大空间钢结构火灾下受力性能与抗火计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大空间钢结构以其宏伟的建筑造型、巨大开敞的内部空间等优点在我国得到了广泛的应用。由于钢材本身耐火性能较差,且造型美观等要求使得防火保护费用惊人,大空间钢结构往往不能直接按照普通钢结构的方法进行结构抗火设计。目前我国关于大空间钢结构抗火设计的研究还相当薄弱,现行规范的相关规定也少有涉及,因此,深入开展大空间钢结构火灾下的受力性能和抗火计算方法研究具有十分重要的理论意义和工程实用价值。本文结合理论分析、数值计算等多种手段,对大空间钢结构火灾下不均匀温度场分布以及典型结构类型的受力性能进行了较系统的研究,充分考虑结构的几何、材料非线性等参数影响,提出了相应的抗火计算方法。本文主要完成以下几方面工作:
     (1)通过与试验数据对比,确定了大空间结构数值模拟中火源模型等简化方法。系统研究了影响大空间结构内不均匀温度场分布的主要因素,并对几种温度场计算方法是否适用于大空间钢结构屋面附近空气温度场的计算进行了分析和讨论。
     (2)对大空间钢结构火灾升温过程中受力性能的计算方法进行了探讨,通过对比分析确定了结构钢材和高强度钢索在火灾高温下的材料属性,并以门式刚架钢结构为例,对此计算方法的有效性进行了进一步阐明。
     (3)提出了四角锥网架火灾下中心点位移的计算方法——修正拟夹层板法,并结合火灾下受力性能影响因素分析,得到了考虑不均匀温度场分布的临界温度计算表。在对单层网壳火灾下弹塑性承载力研究的基础上,提出了单层网壳火灾下弹塑性稳定承载力的简化计算公式。
     (4)推导了索桁架结构和鞍形索网结构火灾下竖向位移和预应力变化的计算公式。利用有限元计算分析方法对张弦梁结构火灾下受力特点进行了研究。给出了单层索网玻璃幕墙临界温度的取值方法,计算得到了适用于单层索网玻璃幕墙结构不同跨度、网格尺寸、钢索直径下的临界温度计算表。
Large-space steel structures have been widely used in China by its virtue of magnificent shape and enormous interious space etc. However, the steel material is weak in fire resisting, and the aesthetic demand always leads to numerous cost. Moreover, large-space steel structure could not adopt the fire-resistance design method for common steel structures. The research on its fire-resistant behavior and calculation method is still inadequate, in addition, the relevant provisions covered in current code has little involved. Therefore, it is of vital importance in theory and engineering practice to further understand the fire-resistance performance and calculation methods of large-space steel structures. Theoretical analysis and numerical simulation have been carried out hereby to investigate the temperature distribution and structural behavior under fire conditions. The geometric and material nonlinear properties are extensively considered. Practical fire-resistant calculation methods for several types of large-space steel structures have also been proposed in this paper. The main research work covered in this paper includes:
     (1) The simplified method of establishing fire model in large-space structure numerial simulation is given in terms of comparisons with experimental results. The main influencing factors of non-uniform temperature distribution are systematically analyzed. Whether several calculation methods can be applied for calculations of air temperautre around roof has also been studied.
     (2) The calculation methods for large-space steel structures’performances under fire conditions have been discussed. Material properties of structural steel and high-strength steel cables enduring high temperature are determined by contrasting analysis. The validity of this method has been extensively explained by studying structural performances of gable frames considering fire influences.
     (3) The modified equivalent sandwich plate method calculation method for calculating vertical displacement of quadrangular pyramid grid structures under fire conditions is given. Based on studying influcnce factors, critical temperature tables are given taking account of non-uniform temperature distribution. The simplified calculation formula for single-layer reticulated domes including temperature rise effects is obtained by researches on their elasto-plasticity bearing capacities.
     (4) The calculation formulae for vertical displacement and prestressed force variation of cable truss and cable nets are deduced in theory. Fire-resistance characteristics are obtained of beam string structure relying on finite element analysis. The critical temperatures determining principles for monolayer cable net of glass facades have been proposed. The critical temprature tables are obtained applicable to different spans, grid dimentions and cable diameters of monolayer cable net.
引文
[1]公安部消防局.中国火灾统计年鉴(2005).北京:中国人事出版社, 2005.
    [2] Liu Tiemin, Zhong Maohua, Xing Juanjuan. Industrial accidents: Challenges for China’s Economic and Social Development. Safety Science. 2005, 43(8): 503-522.
    [3]范维澄,王清安,姜冯辉,周建军.火灾学简明教程.合肥:中国科学技术大学出版社, 1995.
    [4]范维澄,廖光煊,钟茂华.中国火灾科学的今天和明天.中国安全科学学报, 2000, 10(1): 11-16.
    [5] Zhong Maohua, Fan Weicheng. Safety Evaluation of Engineering and Construction Projects in China. Journal of Loss Prevention in the Process Industries, 2005.
    [6]霍然,胡源,李元洲.建筑火灾安全工程导论.合肥:中国科学技术大学出版社, 1999: 279-283.
    [7]蒋爱山.大火天地泣——吉林、辽宁两起特大火灾警示录.安徽消防, 1995, (3): 6-9.
    [8]石永久,白音,王元清.大空间钢结构的防火设计与防火涂料选用.新型建筑材料, 2005, (4): 54-57.
    [9]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计.北京:中国建筑工业出版社, 2006: 149-157.
    [10] I.R.Thomas and I.D.Bennetts. Developments in the Design of Steel Structures for Fire. Journal of Construction Steel Research,1992,23:171-192.
    [11] GB50016-2006,中华人民共和国建设部&中华人民共和国国家质量监督检验检疫总局.建筑设计防火规范.北京:中国计划出版社, 2006.
    [12] DG/TJ08-08-2000,上海市工程建设规范——建筑钢结构防火技术规程.上海, 2000.
    [13]李引擎.建筑防火工程.北京:化学工业出版社, 2004: 21-26.
    [14] Custer R L P, Meacham B J. Introduction to Performance-based Fire Safety. National Fire Protection Association, Quincy, MA, 1997
    [15] British Standard DD 240. Fire Safety Engineering in Building, part 1: Guide to the application of Fire Safety Engineering principles. 1997.
    [16]李引擎.建筑防火性能化设计.北京:化学工业出版社, 2005: 15-26.
    [17]汪箭,吴振坤,徐琼等.火灾安全工程设计的发展和研究.消防科学与技术, 1999, (4): 18-21.
    [18]石永久,白音,王元清.大空间结构防火性能化设计方法研究.空间结构, 2005, 11(4): 16-20.
    [19]李国强.性能化钢结构抗火设计.第十三届全国结构工程学术会议论文集, 2003:105-115.
    [20] GB50045-95,高层民用建筑设计防火规范(2005年版).北京:中国计划出版社, 2005.
    [21] GB50017-2003,钢结构设计规范.北京:中国计划出版社, 2003.
    [22] GB14907,钢结构防火涂料.北京:中国计划出版社, 2002.
    [23] CECS24,钢结构防火涂料应用技术规范.北京:中国计划出版社, 2002.
    [24] CECS 200:2006,中国工程建设标准化协会标准——建筑钢结构防火技术规范.北京:中国计划出版社, 2006.
    [25] BS5950, Structural Use of Steelwork in Building, Part 8: Code of Practice for Fire Resistance Design, 1990.
    [26] CEN, Eurocode1-Actions on Structures, Part1-2: General Actions-Actions on structures exposed to fire. 2003.
    [27] CEN, Eurocode3-Design of Steel structures, Part1.2: Structural fire design. 2003.
    [28] NFPA 1, Fire Prevention Code. 2002.
    [29] BCA 96, Building Code of Australia. 1996.
    [30]胡隆华,霍然,李元洲.澳大利亚性能化防火设计规范的结构特点浅析及启发.消防科学与技术, 2002, (3):18-20.
    [31] Kazunori Harada.日本新建筑标准的结构抗火设计.建筑钢结构进展,2003,5(2): 46-56.
    [32] A.H.Buchanan. Implementation of performance-based fire codes. Fire Safety Journal, 1999, 32: 377-383.
    [33] International Standard ISO834, Fire-Resistance Tests—Elements of Building Construction, Amendment 1, Amendment 2, 1980.
    [34]马忠诚.火灾下钢筋混凝土结构损伤评估与抗震修复[博士学位论文].哈尔滨:哈尔滨建筑大学, 1997.
    [35] ASCE Manuals and Reports on Engineering Practice No.78, Structural Fire Protection. Published by ASCE, New York.
    [36] Leander Noordijk, Tony Lemaire. Modelling of Fire Spread in Car Parks. HERON, 2005, 50 (4): 209-218.
    [37] R.Iding, B.Bresler, and Z.Nizamuddin. FIRES-RC, A computer program for the fire response of structures-reinforced concrete frames. Report No. UCB FRG 77-8, Fire Research Group, University of California, Berkeley. October, 1977.
    [38] R.Iding, B.Breseler, and Z. Nizamuddin. FIRES-RC, A computer program for the fire response of structures-reinforced concrete frames. Report No. UCB FRG 77-8, Fire Research Group, University of California, Berkeley. July, 1977.
    [39] Anderberg Y. and Forsen N.E. Fire resistance of concrete structures. Nordic ConcreteResearch, Oslo, Norway.1982:1-17.
    [40] AH book NG, M.S.Mirza, and T.T.Lie. Fire endurance analysis of reinforced concrete columns. Can. J. Civ. Eng. 1989 (16): 290-299.
    [41] Z.Huang, I.W. Burgess, and R.J.Plank. Three-dimensional modeling of two full-scale fire tests on a composite building. Proc.Inistn Civ. Engrs Structs & Bldgs. Aug.1999:243-255.
    [42] Zhaohui Huang and Andres Platten. Nonlinear finite element analysis of planar reinforced concrete members subjected to fires. ACI Structural Journal.1997,94(3):272-282.
    [43] Mohamad J.Terro. Numerical modeling of the behavior of concrete structures in fire. ACI Structural Journal.1998,95(2):183-193.
    [44] J.M.Franseen, J.B.Schleich, L.G.Cajot, D.Talamona, B.Zhao, L.Twilt and K.Both. A comparison betweeen fire structural fire codes applied to steel elements. Fourth International Symposium on Fire Safety Science, Ottawa. 1994:1125-1136.
    [45] Yongjun Liu, Weicheng Fan, and Hongnan Li. Finite element method analysis of 3D temperature fields in structures subjected to fires. Proceedings of the Eighth International Symposium on Structural Engineering for Young Experts. August 20-23, 2004,Xi’an China: 592-596.
    [46]霍静思,韩林海.火灾作用后钢管混凝土柱-钢梁节点滞回性能试验研究.建筑结构学报, 2006, 27 (6): 28-39.
    [47]林晓康,韩林海.火灾作用后圆钢管混凝土柱荷载-位移滞回性能研究.建筑结构学报, 2005, 26 (3): 19-29.
    [48]霍静思,韩林海. ISO 834标准火灾作用后钢管混凝土轴压刚度和抗弯刚度的研究.工业建筑, 2004, 34 (1): 21-26.
    [49]杨有福,韩林海.钢管混凝土柱防火保护层计算方法研究.工业建筑, 2004, 34(1): 14-17.
    [50]李国强,郭士雄.约束钢梁高温下大变形状态分析.同济大学学报(自然科学版), 2006, 34 (7): 853-858.
    [51]蒋首超,李国强,叶绮玲.火灾下钢框架结构非线性反应分析与试验研究.工业建筑, 2004, 34 (8): 66-69.
    [52]丁军,李国强.耐火钢构件抗火性能非线性有限元分析.建筑结构, 2005 (8): 61-63.
    [53]蒋首超,李国强,周昊圣,吕毅.钢-混凝土组合楼板实用抗火设计方法.建筑结构, 2006 (8): 87-89.
    [54] Y.Z.Yin, Y.C.Wang. Analysis of catenary in steel beams using a simplified hand calculation method, Part 1: theory and validation for uniform temperature distribution. Journal of Constructional Steel Research. 2005, 61: 183-211.
    [55] Y.C.Wang, T.Lennon & D.B.Moore. The Behaviour of Steel Frames Subject to Fire. Journal of Constructional Steel Research. 1995, 35: 291-322.
    [56] Y.Z.Yin, Y.C.Wang. A numerical study of large deflection behaviour of restrained steel beams at elevated temperatures. Journal of Constructional Steel Research. 2004, 60: 1029-1047.
    [57] M.Feng, Y.C.Wang, J.M.Davies. Axial strength of cold-formed thin-walled steel channels under non-uniform temperatures in fire. Fire Safety Journal. 2003, 38: 679-707.
    [58] M.B.Wong. Modelling of axial restraints for limiting temperature calculation of steel members in fire. Journal of Constructional Steel Research. 2005, 61: 675-687.
    [59] M.B.Wong, J.I.Ghojel. Sensitivity analysis of heat transfer formulations for insulated structural steel components. Fire Safety Journal. 2003, 38: 187-201.
    [60] T.C.H. Liu, M.K.Fahad, J.M.Davies. Experimental investigation of behavioiur of axially restrained steel beams in fire. Journal of Constructional Steel Research. 2002, 58: 1211-1230.
    [61] T.C.H. Liu. Finite element modelling of behaviours of steel beams and connections in fire. Journal of Constructional Steel Research. 1996, 36(3): 181-199.
    [62] G M Newman, J T Robinson and C G Bailey.Fire Safe Design: A New Approach to Multi-Storey Steel-Framed Buildings. The Steel Construction Institute, 2000: 45-58, 68-83.
    [63] Y.C.Wang, Steel and Composite Structures: Behavior and design for fire safety. Spon Press, London, 2002: 28-84.
    [64] M.Gillie, A.S.Usmani, J.M.Rotter. A structural analysis of the first Cardington test. Journal of Constructional Steel Research. 2001, 57: 581-601.
    [65] J.M.Franssen, G.M.E.Cooke & D.J.Latham. Numerical Simulation of a Full Scale Fire Test on a Loaded Steel Framework. Journal of Constructional Steel Research. 1995, 35: 377-408.
    [66] Tom Lennon, David Moore. The natural fire safety concept--full-scale tests at Cardington. Fire Safety Journal. 2003, 38: 623-643.
    [67] L.Song, B.A.Izzuddin, A.S.Elnashai, P.J.Dowling. An integrated adaptive environment for fire and explosion analysis of steel frames-Part I: analytical models. Journal of Constructional Steel Research. 2000, 53: 63-85.
    [68] B.A.Izzuddin, L.Song, A.S.Elnashai, P.J.Dowling. An integrated adaptive environment for fire and explosion analysis of steel frames-Part II: verification and application. Journal of Constructional Steel Research. 2000, 53: 87-111.
    [69] M.B.Wong. Elastic and plastic methods for numerical modelling of steel structures subject to fire. Journal of Constructional Steel Research. 2001, 57: 1-14.
    [70] M.B.Wong, M.Szafranski. Elastic method for design of 3-D steel structures subject to fire. Journal of Constructional Steel Research. 2004, 60: 1095-1108.
    [71] Jin-Cheng Zhao. Application of the direct iteration method for non-linear analysis of steel frames in fire. Fire Safety Journal. 2000, 35: 241-255.
    [72]李国强,陈凯.门式钢刚架结构实用抗火设计方法.建筑结构, 2001, 31(6): 14-18.
    [73]史建勇.大空间钢结构火灾安全模拟系统的研究[博士学位论文].北京:清华大学, 2005.
    [74]刘永军,李宏男.建筑结构抗火性能研究回顾及展望.防灾减灾工程学报. 2004, 24(2): 209-216.
    [75] Bai Yin, Shi Yong-jiu, Wang Yuan-qing. Analysis on Fire-resisting Performance-based Design Method and Engineering Instances for Large-space Structures in China. Proceedings of the Ninth International Symposium on Structural Engineering for Young Experts 2006.8.18-21,Volume 1: 783-788.
    [76] Babrauskas.V. Burning rates. Chapter 3-1. SFPE Handbook of Fire Protection Engineering, Second Edition. USA: Society of Fire Protection Engineers, 1995.
    [77] NFPA 92B, Guide for Smoke Management System in Mall, Atria, and Large Area, 2000Edition. 2000.
    [78]陶文铨.数值传热学(第2版).西安,西安交通大学出版社: 2001.
    [79] Chen C J, Bernatz R, Carlson K D, Lin W L. Finite analytic method in flows and heat transfer. New York: Taylor & Francis, 2000.
    [80] fluent 6.0 User’s guide. Volume 1-5, Fluent Inc, 2002.
    [81]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用.北京:北京理工大学出版社, 2004.
    [82]王大鹏.建筑火灾中燃烧反应的数值模拟计算[硕士学位论文].北京:北京理工大学, 2006.
    [83]李国强,杜咏.大空间建筑顶部火灾空气升温的参数分析.消防科学与技术, 2005, (1): 19-22.
    [84]袁理明,范维澄.大空间建筑火灾中热烟气层发展规律的理论分析.自然灾害学报, 1998: 7(1): 21-26.
    [85]李元洲,易亮,霍然,周允基.大空间内机械排烟效果的实验研究.自然灾害学报, 2004: 13(4): 151-155.
    [86]上海市工程建设规范, DGJ08-88-2000——民用建筑防排烟技术规程, 2000.
    [87]范维澄,孙金华,陆守香.火灾风险评估方法学.北京:科学出版社, 2004: 58-90.
    [88]陈晓军,杨立中,邓志华,范维澄.预测单个火灾房间内温度场分布的多层区域模型.燃烧科学与技术, 2004, 10(6): 544-548.
    [89]曾攀.有限元分析及应用.北京:清华大学出版社, 2004: 342-355.
    [90] ECCS. European Recommendations for the Fire Safety of Steel Structure. 2002.
    [91] Standards Association of Australian(SAA). AS4100-1990, Steel structures. 1990.
    [92]孙金香,高伟译.建筑物综合防火设计.天津:天津科技翻译出版社, 1999.
    [93]陈凯.变截面门式钢刚架结构抗火性能及实用设计方法: [同济大学硕士论文].上海:同济大学, 2000.
    [94]张晓进.薄壁钢构件抗火计算理论及实用设计方法. : [同济大学硕士论文].上海:同济大学, 2000.
    [95] Saab, H.A. and Nethercot, D.A. Modeling steel frame behavior under fire conditions. Engineering Structures, 1991, 13(4): 371-382.
    [96]赵金城,沈祖炎.钢结构抗火分析中的材性模型.工业建筑, 1996, 26(9): 3-11.
    [97] Pietrzykowski, J. Elastic-plastic behaviour of pre-stressed materials. Engineer, 1964, 217: 385-388.
    [98]张其林.索和膜结构.上海:同济大学出版社, 2002: 32-37.
    [99] CEN, Eurocode4-Design of composite steel and concrete structures, Part 1-2: General rules-Structural fire design. 2003.
    [100]王元清,石永久,陈宏等.现代轻钢结构建筑及其在我国的应用.建筑结构学报. 2002, 23 (1): 2-8.
    [101] John L, Ruddy.P.E. Structural Design of Steel Building Components for Fire Conditions. ASCE. Structures, 2005: 1-25.
    [102] CECS 102:2002.中国工程建设标准化协会标准——门式刚架轻型房屋钢结构技术规程.北京:中国计划出版社, 2002.
    [103]柳峰,郭兵,杜刚.某轻钢厂房火灾事故分析及加固处理.钢结构. 2003, 18(2): 16-18.
    [104]朱浮声.大跨度空间结构体系.沈阳:东北大学出版社, 2004: 70-80.
    [105]杨文柱.网架结构制作与施工.北京:机械工业出版社, 2005: 1-50.
    [106]张毅刚,薛素铎,杨庆山等.大跨空间结构.北京:机械工业出版社, 2005: 60-116.
    [107]陈波,郑谨,岳磊.网壳结构火灾反应非线性有限元分析.武汉理工大学学报, 2007, 29(6): 69-72, 84.
    [108] Siegal R, Howell J R. Thermal Radiation Heat Transfer. London: Internal Standard Organization, 1985.
    [109] Bathe K J. Finite Element Procedures. New Jersey: Prntice-Hall, 1996.
    [110]董石麟,钱若军.空间网格结构分析理论与计算方法.北京:中国建筑工业出版社, 2000.
    [111]张文福,刘文洋,刘迎春.网架结构拟夹层板法的有限元验证.计算力学学报, 2005, 22(4): 506-510.
    [112] JGJ7-91.网架结构设计与施工规程.中国建筑工业出版社, 1991.
    [113]沈祖炎,陈扬骥.网架与网壳.上海:同济大学出版社. 1997: 169-191.
    [114]中华人民共和国行业标准JGJ 61-2003 J258-2003.网壳结构技术规程.中国建筑工业出版社, 2003.
    [115]姜兰潮,杨乃勰.钢网壳抗火非线性有限元分析.中国安全科学学报, 2006, 16(2): 39-42.
    [116]曹正罡,范峰,沈士钊.单层球面网壳结构弹塑性稳定性能分析.工程力学, 2007, 24(5): 17-23.
    [117] Bellini P X, Chulya A. An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Computers & Structures,1987,26:99-110.
    [118]曹正罡,范峰,沈士钊. K8单层球面网壳的弹塑性稳定.工业建筑, 2007, 37(4): 69-72.
    [119]沈世钊,陈昕.网壳结构稳定性.北京:科学出版社, 1999.
    [120] H. Max Irvine. Cable structures. Cambridge, Mass. The MIT Press, 1981.
    [121] D.S.Wakefield. Engineering Analysis of Tension Structures: Theory and Practice. Engineering structures, 1999, 21: 680-690.
    [122] Li Guoqiang. Refractory Design of Steel Construction. China International Steel Construction Congress, 2004: 266-276.
    [123]石永久,白音,王元清.大空间钢结构防火性能化设计与关键技术研究.工程力学, 2006,增刊I: 119-126.
    [124]钱若军,杨联萍.张力结构的分析、设计、施工.南京:东南大学出版社, 2003:29-30.
    [125] M.Saitoh. Role of string-aesthetics and technology of the beam string structures. Proceeding of the LSA 98 Conference“Light Structure in Architecture Engineering and Construction”, 1998, 692-701.
    [126] B.Tabarrok, Z.Qin. Nonlinear Analysis of Tension Structures. Computers & Structures, 1992, 45(5~6): 973-984.
    [127]沈世钊,徐崇宝,赵臣.悬索结构设计(第二版).北京:中国建筑工业出版社, 2006: 28-40.
    [128] Ariel Hanaor. Aspects of Design of Double-layer Tensegrity Domes. International Journal of Space Structures, 1992, 7(2): 38-49.
    [129]吴丽丽.建筑幕墙单层平面索网结构风振响应与抗风设计方法研究[博士学位论文].北京:清华大学, 2006.
    [130]吴朋,张良平,董石麟,王喆.玻璃建筑柔性支承体系的应用与研究.空间结构, 2002, 8 (2): 31-37.
    [131] Ritchie,Ian. Constructing with glass. Stahibau, 1998, (4): 225-230.
    [132]吴丽丽,王元清,石永久,罗忆,韩维驰,白飞.国家网络中心点支式玻璃建筑复杂柔性支承体系的设计分析.建筑结构, 2005, 35 (2): 68-71.
    [133]黄诚,张宇,孔维祥.单层平面索网点支式玻璃幕墙设计与施工.施工技术. 2003, 32 (7): 17-19.
    [134]王元清,孙芬,石永久,罗忆,雷雨.北京土城电话局点支式玻璃幕墙柔性支承体系的设计分析.工业建筑, 2005, 35 (2): 29-31(转39).
    [135]深圳三鑫特种玻璃技术股份有限公司.深圳市民中心博物馆采光天棚索桁架试验报告, 2001.
    [136]吴丽丽,王元清,石永久,罗忆,王洪波.点支式玻璃建筑单层索网体系施工技术分析.施工技术, 2005, 34 (10): 41-44.
    [137]中国工程建设标准化协会标准CECS 127: 2001.点支式玻璃幕墙工程技术规程.北京, 2001.
    [138]王元清,孙芬,石永久,罗忆,徐悦.水平荷载作用下点支式玻璃建筑单层索网体系的变形性能分析.建筑科学, 2006, 22 (2): 23-26.
    [139]孙芬.点支式玻璃建筑单层索网体系承载性能分析与试验研究. [硕士学位论文].北京:清华大学, 2005.
    [140]冯若强,武岳,沈世钊.考虑玻璃参与工作的单层平面索网幕墙结构静力性能研究.建筑结构学报, 2005, 26 (4): 99-105.
    [141] Hassani, S. K., Shields, T. J., and Silcock, G. W., An Experimental Investigation into the Behaviour of Glazing in Enclosure Fire, J. Applied Fire Science, 1994, 4(5): 303-323.