSS物理分散在复合材料基体中但发生明显的纳米粒子团聚现象,而BH-POSS能通过化学共聚反应将其纳米笼形结构以共价键链接在共聚酯分子主链上,这有效地避免POSS粒子的团聚,使之达到均匀分散,因而复合材料的热稳定性和力学性能均显著提高。水降解实验表明,含有多个亲水性基团的PEG-POSS的引入在一定程度上改善了复合材料的降解性能。
During the 20th century the advent and rapid development of synthetic polymer materials greatly improved the level of human's life, but a huge number of plastic waste also caused serious environmental pollution. In the recent years, people have payed more and more attention to investigating and developing novel biodegradable polymers as their consciousness of environmental protection improved. Due to their good biodegradability, aliphatic polyesters have been regarded as one of the most important biodegradable polymers and became a hot research topic. However, the poor thermal stability and mechanical properties as well as relative high cost have drastically restricted their application. On the contrary, aromatic polyesters have excellent thermal stability, good mechanical properties and relative low cost, although they could not be degraded. Therefore, incorporation of biodegradable aliphatic units into the molecular chain of aromatic polyesters has been regarded as an effective strategy to obtain novel biodegradable copolyesters. In this dissertation, two main research have been carried out. First, synthesis, characterization and properties of degradable aliphatic aromatic copolyesters; second, modification of degradable aliphatic aromatic copolyesters by nanohybrids or nanocomposites.
     In the first part, degradable aliphatic-aromatic copolyesters, poly(butylene terephthalate-co-lactate) (PBTL) were synthesized via environment-friendly and economical direct melt polycondensation of terephthalic acid (TPA),1,4-butanediol (BDO) and poly(L-lactic acid) oligomer (OLLA). NMR, FT-IR, DSC, XRD and DMA analysis clearly indicated that the glass-transition temperature, thermal stability and tensile strength were gradually increased with the decrease of aliphatic lactate moieties in the final copolyesters. Hydrolytic and soil degradation results demonstrated that the incorporation of lactate moieties into aromatic polyesters endowed the copolyesters good degradability and their degradation behaviours could be easily tailored through adjusting the lactate molar content in the copolyesters.
     In order to enhance the thermal stability and mechanical properties, one copolymerized component, rigid diols cyclohexanedimethanol (CHDM) was added in the TPA, BDO and OLLA reactions to synthesize a series of degradable aliphatic-aromatic copolyester (PBCTL). The results demonstrated that CHDM had higher reactivity than BDO. When the content of CHDM was 5 mol%, the weight-average molecular weight of the copolyester was up to 89400 g/mol. The incorporation of CHDM rigid ring structure dramastically improved the thermal stability and mechanical properties of the copolyesters. When the CHDM content increased from 0 mol% to 5 mol%, the glass-transition temperature, initial decomposition temperature and tensile strength were significantly increased from 26.9 0 C,282.5℃and 6.4 MPa to 36.2℃,309.7℃and 19 MPa.
     To further improve the degradability, one hydrophilic diol, polyethylene glycol (PEG) was selected as copolymerized componet to react with TPA, BDO and OLLA via direct melt polycondensation, and synthesized a series of degradable aliphatic-aromatic copolyester (PBTLG) with different PEG molecular weight and content. The results indicated that adding PEG decreased the viscosity of reaction system, promoted the condensation reaction and finally obtained copolyester with the weight-average molecular weight up to 177000 g/mol. Water absorption and water contact angle measurements showed that the introduction of hydrophilic PEG remarkably improved the hydrophilicity and significantly increased the degradation rate of the polyesters. For example, the weight loss of PBTLG1000-1.0 was up to 39% after 40 days at 60℃in PBS.
     In the second part, nano-SiO2 was first selected as one nanoparticle to copolymerize with TPA, BDO and OLLA via in situ melt polycondensation and prepare a novel degradable aliphatic-aromatic copolyester nanocomposites. The results revealed that during the polycondensation, the abundant hydroxyl groups on the surface of nano-SiO2 provided potential sites for in situ grafting with the simultaneous resulted copolyester, so that the SiO2 nanoparticles were chemically wrapped with copolyester main-chains. The copolymer chains grafted onto SiO2 particle surface not only effectively impeded nanoparticles aggregated and made good disperse, but also enhanced the interfacial adhesion between SiO2 inorganic phase with the organic phase copolyester matrix. So the thermal stability and mechanical properties of the PBTL/SiO2 nanocomposites substantially increased. Hydrolytic degradation indicated that the degradability of the composites did not be obviously affected due to the introduction of SiO2.
     Secondly, a new POSS nanocompound containing two functional groups, BH-POSS, was synthesized via Michael addition reaction of amino POSS compounds (AI-POSS) with hydroxyethyl acrylate (HEA). Based on the polycondensation of TPA, BDO and OLLA, BH-POSS and two other POSS compounds (AI-POSS and PEG-POSS) were introduced into the resulting copolyesters and prepared a novel kind of degradable aliphatic-aromatic copolyester nanohybrids containing POSS. The results suggested that AI-POSS just dispersed physically and aggregated seriously in the composites, but BH-POSS could take part in the copolymerization to make their nanocage structure covalently linked to the main-chains of copolyesters, which effectively prevented the agglomeration of POSS nanoparticles and made POSS dispersed uniformly in the matrix, thus the thermal stability and mechanical properties of the nanohybrids were significantly enhanced. Hydrolytic degradation showed that the incorporation of PEG-POSS containing hydrophilic groups improved the degradability of the nanocomposits to some extent.
引文
[1]何曼君;陈伟孝;董西侠.高分子物理.复旦大学出版社,上海,1990.
    [2]翟羽伸.石油化工.石油工业出版社,北京,1996.
    [3]单士军;李耐霞.可降解塑料研究现状与发展前景.工业安全与环保 2004,30,(9),17-18.
    [4]Diamond, M. J.; Freedman, B.; Garibaldi, J. A. Biodegradable polyester films. International Biodeterioration Bulletin 1975,11, (4),127-132.
    [5]戈进杰.生物降解高分子材料及其应用.化学工业出版社,北京,2002.
    [6]Fernandes, N. J.; Mauricio, P. J.; Marcondes, A. A. Environmentally degradable polymeric blend and process for obtaining an environmentally degradable polymeric blend. European patent US2010048767 (A1),2010-02-25.
    [7]Langer, S. R.; Lynn, M. D.; Putnam, D.; Amiji, M. M.; Anderson, D. G. Biodegradable poly(beta-amino esters) and uses thereof. European patent US2010036084 (Al), 2010-02-11.
    [8]张艳;方征平;王炳涛;郭正虹;程捷.制备芳香族-脂肪族共聚酯的方法.中国专利CN101412804,2009-04-22.
    [9]Gomes, M. E.; Ribeiro, A. S.; Malafaya, P. B.; Reis, R. L.; Cunha, A. M. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 2001,22, (9),883-889.
    [10]Otey, F. H.; Westhoff, R. P.; Doane, W. M. Starch-based blown films.2. Industrial & Engineering Chemistry Research 1987,26, (8),1659-1663.
    [11]Scott, G. Photo-biodegradable plastics:Their role in the protection of the environment. Polymer Degradation and Stability 1990,29, (1),135-154.
    [12]杨斌.绿色塑料聚乳酸.化学工业出版社,北京,2007.
    [13]任杰.可降解与吸收材料.化学工业出版社,北京,2003.
    [14]Okada, M. Chemical syntheses of biodegradable polymers. Progress in Polymer Science 2002,27, (1),87-133.
    [15]Chandra, R.; Rustgi, R. Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability 1997,56, (2),185-202.
    [16]余华.生物质可降解塑料的研究进展.湖南工业大学学报 2009,23,(4),94-98.
    [17]Chandra, R.; Rustgi, R. Biodegradable polymers. Progress in Polymer Science 1998,23, (7),1273-1335.
    [18]Edgar, K. J.; Buchanan, C. M.; Debenham, J. S.; Rundquist, P. A.; Seiler, B. D.; Shelton, M. C.; Tindall, D. Advances in cellulose ester performance and application. Progress in Polymer Science 2001,26, (9),1605-1688.
    [19]Sawada, H. The status of the biodegradable plastics industry in Japan. ACS Symposium Series 2001,7,56-57.
    [20]Shahidi, F.; Arachchi, J. K. V.; Jeon, Y. J. Food applications of chitin and chitosans. Trends in Food Science & Technology 1999,10, (2),37-51.
    [21]Kumar, M. A review of chitin and chitosan applications. Reactive & Functional Polymers 2000,46,(1),1-27.
    [22]Nagahama, H.; Nwe, N.; Jayakumar, R.; Koiwa, S.; Furuike, T.; Tamura, H. Novel biodegradable chitin membranes for tissue engineering applications. Carbohydrate Polymers 2008,73, (2),295-302.
    [23]Anderson, A. J.; Dawes, E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews 1990,54, (4),450-472.
    [24]Byrom, D. Production of poly-beta-hydroxybutyrate-poly-beta-hydroxyvalerate copolymers. Fems Microbiology Reviews 1992,103, (2-4),247-250.
    [25]Muller, H. M.; Seebach, D. Poly(hydroxyalkanoates)-a 5th class of physiologically important organic biopolymers. Angewandte Chemie-International Edition in English 1993, 32, (4),477-502.
    [26]Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science 2000,25, (10),1503-1555.
    [27]杨惠娣;翁云宣;胡汉杰.中国生物降解塑料开发历史、现状和发展趋势.中国塑料2005,19,(3),1-6.
    [28]Mohanty, A. K.; Misra, M.; Hinrichsen, G. Biofibres, biodegradable polymers and biocomposites:an overview. Macromolecular Materials and Engineering 2000,276, (3-4), 1-24.
    [29]Chiellini, E.; Solaro, R. Biodegradable polymeric materials. Advanced Materials 1996,8, (4),305-313.
    [30]袁华;任杰;马广华.生物可降解高分子材料的研究与发展.建筑材料学报 2002,5,(3),263-268.
    [31]马海红;邱谨楠.生物降解高分子材料的研究进展.安徽化工 2008,34,(4),1-4.
    [32]陈昌杰.降解塑料在包装方面的应用.上海塑料 2004,4,13-16.
    [33]李孝红;袁明龙;邓先模.聚乳酸及其共聚物的合成和在生物医学上的应用.高分子通报 1999,1,24-32.
    [34]Gross, R. A.; Kalra, B. Biodegradable polymers for the environment. Science 2002,297, (5582),803-807.
    [35]Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Advanced Materials 2000,12, (23),1841-1846.
    [36]Carothers, W. H.; Dorogh, G. L.; Van Natta, F. J. Studies on polymerization and ring formation X the reversible polymerization of six-membered cyclic esters. Journal of the American Chemical Society 1932,54,761-762.
    [37]Ohta, M.; Obuchi, S.; Yoshida, Y. M. T. Process for the preparation of lactic acid polyesters. EP Patent 1993-12-23, EP0603889 (A2).
    [38]Ajioka, M.; Enomoto, K.; Suzuki, K.; Yamaguchi, A. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic-acid. Bulletin of the Chemical Society of Japan 1995,68, (8),2125-2131.
    [39]顾燕波.稀土催化剂化合成芳香族-脂肪族共聚酶(D).浙江大学,杭州,2006.
    [40]Hiltunen, K.; Seppala, J. V.; Harkonen, M. Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers. Macromolecules 1997,30, (3),373-379.
    [41]Moon, S. I.; Lee, C. W.; Miyamoto, M.; Kimura, Y. Melt polycondensation of L-lactic acid with Sn(Ⅱ) catalysts activated by various proton acids:A direct manufacturing route to high molecular weight poly(L-lactic acid). Journal of Polymer Science Part A-Polymer Chemistry 2000,38, (9),1673-1679.
    [42]Kricheldorf, H. R. Syntheses and application of polylactides. Chemosphere 2001,43, (1), 49-54.
    [43]Kricheldorf, H. R.; Boettcher, C. Polylactones lithium alkoxide-initiated polymerizations of L-lactide. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1993,194, (6),1665-1669.
    [44]Kricheldorf, H. R.; Kreisersaunders, I.; Boettcher, C. Polylactones Sn(Ⅱ)Octoate-initiated polymerization of L-lactide-a mechanistic study. Polymer 1995,36, (6),1253-1259.
    [45]Jie, P.; Venkatraman, S. S.; Min, F.; Freddy, B. Y. C.; Huat, G. L. Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. Journal of Controlled Release 2005,110, (1),20-33.
    [46]Yang, H.; Zhou, S. B.; Deng, X. M. Synthesis and characterization of chitosan-g-poly(D, L-lactic acid) copolymer. Chinese Chemical Letters 2005,16, (1),123-126.
    [47]Niu, X. F.; Wang, Y. L.; Luo, Y. F.; Pan, J.; Shang, J. F.; Guo, L. X. Synthesis of the biomimetic polymer:Aliphatic diamine and RGDS modified poly(d,l-lactic acid). Chinese Chemical Letters 2005,16, (8),1035-1038.
    [48]Duan, J. F.; Du, J.; Zheng, Y. B. Synthesis and characterization of a novel biodegradable polymer poly(lactic acid-glycolic acid-4-hydroxyproline). Journal of Applied Polymer Science 2007,103, (6),3585-3590.
    [49]Jonte, J. M.; Dunsing, R.; Kricheldorf, H. R. Polylactones.4. cationic polymerization of lactones by means of alkylsulfonates. Journal of Macromolecular Science-Chemistry 1986, A23, (4),495-514.
    [50]Barakat, I.; Dubois, P.; Jerome, R.; Teyssie, P. Living polymerization and selective end functionalization of epsilon-caprolactone using zinc alkoxides as initiators. Macromolecules 1991,24, (24),6542-6545.
    [51]Shen, Z. Q.; Chen, X. H.; Shen, Y. Q.; Zhang, Y. F. Ring-opening polymerization of epsilon-caprolactone by rare-earth coordination catalysts.1. characteristics, kinetics, and mechanism of epsilon-caprolactone polymerization with Nd(acac)3.3H2O-AlEt3 system. Journal of Polymer Science Part A-Polymer Chemistry 1994,32, (4),597-603.
    [52]Qian, H. T.; Bei, J. Z.; Wang, S. G. Synthesis, characterization and degradation of ABA block copolymer of L-lactide and epsilon-caprolactone. Polymer Degradation and Stability 2000,68, (3),423-429.
    [53]John, J.; Tang, J. A.; Bhattacharya, M. Processing of biodegradable blends of wheat gluten and modified polycaprolactone. Polymer 1998,39, (13),2883-2895.
    [54]John, J.; Bhattacharya, M. Properties of reactively blended soy protein and modified polyesters. Polymer International 1999,48, (11),1165-1172.
    [55]Bisht, K. S.; Deng, F.; Gross, R. A.; Kaplan, D. L.; Swift, G. Ethyl glucoside as a multifunctional initiator for enzyme-catalyzed regioselective lactone ring-opening polymerization. Journal of the American Chemical Society 1998,120, (7),1363-1367.
    [56]王永亮;易国斌;康正;熊富华;周平;崔亦华.聚已内酯的合成与应用研究进展.化学与生物工程 2006,23,(3),1-4.
    [57]高明;王秀芬;郭锐;潘则林.PBS基生物降解材料的研究进展.高分子通报 2004,(5),51-55.
    [58]Song, D. K.; Sung, Y. K. Synthesis and characterization of biodegradable poly(1,4-butanediol succinate). Journal of Applied Polymer Science 1995,56, (11), 1381-1395.
    [59]Tuominen, J.; Seppala, J. V. Synthesis and characterization of lactic acid based poly(ester-amide). Macromolecules 2000,33, (10),3530-3535.
    [60]刘孝波;何毅;杨德娟;朱方华.一种可生物降解聚酯酰胺及其制备方法Chinese Patent 2000-01-26, CN 1242387.
    [61]曾建兵;李以东;李闻达;朱群英;熊竹;杨科珂;王玉忠.HDI作为扩链剂合成含PLLA和PBS链段的聚酯氨酯.高分子学报2009,10,(10),1018-1024.
    [62]Nagata, M.; Kiyotsukuri, T.; Takeuchi, S.; Tsutsumi, N.; Sakai, W. Hydrolytic degradation of aliphatic polyesters copolymerized with poly(ethylene glycol)s. Polymer International 1997,42,(1),33-38.
    [63]Yang, J.; Hao, Q. H.; Liu, X. Y.; Ba, C. Y.; Cao, A. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functionalizable carbonate building blocks.1. Chemical synthesis and their structural and physical characterization. Biomacromolecules 2004,5, (1),209-218.
    [64]Nikolic, M. S.; Poleti, D.; Djonlagic, J. Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene fumarate)s. European Polymer Journal 2003,39, (11), 2183-2192.
    [65]石峰晖;王晓青;蒋志敏;王进锋;刘伟;季君晖.含生物活性氨基侧链的脂肪族共聚酯的合成与表征.高分子材料学与工程 2009,25,(7),125-128.
    [66]王连才;孙勇;冯增国.可生物降解脂肪-芳香族共聚聚酯的研究进展.尹国塑料2003,17,(8),1-8.
    [67]邓利民.PBS及其共聚物的合成与表征(D).四川大学,成都,2004.
    [68]Tokiwa, Y.; Suzuki, T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. Journal of Applied Polymer Science 1981,26, (2),441-448.
    [69]Witt, U.; Muller, R. J.; Augusta, J.; Widdecke, H.; Deckwer, W. D. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromolecular Chemistry and Physics 1994,195, (2),793-802.
    [70]Muller, R. J.; Witt, U.; Rantze, E.; Deckwer, W. D. Architecture of biodegradable copolyesters containing aromatic constituents. Polymer Degradation and Stability 1998,59, (1-3),203-208.
    [71]Witt, U.; Einig, T.; Yamamoto, M.; Kleeberg, I.; Deckwer, W. D.; Muller, R. J. Biodegradation of aliphatic-aromatic copolyesters:evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 2001,44, (2), 289-299.
    [72]Chen, X. R.; Chen, W.; Zhu, G. X.; Huang, F. X.; Zhang, J. C. Synthesis, H-1-NMR characterization, and biodegradation behavior of aliphatic-aromatic random copolyester. Journal of Applied Polymer Science 2007,104, (4),2643-2649.
    [73]Ki, H. C.; Park, O. O. Synthesis, characterization and biodegradability of the biodegradable aliphatic-aromatic random copolyesters. Polymer 2001,42, (5),1849-1861.
    [74]张培娜;黄发荣;王彬芳.改性脂肪族聚酯的生物降解性研究.华东理工大学学报2001,27,(1),64-67.
    [75]Park, S. S.; Chae, S. H.; Im, S. S. Transesterification and crystallization behavior of poly(butylene succinate) poly(butylene terephthalate) block copolymers. Journal of Polymer Science Part A-Polymer Chemistry 1998,36, (1),147-156.
    [76]Deng, L. M.; Wang, Y. Z.; Yang, K. K.; Wang, X. L.; Zhou, Q.; Ding, S. D. A new biodegradable copolyester poly(butylene succinate-co-ethylene succinate-co-ethylene terephthalate). Acta Materialia 2004,52, (20),5871-5878.
    [77]张勇;冯增国;刘凤香;张爱英.聚对苯二甲酸丁二醇酯-co-聚丁二酸丁二醇酯-b-聚乙二醇嵌段共聚物的合成及表征.化学学按2002,60,(12),2225-2231.
    [78]Zhang, Y.; Feng, Z.; Feng, Q.; Cui, F. The influence of soft segment length on the properties of poly(butylene terephthalate-co-succinate)-b-poly(ethylene glycol) segmented random copolymers. European Polymer Journal 2004,40,1297-1308.
    [79]张勇;吴春红;冯增国;刘凤香;张爱英;王连才.聚(对苯二甲酸丁二醇酯-co-对苯二甲酸环已烷二甲醇酯)-b-聚乙二醇嵌段共聚物的合成与表征.高等学校化学学报2004,25,(2),376-381.
    [80]Kint, D. P. R.; Wigstrom, E.; De Ilarduya, A. M.; Alla, A.; Munoz-Guerra, S. Poly(ethylene terephthalate) copolyesters derived from (2S,3S)-2,3-dimethoxy-l,4-butanediol. Journal of Polymer Science Part A-Polymer Chemistry 2001,39, (19),3250-3262.
    [81]Kim, S. W.; Lim, J. C.; Kim, D. J.; Seo, K. H. Synthesis and characteristics of biodegradable copolyesters from the transesterification of poly(butylene adipate-co-succinate) and poly(ethylene terephthalate). Journal of Applied Polymer Science 2004,92, (5),3266-3274.
    [82]Kint, D. P. R.; Alla, A.; Deloret, E.; Campos, J. L.; Munoz-Guerra, S. Synthesis, characterization, and properties of poly(ethylene terephthalate)/poly(1,4-butylene succinate) block copolymers. Polymer 2003,44, (5),1321-1330.
    [83]Salhi, S.; Tessier, M.; Blais, J. C.; El Gharbi, R.; Fradet, A. Synthesis of aliphatic-aromatic copolyesters by a high temperature bulk reaction between poly(ethylene terephthalate) and cyclodi(ethylene succinate). Macromolecular Chemistry and Physics 2004,205, (18), 2391-2397.
    [84]Maeda, Y.; Maeda, T.; Yamaguchi, K.; Kubota, S.; Nakayama, A.; Kawasaki, N.; Yamamoto, N.; Aiba, S. Synthesis and characterization of novel biodegradable copolyesters by transreaction of poly(ethylene terephthalate) with copoly(succinic anhydride/ethylene oxide). Journal of Polymer Science Part A-Polymer Chemistry 2000, 38, (24),4478-4489.
    [85]Kondratowicz, F. I.; Ukielski, R. Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability 2009,94, (3),375-382.
    [86]Haderlein, G.; Schmidt, C.; Wendorff, J. H.; Greiner, A. Synthesis of hydrolytically degradable aromatic polyesters with lactide moieties. Polymers for Advanced Technologies 1997,8, (9),568-573.
    [87]Chen, Y W.; Wombacher, R.; Wendorff, J. H.; Visjager, J.; Smith, P.; Greiner, A. Design, synthesis, and properties of new biodegradable aromatic/aliphatic liquid crystalline copolyesters. Biomacromolecules 2003,4, (4),974-980.
    [88]Olewnik, E.; Czerwinski, W.; Nowaczyk, J.; Sepulchre, M. O.; Tessier, M.; Salhi, S.; Fradet, A. Synthesis and structural study of copolymers of L-lactic acid and bis(2-hydroxyethyl terephthalate). European Polymer Journal 2007,43, (3),1009-1019.
    [89]Olewnik, E.; Czerwinski, W.; Nowaczyk, J. Hydrolytic degradation of copolymers based on L-lactic acid and bis-2-hydroxyethyl terephthalate. Polymer Degradation and Stability 2007,92,(1),24-31.
    [90]Zhu, X. J.; Chen, Y. W.; He, J. S.; Tan, L. C.; Wang, Y. Synthesis of aliphatic-aromatic copolyesters by a melting bulk reaction between poly(butylene terephthalate) and DL-Oligo(lactic acid). High Performance Polymers 2008,20, (2),166-184.
    [91]Acar, I.; Pozan, G. S.; Ozgumus, S. Thermal oxidative degradation kinetics and thermal properties of poly(ethylene terephthalate) modified with poly(lactic acid). Journal of Applied Polymer Science 2008,109, (5),2747-2755.
    [92]Chen, Y.; Zhu, X.; Tan, L.; Su, J. Melting bulk reaction between poly(butylene terephthalate) and poly(ethylene glycol)/DL-oligo(lactic acid). Journal of Applied Polymer Science 2008,108, (4),2171-2179.
    [93]Ma, D. Z.; Zhang, G. Y.; Huang, Z. D.; Luo, X. L. Synthesis and chain structure of ethylene terephthalate epsilon-caprolactone copolyesters. Journal of Polymer Science Part A-Polymer Chemistry 1998,36, (16),2961-2969.
    [94]Ma, D. Z.; Xu, X.; Luo, X. L. Transesterification and ringed spherulites in blends of butylene terephthalate-epsilon-caprolactone copolyester with poly(epsilon-caprolactone). Polymer 1997,38, (5),1131-1138.
    [95]Lim, K. Y.; Kim, B. C.; Yoon, K. J. Structural and physical properties of biodegradable copolyesters from poly(ethylene terephthalate) and polycaprolactone blends. Journal of Applied Polymer Science 2003,88, (1),131-138.
    [96]Fakirov, S.; Gogeva, T. Poly(ether ester)s based on poly(butylene terephthalate) and poly(ethylene glycol).1. poly(ether ester)s with various polyether-polyester ratios. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1990,191, (3), 603-614.
    [97]Fakirov, S.; Gogeva, T. Poly(ether ester)s based on poly(butylene terephthalate) and poly(ethylene glycol).2. effect of polyether segment length. Makrolekulare Chemie-Macromolecular Chemistry and Physics 1990,191, (3),615-624.
    [98]Gogeva, T.; Fakirov, S. Poly(ether ester)s based on poly(tetramethylene terephthalate) and poly(ethylene glycol).4. modification with 2-butyne-1,4-diol. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1990,191, (10),2355-2365.
    [99]Beumer, G. J.; Vanblitterswijk, C. A.; Ponec, M. Biocompatibility of a biodegradable matrix used as a skin substitute-an in-vivo evaluation. Journal of Biomedical Materials Research 1994,28, (5),545-552.
    [100]Beumer, G. J.; Vanblitterswijk, C. A.; Bakker, D.; Ponec, M. Cell-seeding and in-vitro biocompatibility evaluation of polymeric matrices of PEO-PBT copolymers and PLLA. Biomaterials 1993,14, (8),598-604.
    [101]Deschamps, A. A.; Grijpma, D. W.; Feijen, J. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers:the effect of copolymer composition on physical properties and degradation behavior. Polymer 2001,42,9335-9345.
    [102]Zhang, Y.; Feng, Z. G.; Zhang, A. Y. Synthesis and characterization of poly(butylene terephthalate)-co-poly(butylene succinate)-block-poly(ethylene glycol) segmented block copolymers. Polymer International 2003,52, (8),1351-1358.
    [103]van Dijkhuizen-Radersma, R.; Roosma, J. R.; Kaim, P.; Metairie, S.; Peters, F. L. A. M. A.; de Wijn, J.; Zijlstra, P. G.; de Groot, K.; Bezemer, J. M. Biodegradable poly(ether-ester) multiblock copolymers for controlled release applications. Journal of Biomedical Materials Research Part A 2003,67A, (4),1294-1304.
    [104]Wang, L. C.; Xie, Z. G.; Bi, X. J.; Wang, X.; Zhang, A. Y.; Chen, Z. Q.; Zhou, J. Y.; Feng, Z. G. Preparation and characterization of aliphatic/aromatic copolyesters based on 1,4-cyclohexanedicarboxylic acid. Polymer Degradation and Stability 2006,91, (9), 2220-2228.
    [105]Lepoittevin, B.; Pantoustier, N.; Devalckenaere, M.; Alexandre, M.; Kubies, D.; Calberg, C.; Jerome, R.; Dubois, P. Poly(epsilon-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 2002, 35, (22),8385-8390.
    [106]Ray, S. S.; Yamada, K.; Okamoto, M.; Ogami, A.; Ueda, K. New polylactide/layered silicate nanocomposites.3. high-performance biodegradable materials. Chemistry of Materials 2003,15, (7),1456-1465.
    [107]Ray, S. S.; Maiti, P.; Okamoto, M.; Yamada, K.; Ueda, K. New polylactide/layered silicate nanocomposites.1. preparation, characterization, and properties. Macromolecules 2002,35, (8),3104-3110.
    [108]Someya, Y.; Sugahara, Y.; Shibata, M. Nanocomposites based on poly(butylene adipate-co-terephthalate) and montmorillonite. Journal of Applied Polymer Science 2005, 95, (2),386-392.
    [109]Zhao, C. B.; Yang, X. J.; Wu, X. D.; Liu, X. H.; Wang, X.; Lu, L. D. Preparation and characterization of poly(methyl methacrylate) nanocomposites containing octavinyl polyhedral oligomeric silsesquioxane. Polymer Bulletin 2008,60, (4),495-505.
    [110]Misra, R.; Fu, B. X.; Morgan, S. E. Surface energetics, dispersion, and nanotribomechanical behavior of POSS/PP hybrid nanocomposites. Journal of Polymer Science Part B-Polymer Physics 2007,45, (17),2441-2455.
    [111]Lee, Y. J.; Huang, J. M.; Kuo, S. W.; Lu, J. S.; Chang, F. C. Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005, 46,(1),173-181.
    [112]Joshi, A.; Butola, B. S. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 2004,45, (14),4953-4968.
    [113]Yei, D. R.; Kuo, S. W.; Su, Y C.; Chang, F. C. Enhanced thermal properties of PS nanocomposites formed from inorganic POSS-treated montmorillonite. Polymer 2004,45, (8),2633-2640.
    [114]Liu, Y. H.; Yang, X. T.; Zhang, W. A.; Zheng, S. X. Star-shaped poly(epsilon-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006,47, (19),6814-6825.
    [115]Pan, H.; Qiu, Z. B. Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites:enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 2010,43, (3),1499-1506.
    [116]Wang, R. Y; Wang, S. F.; Zhang, Y. Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. Journal of Applied Polymer Science 2009,113, (5),3095-3102.
    [117]Chiu, W. M.; Chang, Y. A.; Kuo, H. Y.; Lin, M. H.; Wen, H. C. A study of carbon nanotubes/biodegradable plastic polylactic acid composites. Journal of Applied Polymer Science 2008,108, (5),3024-3030.
    [118]Zheng, X. T.; Zhou, S. B.; Xiao, Y; Yu, X. J.; Feng, B. In situ preparation and characterization of a novel gelatin/poly(D,L-lactide)/hydroxyapatite nanocomposite. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2009,91B, (1), 181-190.
    [119]Wen, X.; Lin, Y.; Han, C. Y; Zhang, K. Y.; Ran, X. H.; Li, Y S.; Dong, L. S. Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. Journal of Applied Polymer Science 2009,114, (6), 3379-3388.
    [120]Shih, Y. F.; Chen, L. S.; Jeng, R. J. Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 2008,49, (21),4602-4611.
    [121]Wu, L. B.; Cao, D.; Huang, Y.; Li, B. G. Poly(L-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of L-lactic acid in the presence of acidic silica sol:Preparation and characterization. Polymer 2008,49, (3),742-748.
    [122]Pang, K.; Kotek, R.; Tonelli, A. Review of conventional and novel polymerization processes for polyesters. Progress in Polymer Science 2006,31, (11),1009-1037.
    [123]Levchik, S. V.; Weil, E. D. Flame retardancy of thermoplastic polyesters-a review of the recent literature. Polymer International 2005,54, (1),11-35.
    [124]Eubeler, J. P.; Bernhard, M.; Zok, S.; Knepper, T. P. Environmental biodegradation of synthetic polymers 1. Test methodologies and procedures. Trac-Trends in Analytical Chemistry 2009,28, (9),1057-1072.
    [125]Nagarajan, S.; Reddy, B. S. R. Bio-absorbable polymers in implantation-An overview. Journal of Scientific & Industrial Research 2009,68, (12),993-1009.
    [126]Du, J.; Fang, Y. Y.; Zheng, Y B. Synthesis, characterization and biodegradation of biodegradable-cum-photoactive liquid-crystalline copolyesters derived from ferulic acid. Polymer 2007,48, (19),5541-5547.
    [127]Seymour, R. W.; Overton, J. R.; Corley, L. S. Morphological characterization of polyester-based elastoplastics. Macromolecules 1975,8, (3),331-335.
    [128]Lee, S. W.; Huh, W.; Hong, Y. S.; Lee, K. M. Synthesis and thermal properties of poly(cyclohexylene dimethylene terephthalate-co-butylene terephthalate). Korea Polymer Journal 2000,8, (6),261-267.
    [129]Tsai, Y.; Fan, C. H.; Hung, C. Y.; Tsai, F. J. Poly(ethylene terephthalate) copolymers that contain 5-tert-butylisophthalic acid and 1-3/1-4-cyclohexanedimethanol:Synthesis, characterization, and properties. Journal of Applied Polymer Science 2007,104, (1), 279-285.
    [130]Chen, Y. W.; Yang, Y.; Su, J. Y.; Tan, L. C.; Wang, Y Preparation and characterization of aliphatic/aromatic copolyesters based on bisphenol-A terephthalate, hexylene terephthalate and lactide mioties. Reactive & Functional Polymers 2007,67, (5),396-407.
    [131]Yasuniwa, M.; Tsubakihara, S.; Ohoshita, K.; Tokudome, S. X-ray studies on the double melting behavior of poly(butylene terephthalate). Journal of Polymer Science Part B-Polymer Physics 2001,39, (17),2005-2015.
    [132]Hoffman, A. S. Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2002,54, (1),3-12.
    [133]Loh, X. J.; Tan, Y. X.; Li, Z. Y.; Teo, L. S.; Goh, S. H.; Li, J. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)-Thermodynamics of micellization and hydrolytic degradation. Biomaterials 2008,29, (14),2164-2172.
    [134]Wu, Y. D.; Liu, C. B.; Zhao, X. Y.; Xiang, J. N. A new biodegradable polymer:PEGylated chitosan-g-PEI possessing a hydroxyl group at the PEG end. Journal of Polymer Research 2008,15,(3),181-185.
    [135]Bezemer, J. M.; Grijpma, D. W.; Dijkstra, P. J.; van Blitterswijk, C. A.; Feijen, J. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization. Journal of Controlled Release 1999,62, (3),393-405.
    [136]Bezemer, J. M.; Radersma, R.; Grijpma, D. W.; Dijkstra, P. J.; Feijen, J.; van Blitterswijk, C. A. Zero-order release of lysozyme from poly(ethylene glycol) poly(butylene terephthalate) matrices. Journal of Controlled Release 2000,64, (1-3),179-192.
    [137]van Dijkhuizen-Radersma, R.; Peters, F.; Stienstra, N. A.; Grijpma, D. W.; Feijen, J.; de Groot, K.; Bezemer, J. M. Control of vitamin B-12 release from poly(ethylene glycol)/poly(butylene terephthalate) multiblock copolymers. Biomaterials 2002,23, (6), 1527-1536.
    [138]van Dijkhuizen-Radersma, R.; Hesseling, S. C.; Kaim, P. E.; de Groot, K.; Bezemer, J. M. Biocompatibility and degradation of poly(ether-ester) microspheres:in vitro and in vivo evaluation. Biomaterials 2002,23, (24),4719-4729.
    [139]Pepic, D.; Zagar, E.; Zigon, M.; Krzan, A.; Kunaver, M.; Djonla, J. Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments. European Polymer Journal 2008,44, (3),904-917.
    [140]Qian, Z. Y; Li, S.; He, Y.; Liu, X. B. Synthesis and in vitro degradation study of poly(ethylene terephthalate)/poly(ethylene glycol) (PET/PEG) multiblock copolymer. Polymer Degradation and Stability 2004,83, (1),93-100.
    [141]Manias, E. Nanocomposites:Stiffer by design. Nat Mater 2007,6, (1),9-11.
    [142]Liff, S. M.; Kumar, N.; McKinley, G. H. High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 2007,6, (1),76-83.
    [143]Chaichana, E.; Jongsomjit, B.; Praserthdam, P. Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chemical Engineering Science 2007,62, (3),899-905.
    [144]Yan, S. F.; Yin, J. B.; Yang, Y.; Dai, Z. Z.; Ma, J.; Chen, X. S. Surface-grafted silica linked with L-lactic acid oligomer:a novel nanofiller to improve the performance of biodegradable poly(L-lactide). Polymer 2007,48, (6),1688-1694.
    [145]曹丹.聚乳酸/SiO2纳米复合材料的原位缩聚法制备与表证(D).浙江大学,杭州,2007.
    [146]Zou, W. J.; Peng, J.; Yang, Y.; Zhang, L. Q.; Liao, B.; Xiao, F. R. Effect of nano-Si02 on the perfonnance of poly(MMA/BA/MAA)/EP. Materials Letters 2007,61, (3),725-729.
    [147]Tang, S. W.; Zou, P.; Xiong, H. G.; Tang, H. L. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydrate Polymers 2008,72, (3),521-526.
    [148]Tai, Y L.; Qian, J. S.; Zhang, Y. C.; Huang, J. D. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal 2008,141, (1-3),354-361.
    [149]Loy, D. A. Hybrid organic-inorganic materials. Mrs Bulletin 2001,26, (5),364-365.
    [150]Wagner, H. D. Nanocomposites:paving the way to stronger materials. Nat Nano 2007,2, (12),742-744.
    [151]Scott, D. W. Thermal Rearrangement of Branched-Chain Methylpolysiloxanes. Journal of the American Chemical Society 1946,68, (3),356-358.
    [152]Lichtenhan, J. D.; Otonari, Y A.; Carr, M. J. Linear Hybrid Polymer Building-Blocks-Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers. Macromolecules 1995,28, (24),8435-8437.
    [153]Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J. Silsesquioxane Siloxane Copolymers from Polyhedral Silsesquioxanes. Macromolecules 1993,26, (8), 2141-2142.
    [154]Xu, H. Y.; Kuo, S. W.; Lee, J. S.; Chang, F. C. Preparations, thermal properties, and T-g increase mechanism of inorganic/organic hybrid polymers based on polyhedral oligomeric silsesquioxanes. Macromolecules 2002,35, (23),8788-8793.
    [155]Xu, H. Y.; Kuo, S. W.; Chang, F. C. Significant glass transition temperature increase based on polyhedral oligomeric silsequioxane (POSS) copolymer through hydrogen bonding. Polymer Bulletin 2002,48, (6),469-474.
    [156]Costa, R. O. R.; Vasconcelos, W. L.; Tamaki, R.; Laine, R. M. Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 2001,34, (16), 5398-5407.
    [157]Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D. Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromolecules 1999, 32,(4),1194-1203.
    [158]Jeon, H. G.; Mather, P. T.; Haddad, T. S. Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polymer International 2000,49, (5),453-457.
    [159]Fasce, D. P.; Williams, R. J. J.; Erra-Balsells, R.; Ishikawa, Y.; Nonami, H. One-step synthesis of polyhedral silsesquioxanes bearing bulky substituents:UV-MALDI-TOF and ESI-TOF mass spectrometry characterization of reaction products. Macromolecules 2001, 34, (11),3534-3539.
    [160]Fasce, D. P.; Williams, R. J. J.; Mechin, F.; Pascault, J. P.; Llauro, M. F.; Petiaud, R. Synthesis and characterization of polyhedral silsesquioxanes bearing bulky functionalized substituents. Macromolecules 1999,32, (15),4757-4763.
    [161]Zheng, L.; Kasi, R. M.; Farris, R. J.; Coughlin, E. B. Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A-Polymer Chemistry 2002,40, (7),885-891.
    [162]Schwab, J. J.; Lichtenhan, J. D. Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Applied Organometallic Chemistry 1998,12, (10-11),707-713.
    [163]Ciolacu, F. C. L.; Choudhury, N. R.; Dutta, N.; Kosior, E. Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl-POSS. Macromolecules 2007,40, (2),265-272.