隧道施工废水处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以隧道施工过程中产生的废水为研究对象,通过试验分析等手段对废水水质、水量等进行分析研究,旨在通过上述研究,制订出一套有效合理的处理工艺流程,将其对环境的影响控制到环境质量标准所允许的程度,为此类废水的治理提供一定的理论依据,对类似工程建设提供技术支持,同时可为进一步的理论研究提供技术指导和资料储备。
     本项目在总结国内外隧道施工废水处理现状及水质分析的基础上,在国内率先提出采用混凝处进工艺进行隧道施工废水处理,通过对不同药剂进行混凝试验,优选出了7“聚合铝-阳离子有机高分子絮凝剂+非离子型聚丙烯酰胺作为运行药剂,由于圆锥旋流澄清器处理隧道废水具有设备简单、管理方便和良好的水力条件等特点,故在优选出药剂的基础上,采用圆锥旋流澄清器进行运转试验。
     试验内容包括药剂的筛选和澄清器的运转试验。试验研究表明,7“聚合铝-阳离子有机高分子絮凝剂具有脱稳迅速并且处理效果好的优点。由于该絮凝剂本身呈酸性,适合于偏碱性的隧道施工废水,并配合高分子非离子型聚丙烯酰胺使用,能够加强颗粒的迅速凝聚,使矾花的密度和强度增大,含水率降低。在Q=0.3m3/hr时,出水的悬浮物SS=41.40mg/L,含油量为3.863mg/L,COD=84.4mg/L,去除率分别为66.10%、49.73%和19.54%;在Q=0.375m3/hr时,出水的悬浮物SS—为52.10mg/L,含油量为3.733mg/L,COD=84.4 mg/L,去除率分别为65.62%、60.15%和24.10%,两者隧道废水出水均能够满足污水排放一级标准。同时通过对圆锥旋流澄清器处理隧道废水的机理和澄清器内的水头损失的分析研究,证明了圆锥旋流澄清器具备一定的实际应用可行性。
     根据试验室工艺运转试验从而找到了合理高效的工艺处理流程,即采用圆锥旋流澄清器作为主要处理设备,选用7#聚合铝-阳离子有机高分子絮凝剂加非离子型聚丙烯酰胺处理隧道施工废水,通过混凝沉淀达到去除隧道施工废水中的悬浮物、油类等污染物的目的,从而实现废水达标排放。
This thesis, by taking tunnel construction waste water as the research subject, experimentally investigated the wastewater quality and flux, and further draw a set of technological process of wastewater treatment to keep the effect on the environment in the permissible range under environmental quality standards, provided theoretical support for the treatment of similar wastewater and technical support for similar engineering construction,also provided technical instruction and data reserve for further theoretical research.
     The paper presented coagulative treatment of tunnel construction wastewater firstly in china. By analyzing coagulation treatment result of different coagulant,7# Al-polymerization-cationic organic polymer flocculant and non-ionic polypropylene acyle amine are chosen as the operating coagulant. The Taper Whirling Flow Clarifier is characterized by simple, easy operation and good hydraulic conditions in the treatment process of tunnel construction wastewater. So the mechanism of using taper whirling flow clarifier to treat tunnel wastewater.
     Experiment content includes chosing coagulant and.clarification experiment. Experimental research shows that the 7# flocculant has advantages of rapid destability and good treating effect. As the flocculant is acidic, it is suitable to the meta-alkalescence tunnel wastewater. Besides, the flocculant with polypropylene acyle amine strengthen the flocculation speed of colloid particles, which increasing the density and intensity and reducing the moisture content of flocs. When Q=0.3m3/hr, the average concentration of Suspended Solids(SS), Oil and chemical Oxygen Demands(COD) of the outlet waters are estimated to 41.40mg/L,3.863mg/L, 84.4mg/L, and these removal ratio are 66.10%、49.73% and 19.54%, respectively; when Q=0.375m3/hr, the average concentration of SS, Oil and COD are estimated to 52.10mg/L,3.733mg/L,78.10mg/L, and these removal ratio are 65.62%、60.15%和24.10% respectively. The two outlet water quality can meet the first class requirement of sewage discharge standards. The mechanism of using taper whirling flow clarifier to treat tunnel wastewater and hydraulic loss in the clarifier are analyzed.The result shows that taper whirling flow clarifier has certainly actual application feasibility.
     Found the appropriate and efficient technological process by technology operation experiment in lab.The process is that adopt Taper Whirling Flow Clarifier as main treatment equipment,7# Al-polymerization-cationic organic polymer flocculant and non-ionic polypropylene acyle amine are chosen to treat tunnel construction wastewater.Using coagulation-settlement experiment, the suspended substances,oils, and other pollutants was reduced,,so as to reach the emission standards..
引文
[1]蒋复量,戴兴国,唐和清.乌鞘岭隧道施工环境保护措施探讨[J].工业安全与环保.2004,30(10):30-32
    [2]郑新定,丁远见.隧道施工废水对水环境的影响分析及应对措施[J].现代隧道技术.2007,44(6):82-84
    [3]姜德义,郑彦奎,任松,等.城市隧道施工的环境影响分析及防治措施[J].江苏环境科技.2006,19(6):38-41
    [4]孙健,白晓军,朱雷.隧道工程施工期环境影响及对策探讨[J].铁路劳动安全卫生与环保,2008,35(1):15-18
    [5]高辛财,刘维宁.隧道施工期间的环境保护分析与对策[J].铁道建筑技术.2003,1:38-41
    [6]Coleman, S. A., Baker, C. J., High sided road vehicles in cross winds[J]. J.of Wind Engineering and Industrial Aerodynamics,1990,33:429-438.
    [7]Kronke, H. Socket. Model test about cross wind effects on containers and wagons in a atmospheric boundary layers [J].Journal of Wind Engineering and Industrial Aerodynamics 1994 (52):109-119.
    [8]单士军,李耐霞.歌乐山隧道施工过程环境影响分析及建议[J].工业安全与环保.2004,30(11)
    [9]杨长健,吴湘滨特长隧道施工地质环境调查评价与控制研究[J].西部交通科技.2006:100-104
    [10]中国力学学会工程爆破专业委员会.爆破工程[M].北京:冶金工业出版社,1992,58-60
    [11]袁勇歌乐山隧道施工与环境保护[J].现代隧道技术.2004,41(1):68-72
    [12]周孝文,魏庆朝,许兆义,等.天山特长铁路隧道的环境影响与控制研究[J].铁道标准设计.2005(1):7-10
    [13]GB8978-1996污水综合排放标准[S].北京:中国计划出版社,1996
    [14]任伟.某隧道施工废水对地表水环境的影响[J].中国科技信息.2005,3:107
    [15]胡友彪.论矿区排水的综合环境影响与矿井水综合利用[J].中国矿业,1997,6(4):71-74.
    [16]刘丹,杨立中.华莹山隧道排水的生态环境问题及效应[J].西南交通大学学报,2001,36(3):309313.
    [17]李嘉.铁路长隧道弃碴环境影响分析及其防治措施[J].铁道劳动安全卫生与环保,1998,25(1):15.
    [18]沈振武.山区长大隧道工程的环境问题研究[J].华东交通大学学报,2003,20(5):3537.
    [19]王选样,范俊萍.隧道施工中环境保护及劳动安全的探讨[J].山西建筑,2003,29(4):257-258
    [20]牛芳.西北地区可持续发展与环境教育[J].兰州学刊,2002,(6):42-43
    [21]严晗.隧道工程施工环境保护管理措施[J].铁道劳动安全卫生与环保,2003,30(1):24-25
    [22]周孝文,魏庆朝,许兆义,等.天山特长铁路隧道的环境影响与控制研究[J].铁道标准设计.2005,(1):7-10
    [23]胡友彪.论矿区排水的综合环境影响与矿井水综合利用[J].中国矿业,1997,6(4):71-74.
    [24]刘丹,杨立中.华莹山隧道排水的生态环境问题及效应[J].西南交通大学学报,2001,36(3):309-313.
    [25]田劲杰.铁路长隧道生态环境影响的研究[J].交通环保,2004,25(5):21-23.
    [26]沈振武.山区长大隧道工程的环境问题研究[J].华东交通大学学报,2003,20,(5):35-37.
    [27]Tang Hongxiao. Flocculation Morphology for Hydroxyl Polymer of Poly-Aluminum Chloride. ACTA SCIEN TIAECIRCUM ISTANTIAE,1998,18 (1):1 -10 (Chinese)
    [28]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术,2004,30(6):315-319
    [29]张育新,康勇.絮凝剂的研究现状及发展趋势[J].化工进展.2002,21(11):799-804
    [30]Bottero J Y, AxelosM. Tchoubar D etal. Mechanism of Formation of Aluminum Trihydroxide from Keggin All Polymers. J. Colloid Interface Sci.,1987,117:47
    [31]L etterman R D, Iyer D R. Modeling the Effects of Hydrolyzed Aluminum and Solution Chemistry on Flocculation Kinetics. Environ. Sci. Technol.,1985,19:673
    [32]袁相理,程里,石瑞英.新型混凝剂聚硅硫酸铝的研究[J].城市环境与城市生态,1997,10(3):1-3.
    [33]高宝玉,岳钦艳,王吉顺,等.含铝离子聚硅酸絮凝剂的性能及应用[J].工业水处理,1993,7(3):17-19.
    [34]李道荣.水处理剂概论[M].北京:化学工业出版社,2005,8.
    [35]唐受印,戴友芝,汪大翚.废水处理工程(第二版)[M].北京:化学工业出版社,2004,4.
    [36]Zuo Y G, Costa N. Use of Shell Chitin Ertracted From Seafood Processing Waste in Recycling of Industrial Wastewater[C].environmentally conscious manufacturing, Proceedings of SPIE,Boston USA,2000
    [37]陆柱,陈中兴,黄光团,等.水处理药剂[M].北京:化学工业出版社.2002,3.
    [38]Tang Hongxiao,Luan Zhaokan. The Differences of Coagulating Behavior and Mechanism between Preproduced Inorganic Polymeric and Traditional Coagulants. Environ.Chem.,1997,16 (6):497-505(Chinese)
    [39]陆柱,陈中兴,黄光团等.水处理技术[M].上海:华东理工大学.2000,12.
    [40]Song Yonghui, L uan Zhaokun. The Studies on Characteristics of Polyaluminum-Silicon Complex F locculants. Environ. Chem.,1997,16 (6):541-545 (Ch inese)
    [41]Hasegawa T etal. Method and Flocculant for WaterT reatment,U.S. Patent, PN:4923629,1990
    [42]Hasegawa T etal. Characteristics of Metal-Polysilicate Coagulants. Water Sci. Tech.,1991,25: 1713
    [43]王九思,陈学民,肖举强,等.水处理化学[M].北京:化学工业出版社.2002,5.Haase D et al. Po lymeric Basic A lum inium Silicate-Sulphate. U. S. Patent, PN:4981675,1991
    [44]李凡修.铝盐混凝剂作用机理研究进展[J].工业水处理,1999,19(5):16-19.
    [45]常青.水处理絮凝学[M].北京:化学工业出版社.2003,4.
    [46]E.Л.巴宾科夫,郭连起,译.论水的混凝[M].北京:中国建筑工业出版社,1977
    [47]许保玖,龙腾锐..当代给水与废水处理原理(第二版).北京:高等教育出版社,2000,9
    [48]吴彬,邓皓,肖遥.工业水处理絮凝剂的发展状况与前景[J].石油与天然气化工,1999,28(1):71-73.