光纤飞秒光梳高功率放大与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度宽谱带的光学频率梳是研究时频域可分辨精密光谱测量、相干反斯托克斯拉曼光谱成像、光梳精密测距等前沿科学领域的重要实验工具。光学频率梳向紫外、极紫外以及中红外、远红外的频率拓展,都离不开高功率高精度的光梳作为驱动源。本论文围绕着这一主题,以“光纤飞秒光梳高功率放大与控制”为主线,开展多波段光纤放大器性能优化和结构改进,多色超短脉冲精密时域同步,高功率多波长光学频率梳的产生,以及光梳相干合成中零频噪声抑制等方面的研究工作。论文针对飞秒脉冲级联式高功率光纤放大过程中的相位噪声问题,采用后向反馈的控制方案实现平均功率百瓦量级的超短脉冲载波包络相位及重复频率的精密锁定。同时,对于光梳相干合成中放大器引入的载波包络相位噪声,发展了基于声光移频器的前向反馈式补偿技术,有效抑制了梳齿的频率漂移,为基于相干合成和光谱组束实现高功率宽谱带的光学频率梳提供了实验基础。
     本论文的主要内容和创新点归纳如下:
     1.研制多个中心波长的超短脉冲光纤放大器,研究入射脉冲宽度,光纤掺杂浓度,放大器结构对脉冲时频域特性的影响。
     1)以掺镱新型陶瓷锁模激光器为种子源,采用大模场面积光子晶体光纤,实现中心波长1031nm,平均功率303W的超短脉冲。
     2)基于非线性偏振旋转锁模和全光纤级联放大技术,实现中心波长1064nm,平均功率20W的小型化全光纤皮秒激光器,并研究其长期工作的稳定性要求。
     3)采用偏振分离式放大结构,实现中心波长1560nm掺铒单模光纤的高效率低噪声放大,斜率效率提升16%,有效抑制1530nm处放大的自发辐射噪声。
     2.发展了高功率多波长超短脉冲的精密时域同步技术,为进一步探索宽谱带高功率的光学频率梳提供精确同步的多色飞秒脉冲。
     1)实现平均功率近百瓦量级的掺镱光纤激光与掺铒光纤激光、钛宝石飞秒激光的三波长超短脉冲精密时域同步,进一步发展光谱分割放大、交叉吸收调制的同步方法,获得同步抖动在飞秒量级的800nm,1030nm1550nm的超短脉冲。
     2)基于光学倍频,实现高功率超短脉冲的频率拓展,获得平均功率16.7W的515nm同步绿光输出,转换效率为33%。
     3.研制高功率近红外光学频率梳,获得了载波包络相位锁定精度在毫赫兹量级的超短脉冲,并通过非线性频率转换,拓展光梳的光谱范围。
     1)基于钛宝石飞秒振荡器和大模场面积光纤放大器,采用反馈控制振荡器泵浦功率的方法,获得了平均功率100W的高功率光梳脉冲,其载波包络零频线宽为2.25mHz。
     2)实验研究了自参考与交叉参考的f-2f测量方法对于精密锁定超短脉冲载波包络相位偏移频率的影响,对同一套系统,采用不同测量方法,锁定后的相位噪声分别为0.41rad和0.49rad,锁定后的线宽分别为1.86mHz和2.06mHz。
     3)基于非线性光学频率转换,实现光学频率梳的光谱拓展,获得平均功率12.8W的可见绿光和平均功率1.62W的紫外脉冲,近红外到紫外光的转换效率为3.85%。
     4.探索通过相干合成的方法提高光梳的平均功率,采用前向反馈方案,有效抑制光梳在光纤放大过程中载波包络相位相对漂移噪声,实验研究了两路光梳相干合成前后的时频域特性。
     1)基于Mach-Zendar干涉仪,研究高重复频率超短脉冲放大前后载波包络相位偏移频率的相对漂移,采用声光移频器前向反馈控制方法,相对漂移从自由运转的±15Hz降低到补偿后的±1.5Hz,相位噪声从0.23rad降低到0.14rad。
     2)基于主振荡-功率放大装置,以钛宝石光学频率梳为种子光源,实现两路平均功率10w的光纤放大器在光梳放大过程中,载波包络相位相对漂移噪声的主动补偿,实验研究了合成后脉冲宽度,光谱形状的变化,为探索脉冲相干合成实现高功率、多波长、高精度的光学频率梳提供新途径。
Optical frequency combs with high average power and broadband spectral range provide significant experimental tools for precision spectroscopy, coherent anti-Stokes Raman scattering spectrum imaging, and high-accuracy long-distance measurement. Especially for the application of ultraviolet or mid-infrared frequency comb generation, high-power high accurate frequency comb is essential to acting as the driving source. To study the power scaling and precise control of frequency combs, my works are focused on the improvement of high-power fiber amplifiers, synchronization of multi-color femtosecond lasers, generation of cascade high-power multi-color fiber frequency comb, and suppression of carrier-envelope (CE) phase noise for coherent frequency comb combination. In this dissertation, we demonstrated a high-power low-noise broadband frequency comb stabilized by feedback control scheme. Meanwhile, an active feed-forward method was employed for compensating the relative carrier-envelope drifts of fiber optical amplifiers, paving a novel way to generate high-power, high-accuracy optical frequency combs by coherently combining a large number of fiber amplifiers seeded by the same comb oscillator.
     The works demonstrated in the dissertation include:high-power fiber amplifier improvement, multi-color laser synchronization,100-W frequency comb stabilization, and carrier-envelope phase noise compensation for comb combination. The details are summarized as follows:
     1. We optimized the temporal and spectral performance of high-power fiber amplifiers by changing the laser oscillator, the gain medium and the amplification structure.
     1) Ultrashort pulses with an average power of303W at1031nm were produced by four-stage large-mode-area photonic crystal fiber amplifiers seeded by a diode-pumped Yb:YAG ceramic laser oscillator.
     2) A20-W all fiber picosecond laser at1064nm was built via nonlinear polarization rotation mode-locking and cascade all fiber amplifiers, electronic control and mechanical protection were integrated for practical use.
     3) We observed the16%increase of the slope efficiency and restraint of amplified spontaneous emission at1530nm in polarized separated erbium-doped single mode amplifier, which has the potential for ultra low noise frequency comb amplification.
     2. We achieved high-power synchronized multi-color ultrashort lasers by spectral fraction amplification and master-slave laser configuration, which could be used to generate ultra broadband optical frequency by spectral beam combination.
     1) Passive synchronization of three femtosecond mode-locked lasers at different central wavelengths was achieved. The timing jitter was7.7fs between800-nm Ti:sapphire and high-power1030-nm pulses, and56.5fs between1550-nm and1030-nm pulses, respectively.
     2) Synchronized frequency-doubled laser pulses at515nm with an average power of16.7W was obtained, corresponding to a nonlinear frequency conversion efficiency of33%.
     3. High-power infrared frequency comb was generated with carrier-envelope offset frequency locked to several millihertz via feedback scheme, which was incident on nonlinear crystal to obtain ultraviolet frequency comb.
     1) A frequency comb with100-W average power was achieved based on a Ti:sapphire femtosecond laser oscillator and large-mode-area fiber amplifiers, the line-width of locked offset frequency was2.25mHz.
     2) Experimental comparison between self-and cross-referenced f-2f measurements for carrier-envelope phase detection was implemented, the phase noise of locked beat signal were0.41and0.49rad, revealing a line-width of1.86and2.06mHz, respectively.
     3) By frequency quadrupling femtosecond pulse train from high-power large-mode-area fiber chirped-pulse amplifier at1030nm, we obtained ultraviolet pulse at258nm with an average power of1.62W, corresponding to an optical-to-optical efficiency of3.85%.
     4. Successful carrier-envelope drift noise suppression during comb amplification was achieved for demonstration of frequency comb combining with two amplifier branches.
     1) A Mach-Zender interferometer was used to characterize the relative CE drifts of an optical frequency comb before and after power scaling. The frequency noise of the relative CE drifts was well controlled in a variation range from±15Hz of free-running to approximately±1.5Hz via an active feed-forward compensation method, corresponding to an accumulated phase noise reduced from0.23rad to0.14rad.
     2) We controlled the CE drifts of two10-W Yb-doped fiber amplifiers to demonstrated coherent optical comb combination, opening up a way to scale the average power of optical frequency comb.
引文
1. P. Nobel, "Nobel Prize in Physics-2005," (2005).
    2. 魏志义,“2005年诺贝尔物理学奖与光学频率梳,”物理35,0(2006).
    3. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. Ma, and C. W. Oates, "Making optical atomic clocks more stable with 10-16-level laser stabilization," Nature Photonics 5,158-161 (2011).
    4. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Direct frequency comb spectroscopy in the extreme ultraviolet," Nature 482,68-71 (2012).
    5. F. Adler, P. Maslowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, "Mid-infrared Fourier transform spectroscopy with a broadband frequency comb," Opt. Express 18,21861-21872 (2010).
    6. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picque, and T. W. Hansch, "Coherent Raman spectro-imaging with laser frequency combs," arXiv preprint arXiv:1302.2414 (2013).
    7. N. R. Newbury, "Searching for applications with a fine-tooth comb," nature photonics 5,186-188 (2011).
    8. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, "Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise," Nature Photonics 4,462-465 (2010).
    9. A. Ozawa, and Y. Kobayashi, "vuv frequency-comb spectroscopy of atomic xenon," Phys Rev A 87,22507 (2013).
    10. Y. Nomura, Y. Ito, A. Ozawa, X. Wang, C. Chen, S. Shin, S. Watanabe, and Y. Kobayashi, "Coherent quasi-cw 153 nm light source at 33 MHz repetition rate," Opt Lett 36,1758-1760(2011).
    11. A. Ozawa, and Y. Kobayashi, "Intracavity high harmonic generation driven by Yb-fiber based MOPA system at 80MHz repetition rate," in CLEO: Science and Innovations(Optical Society of America,2011).
    12. 韩海年,魏志义,赵刚,”天文光学频率梳及其在天体视向速度高精度测量中的应用,”物理41,0-0(2012).
    13. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Broadband phase noise suppression in a Yb-fiber frequency comb," Opt Lett 36,743-745 (2011).
    14. S. A. Diddams, "The evolving optical frequency comb [Invited]," JOS A B 27, B51-B62(2010).
    15. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Broadband phase noise suppression in a Yb-fiber frequency comb," Opt Lett 36,743-745 (2011).
    16. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt Lett 25,25-27 (2000).
    17. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipocs, "All-solid-state cavity-dumped sub-5-fs laser," Applied Physics B:Lasers and Optics 65,175-188 (1997).
    18. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288, 635-639 (2000).
    19. L. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical frequency synthesis and comparison with uncertainty at the 10-19 level," Science 303, 1843-1845 (2004).
    20. K. Predehl, G. Grosche, S. Raupach, S. Droste, O. Terra, J. Ainis, T. Legero, T. W. Hansch, T. Udem, and R. Holzwarth, "A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place," Science 336, 441-444 (2012).
    21. J. Deschenes, and J. Genest, "Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode," Phys Rev A 87,23802 (2013).
    22. A. Foltynowicz, P. Maslowski, T. Ban, F. Adler, K. C. Cossel, T. C. Briles, and J. Ye, "Optical frequency comb spectroscopy," Faraday Discuss 150, 23-31(2011).
    23. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, "Cavity-enhanced direct frequency comb spectroscopy:technology and applications," Annual Review of Analytical Chemistry 3,175-205 (2010).
    24. S. T. Cundiff, and J. Ye, "Colloquium:Femtosecond optical frequency combs," Rev Mod Phys 75,325 (2003).
    25. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, "United time-frequency spectroscopy for dynamics and global structure," Science 306, 2063-2068 (2004).
    26. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, "Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection," Science 311,1595-1599(2006).
    27. S. Schiller, "Spectrometry with frequency combs," Opt Lett 27,766-768 (2002).
    28. I. Coddington, W. C. Swann, andN. R. Newbury, "Coherent multiheterodyne spectroscopy using stabilized optical frequency combs," Phys Rev Lett 100, 13902 (2008).
    29. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, "Cavity-enhanced dual-comb spectroscopy," Nature Photonics 4,55-57 (2010).
    30. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. Eikema, "Extreme ultraviolet frequency comb metrology," Phys Rev Lett 105,63001 (2010).
    31. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Direct frequency comb spectroscopy in the extreme ultraviolet," Nature 482,68-71 (2012).
    32. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, "A frequency comb in the extreme ultraviolet," Nature 436,234-237 (2005).
    33. M. E. Fermann, and K. F. Lee, "XUV sources:13-nm XUV pulses from a cavity," Nature Photonics 7,587-589 (2013).
    34. F. Zhu, H. Hundertmark, A. A. Kolomenskii, J. Strohaber, R. Holzwarth, and H. A. Schuessler, "High-power mid-infrared frequency comb source based on a femtosecond Er:fiber oscillator," Opt Lett 38,2360-2362 (2013).
    35. C. Y. Wang, T. Heir, P. Del Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, "Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators," Nature communications 4,1345 (2013).
    36. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, "Phase-stabilized,1.5 W frequency comb at 2.8-4.8μm," Opt Lett 34, 1330-1332 (2009).
    37. C. Lovis, and F. Pepe, "A new list of thorium and argon spectral lines in the visible," arXiv preprint astro-ph/0703412 (2007).
    38. D. Charbonneau, Z. K. Berta, J. Irwin, C. J. Burke, P. Nutzman, L. A. Buchhave, C. Lovis, X. Bonfils, D. W. Latham, and S. Udry, "A super-Earth transiting a nearby low-mass star," Nature 462,891-894 (2009).
    39. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hansch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, and T. Kentischer, "Laser frequency combs for astronomical observations," Science 321, 1335-1337 (2008).
    40. P. Del Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, "Optical frequency comb generation from a monolithic microresonator," Nature 450,1214-1217 (2007).
    41. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, "CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects," Nature Photonics 4,37-40 (2010).
    42. E. Stiles, "New developments in IPG fiber laser technology," in Proceedings of the 5th International Workshop on Fiber Lasers(2009), pp.4-6.
    43. Q. Hao, W. Li, and H. Zeng, "High-power Yb-doped fiber amplification synchronized with a few-cycle Ti:sapphire laser," Opt Express 17, 5815-5821 (2009).
    44. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tunnermann, "Femtosecond fiber CPA system emitting 830 W average output power," Opt Lett 35,94-96 (2010).
    45. M. E. Fermann, and I. Hartl, "Ultrafast fibre lasers," Nature Photonics (2013).
    46. B. R. Washbum, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt Lett 29,250-252 (2004).
    47. H. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kartner, "3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser," Opt Lett 37, 3522-3524 (2012).
    48. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, "Optically referenced Tm-fiber-laser frequency comb," in Advanced Solid-State Photonics(Optical Society of America,2012), pp. T3A-T5A.
    49. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, "Femtosecond coherent seeding of a broadband Tm: fiber amplifier by an Er:fiber system," Opt Lett 37,554-556 (2012).
    50. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, "80 W,120 fs Yb-fiber frequency comb," Opt Lett 35,3015-3017 (2010).
    51. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, "Optical frequency comb with submillihertz linewidth and more than 10 W average power," Nature Photonics 2,355-359 (2008).
    52. A. Ruehl, "Advances in Yb:Fiber Frequency Comb Technology," Optics and Photonics News 23,30-35 (2012).
    53. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez, and T. Y. Fan, "Coherent combining of a 4 kW, eight-element fiber amplifier array," Opt Lett 36,2686-2688 (2011).
    54. Z. Liu, P. Zhou, X. Xu, X. Wang, and Y. Ma, "Coherent beam combining of high power fiber lasers:Progress and prospect," Science China Technological Sciences,1-10 (2013).
    55. Y. Yang, M. Hu, B. He, J. Zhou, H. Liu, S. Dai, Y. Wei, and Q. Lou, "Passive coherent beam combining of four Yb-doped fiber amplifier chains with injection-locked seed source," Opt Lett 38,854-856 (2013).
    56. C. Geng, B. Zhao, E. Zhang, W. Luo, Y. Tan, Y. Zhu, H. Yang, J. Mu, X. Li, and K. Duan, "1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators," (2013).
    57. 李伟,陈曦,杨超,王琦,纪帆,董海燕,郭胜刚,张亮,刘嘉巍,张红,“大功率光纤激光组束合成功率突破10kW,”强激光与粒子束23,1712(2011).
    58. 李晨,闫平,陈刚,巩马理,袁艳阳,“采用国产掺镱双包层光纤的光纤激光器连续输出功率突破700W,”中国激光33,738(2006).
    59. H. Liu, J. Zhou, B. He, and Q. Lou, "Passive coherent beam combination of two nanosecond fiber amplifiers by using an all-optical feedback loop," in SPIE LASE(International Society for Optics and Photonics,2013), p.860119.
    60. E. Seise, A. Klenke, J. Limpert, and A. Tiinnermann, "Coherent addition of fiber-amplified ultrashort laser pulses," Opt Express 18,27827-27835 (2010).
    61. A. Klenke, S. Breitkopf, M. Kienel, T. Gottschall, T. Eidam, S. Hadrich, J. Rothhardt, J. Limpert, and A. Tunnermann, "530 W,1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system," Opt Lett 38,2283-2285 (2013).
    62. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, "Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers," Opt Lett 36,621-623 (2011).
    63. L. Daniault, M. Hanna, D. N. Papadopoulos, Y. Zaouter, E. Mottay, F. Druon, and P. Georges, "Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers," Opt Lett 36,4023-4025 (2011).
    64. Y. Zaouter, L. Daniault, M. Hanna, D. N. Papadopoulos, F. Morin, C. Honninger, F. Druon, E. Mottay, and P. Georges, "Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers," Opt Lett 37,1460-1462(2012).
    65. A. Brignon, Coherent Laser Beam Combining (John Wiley & Sons,2013).
    66. E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, "Double clad, offset core Nd fiber laser," in Optical Fiber Sensors(Optical Society of America,1988), p. D5.
    67. D. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt Commun 55,447-449 (1985).
    68. M. Kienel, A. Klenke, T. Eidam, S. Hadrich, J. Limpert, and A. Tunnermann, "Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification," Opt Lett 39,1049-1052 (2014).
    69. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives [Invited]," JOSA B 27, B63-B92 (2010).
    70. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt Lett 19,2149-2151 (1994).
    71. J. Limpert, F. Roser, T. Schreiber, and A. Tunnermann, "High-power ultrafast fiber laser systems," Selected Topics in Quantum Electronics, IEEE Journal of 12,233-244 (2006).
    72. M. E. Fermann, A. Galvanauskas, and G. Sucha, Ultrafast lasers: Technology and applications (CRC Press,2002).
    73. B. Morasse, S. Chatigny, E. Gagnon, J. de Sandro, and C. Desrosiers, "Enhanced pulseshaping capabilities and reduction of non-linear effects in all-fiber MOPA pulsed system," in SPIE LASE:Lasers and Applications in Science and Engineering(International Society for Optics and Photonics, 2009),p.71951D.
    74. J. Limpert, N. Deguil-Robin, I. Manek-Honninger, F. Salin, F. Roser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, and A. Tunnermann, "High-power rod-type photonic crystal fiber laser," Opt Express 13,1055-1058 (2005).
    75. H. Zhou, W. Li, K. Yang, N. Lin, B. Jiang, Y. Pan, and H. Zeng, "Hybrid ultra-short Yb:YAG ceramic master-oscillator high-power fiber amplifier," Opt Express 20, A489-A495 (2012).
    76. L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, "Sub-10-femtosecond active synchronization of two passively mode-locked Ti:sapphire oscillators," PHYSICAL REVIEW-SERIES A-64,21802 (2001).
    77. D. Yoshitomi, Y. Kobayashi, H. Takada, M. Kakehata, and K. Torizuka, "100-attosecond timing jitter between two-color mode-locked lasers by active-passive hybrid synchronization," Opt Lett 30,1408-1410 (2005).
    78. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser," Opt Lett 32,3504-3506 (2007).
    79. M. Yan, W. Li, Q. Hao, Y. Li, and H. Zeng, "Square nanosecond Yb-and Er-doped fiber lasers passively synchronized to a Ti:sapphire laser based on cross-absorption modulation," Opt Lett 34,2018-2020 (2009).
    80. I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40 W Ti:sapphire regenerative ring amplifier," Opt Lett 31,2066-2068 (2006).
    81. D. Yoshitomi, X. Zhou, Y. Kobayashi, H. Takada, and K. Torizuka, "Long-term stable passive synchronization of 50 μJ femtosecond Yb-doped fiber chirped-pulse amplifier with a mode-locked Ti:sapphire laser," Opt Express 18,26027-26036 (2010).
    82. H. Inaba, Y. Daimon, F. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, and M. Onishi, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb," Opt Express 14,5223-5231 (2006).
    83. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, "A 12.5 GHz-spaced optical frequency comb spanning> 400 nm for near-infrared astronomical spectrograph calibration," Rev Sci Instrum 81,63105 (2010).
    84. J. Biegert, P. K. Bates, and O. Chalus, "New mid-infrared light sources," Selected Topics in Quantum Electronics, IEEE Journal of 18,531-540 (2012).
    85. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, "High-energy femtosecond pulse amlification in a quasi-phase-matched parametric amplifier," Opt Lett 23,210-212 (1998).
    86. C. Schriever, S. Lochbrunner, P. Krok, and E. Riedle, "Tunable pulses from below 300 to 970 nm with durations down to 14 fs based on a 2 MHz ytterbium-doped fiber system," Opt Lett 33,192-194 (2008).
    87. R. K. Shelton, L. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, "Phase-coherent optical pulse synthesis from separate femtosecond lasers," Science 293,1286-1289 (2001).
    88. G. P. Agrawal, Nonlinear fiber optics (Springer,2000).
    89. T. Liang, L. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. Priem, D. Van Thourhout, P. Dumon, and R. Baets, "Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides," Opt Express 13,7298-7303 (2005).
    90. H. Schmidt, and R. J. Ram, "All-optical wavelength converter and switch based on electromagnetically induced transparency," Appl Phys Lett 76, 3173-3175(2000).
    91. T. Mori, A. Otani, and T. Otani, "All-optical sampling using cross-absorption modulation in electroabsorption modulator for optical performance monitor," ECOC 2008 (2008).
    92. M. Yan, W. Li, Q. Hao, Y. Li, K. Yang, H. Zhou, and H. Zeng, "High-power nanosecond ytterbium-doped fiber laser passively synchronized with a femtosecond Ti:sapphire laser," Opt Lett 34,3331-3333 (2009).
    93. F. Adler, A. Sell, F. Sotier, R. Huber, and A. Leitenstorfer, "Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser," Opt Lett 32,3504-3506 (2007).
    94. 丁晶新,杨康文,李文雪,”高功率超短脉冲的同步研究,”中国科技论文在线精品论文5,1417-1420(2012).
    95. K. Yang, W. Li, M. Yan, H. Zhou, Y. Zhou, and H. Zeng, "Up to 85-W 1030-nm Fiber Laser Synchronized to 800-and 1550-nm Femtosecond Lasers at 79.5 MHz," Photonics Technology Letters, IEEE 23,1558-1560 (2011).
    96. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys Rev Lett 84,5102 (2000).
    97. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Absolute optical frequency measurement of the cesium D 1 line with a mode-locked laser," Phys Rev Lett 82,3568 (1999).
    98. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys Rev Lett 85,2264 (2000).
    99. L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kaertner, "Direct frequency comb generation from an octave-spanning, prismless Ti:sapphire laser," Opt Lett 29,1683-1685 (2004).
    100. 韩晓红,(华东师范大学,2009).
    101. P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, "Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber.," Opt Express 15,12161 (2007).
    102. A. Klenner, F. Emaury, C. Schriber, A. Diebold, C. J. Saraceno, S. Schilt, U. Keller, and T. Siidmeyer, "Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser," Opt Express 21, 24770-24780 (2013).
    103. S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, "Optical repetition rate stabilization of a mode-locked all-fiber laser," Opt Express 21,4889-4895 (2013).
    104. D. Chao, "Self-referenced 1.5 μm fiber frequency combs at GHz repetition rates," (Massachusetts Institute of Technology,2012).
    105. L. M. D. Matos, "Octave-spanning lasers for optical metrology applications," (Massachusetts Institute of Technology,2006).
    106. 蒋燕义,”光频精密控制与合成,”(华东师范大学,2005).
    107. K. Yang, W. Li, M. Yan, X. Shen, J. Zhao, and H. Zeng, "High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers," Opt Express 20,12899-12905 (2012).
    108. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, "Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise," Nature Photonics 4,462-465 (2010).
    109. M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, "High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification," Opt Lett 37,1511-1513 (2012).
    110. A. Cingoz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, "Direct frequency comb spectroscopy in the extreme ultraviolet," Nature 482,68-71 (2012).
    111. J. Hecht, "Ray guns get real," Spectrum, IEEE 46,28-33 (2009).
    112. E. Innerhofer, T. Sudmeyer, F. Brunner, R. Haring, A. Aschwanden, R. Paschotta, C. Honninger, M. Kumkar, and U. Keller, "60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser," in Advanced Solid-State Photonics(Optical Society of America,2003), p.152.
    113. T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hadrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tunnermann, "Fiber chirped-pulse amplification system emitting 3.8 GW peak power," Opt Express 19,255-260 (2011).
    114. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, and M. M. Valley, "100 kW coherently combined slab MOPAs," in Conference on Lasers and Electro-Optics(Optical Society of America,2009), p. Al.
    115. S. J. Augst, T. Y. Fan, and A. Sanchez, "Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers," Opt Lett 29, 474.476 (2004).
    116. T. J. Wagner, "Fiber laser beam combining and power scaling progress:Air Force Research Laboratory Laser Division," in SPIE-LASE(International Society for Optics and Photonics,2012), p.823718.
    117. 周朴,”光纤激光相干合成技术研究[D],”(长沙:国防科技大学,2009).
    118. R. Su, P. Zhou, X. Wang, H. Zhang, and X. Xu, "Active coherent beam combining of a five-element,800 W nanosecond fiber amplifier array," Opt Lett 37,3978-3980 (2012).
    119. Y. Jaouen, G. Canat, S. Grot, and S. Bordais, "Power limitation induced by nonlinear effects in pulsed high-power fiber amplifiers," Cr Phys 7,163-169 (2006).
    120. E. C. Titchmarsh, Introduction to the theory of Fourier integrals (Clarendon Press Oxford,1948).
    121. E. Desurvire, "Study of the complex atomic susceptibility of erbium-doped fiber amplifiers," Lightwave Technology, Journal of 8,1517-1527 (1990).
    122. E. Bochove, "Nonlinear refractive index of a rare-earth-doped fiber laser," Opt Lett 29,2414-2416 (2004).
    123. G. Canat, J. Mollier, J. Bouzinac, G. M. Williams, B. Cole, L. Goldberg, Y. Jaouen, and G. Kulcsar, "Dynamics of high-power erbium-ytterbium fiber amplifiers," JOSA B 22,2308-2318 (2005).