镍基合金焊接熔池凝固过程微观组织模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接熔池的凝固过程直接决定着晶粒的形态、偏析程度、夹杂物的分布,影响着气孔及热裂纹等缺陷的形成,最终影响着焊缝的力学性能。然而,目前通过实验对焊缝凝固过程进行实时观察还难以实现,同时也无法准确地反映焊接熔池凝固过程中动态、瞬时等特点,因此通过数值模拟的方式对焊缝凝固过程中进行研究具有重要意义。本文中考虑了联生结晶、流体流动等焊接熔池中的凝固特点,构建了元胞自动机-有限差分-有限容积相互耦合的模型,再现了焊接熔池凝固过程的枝晶生长行为,分析了流体流动对枝晶形貌以及柱状晶一次枝晶间距的影响,并对熔池中的溶质再分配进行了深入的研究。
     首先,本文在枝晶生长动力学的基础上,构建了枝晶生长速度模型。同时,为了模拟具有任意主轴角度晶粒生长,本文对之前学者所提出的“对角线模拟角度”法则进行修正,实现了在一套网格中进行多个偏角的计算,提高了计算效率,从而能够更好地描述焊接熔池中的联生结晶现象。在此基础上,开展了焊接熔池枝晶生长的模拟,再现了焊接熔池凝固过程的枝晶形貌演变。模拟结果表明,在凝固过程中,枝晶间的竞争生长激烈,主轴取向较好的晶粒可以获得持续的生长,而取向为其他方向的晶粒最终在竞争中被淘汰,最终形成错综复杂的熔池枝晶形貌。模拟结果与实验结果具有较好的一致性,说明本文所建立的模型能够反映熔池凝固过程的特点。
     为了进一步研究焊接熔池中流体流动对枝晶生长的影响,本文构建了流场模型,并通过有限体积法对其进行求解。在求解过程中,分别应用交错网格技术和SIMPLER算法解决压力梯度项离散问题和缺少描述压力项独立方程的问题。在完成流场模型的建立后,将其与枝晶生长模型耦合,用溶质传输方程替代溶质扩散方程求解液相中的溶质分布。
     在上述模型基础上,本文开展了流场作用下焊接熔池中等轴晶和柱状晶生长的模拟,并与纯扩散作用时的情况进行对比,再现了凝固过程中不同时刻枝晶前沿流体流动以及其对枝晶形貌和溶质分布的影响。模拟结果表明,相对于纯扩散作用,流场作用改变了枝晶前沿的溶质分布,进而改变了成分过冷,使枝晶的形貌发生了改变。来流方向不同时,枝晶生长形貌也不相同,但都有迎流侧枝晶生长速度较快,而背流侧生长速度较慢的特点。并且随着来流速度的增加,枝晶生长的不对称性更加明显。进一步研究了流场对柱状晶生长一次枝晶间距的影响。结果表明,流场改变了长势较弱枝晶尖端的溶质分布,使其在生长过程中更早地被淘汰,从而加快了枝晶间距的调节过程。
     焊缝中的微观偏析可以引起非平衡第二相、气孔和裂纹等的形成,因此对其进行定量预测将为预测焊缝金属的力学性能提供依据。本文通过数值模拟研究了纯扩散和对流两种作用下柱状晶生长过程的溶质再分配和显微偏析的特点,并分析了焊接速度和形核密度对显微偏析的影响。研究结果表明,纯扩散作用下焊接熔池的柱状晶生长,沿柱状晶生长方向固相溶质浓度逐渐增加,但增加幅度逐渐减小,并最终趋近于一个稳定值;沿垂直于柱状晶生长方向,枝晶中心处溶质浓度较低,而二次枝晶部位溶质浓度较高。而对流作用下焊接熔池的柱状晶生长,其沿柱状晶生长方向的溶质分配与纯扩散情况类似;而在垂直于柱状晶生长方向,其溶质偏析程度要大于纯扩散时的溶质偏析程度;并且背流侧的溶质浓度要大于迎流侧的溶质浓度。在其他条件不变时,随着焊接速度的增加,溶质偏析程度更加严重;在其他条件不变时,随着形核密度的增加,熔池偏析程度减小。
     在上述研究所建立的模型基础上,本文设计了一个焊接熔池枝晶生长模拟系统。该系统包括流场计算、温度场计算、枝晶生长计算和结果后处理四个模块,提供了简单易用的图形界面,实现了对于不同条件下焊接熔池枝晶生长的模拟,并可以对结果进行分析和后处理,以期达到对实际焊接过程提供参考的目的。
Solidification behavior during welding process controls the morphologies of microstructure, the extent of segregation, the distribution of inclusions, affects the formation of porosity and hot cracks, and ultimately influences the properties of the weld metal. To date, it’s still hard to observe the solidification process by experiment method, and the dynamic and instantaneous features of weld solidification process can’t be described accurately by experiment method either. So that it is of great importance to analyze solidification process of molten pool through numerical simulation method. In this dissertation, a coupled model of cellular automaton, finite difference and finite volume method is developed to reproduce dendrite growth behavior in molten pool. The characteristics of molten pool such as epitaxial growth and fluid flow are taken into consideration. The effects of fluid flow on dendrite morphology and primary dendrite spacing are studied, and solute redistribution in molten pool is also deeply researched.
     First, the dendrite grain growth model is established based on grain growth kinetics theory. In addition, the method of“diagonal simulating angle”is modified and the computational efficiency is improved to simulate the grain growth with random crystallographic orientations, which could describe the epitaxial growth in molten pool better. Based on this model, the simulation of grain growth of full-sized molten pool is carried out, and the microstructure evolution during welding solidification process is reproduced. The simulated results indicate that the competitive growth among grains is severe during solidification process, and the grains with preferred orientations could grow constantly, while other grains are eliminated. Ultimately, a complicated morphology is formed in molten pool. The simulated results agree well with experiments, which confirm the reasonability and feasibility of the simulation model in this dissertation.
     Flow field model is established to further study the effects of fluid flow in molten pool on grain growth, and the model is solved by finite volume method. Staggered-grid finite difference approach and SIMPLER algorithm are also employed to solve the problem of the discrete of pressure gradient term and the lacking of independent equation of pressure term, respectively. After the establishment of the flow field model, it is coupled with grain growth model, and the solute diffusion equation is replaced with solute transfer equation to solve the solute distribution in liquid.
     The simulation of the equiaxed grain growth and columnar growth with fluid flow in molten pool is carried out based on the model mentioned above, and the results are also compared with the grain growth without fluid flow. The behavior of fluid flowing at the dendrite tips and its effects on dendritic morphologies and solute distribution is reproduced. The simulated results present that fluid flow alters solute distribution and constitutional undercooling tendency around the dendrite tips, accordingly, the morphologies of grains exhibit assymetrical. The dendritic morphologies are different with different inlet flow direction, but they all have the same characteristic that the dendrite arms on the upstream side grow fast, while the growth of dendrite arms on the downstream side is much delayed. With inlet velocity increasing, the asymmetry of dendrite growth becomes even severe. The effects of fluid flow on primary dendrite spacing are also examined. The results show that fluid flow changes the solute distribution at the dendrite tips of columnar grains that grow relatively slower and makes them eliminated in the competitive growth more quickly, accordingly, accelerates the primary dendrite spacing adjustment process.
     Microsegregation in weld seam could induce the formation of second phase, pore and hot crack. Therefore, quantitative forecasting of the microsegregation could serve as basis for the prediction of the mechanical properties of weld metal. The characteristics of solute redistribution and microsegregation of columnar grain growth with and without flow are studied, and the effects of welding speed and nucleation density are also examined. The results indicate that for grain growth without flow, solute concentration increases from the bottom of the dendrite to the dendrite tips along the grain growth direction in the interior of a columnar grain, but increasing extent slows down. Eventually the solute concentration tends to a certain value. Along the direction normal to grain growth, the solid composition at the center of the main stem is low, while near the edge and at the secondary arms it is high. For grain growth with flow, the solute distribution along grain growth direction has the same tendency as that without flow, while the extent of solute segregation is greater along the direction normal to grain growth direction. With other conditions constant, with welding speed increasing, the extent of solute segregation becomes more severe, and with nucleation density increasing, the extent of solute segregation reduces.
     A system for simulating grain growth in molten pool is designed based on this study, and it consists of 4 parts including fluid field computation, temperature field computation, grain growth simulation and data post-processing. The system provides a simple graphical user interface, by which the simulation of grain growth in molten pool could be completed easily and the results could also be post processed. The system is designed to achieve a goal of providing reference to actual welding process.
引文
1占小红. Ni-Cr二元合金焊接熔池枝晶生长模拟.哈尔滨工业大学博士学位论文. 2008:1~17
    2荆涛.凝固过程数值模拟.电子工业出版社, 2002:102
    3刘会杰.焊接冶金与焊接性.机械工业出版社, 2007:85~86
    4 W. F. Savage, A. H. Aronson. Preferred Orientation in the Weld Fusion Zone. Weld J. 1966,45(2):85~89
    5 W. F. Savage, R. J. Hrubec. Synthesis of Weld Solidification Using Crystalline Organic Materials. Weld J. 1972,51(5):260~271
    6 D. Turnbull. Correlation of Liquid-Solid Interfacial Energies Alculated from Supercooling of Small Droplets. Journal of Chemical Physics. 1950,21:769
    7 S. Kou. Welding Metallurgy. Wiley-Interscience, 1988:143~146
    8 W. A. Tiller, K. A. Jackson, J. W. Rutter, et al. The Redistribution of Solute Atoms during the Solidification of Metals. Acta Metallurgica. 1953,1:428~437
    9 M. C. Flemings. Solidification Processing. Metallurgical and Materials Transactions B. 1974,5(10):1543~1916
    10 G. S. Cole, W. C. Winegard. The Transition from Plane to Cellular Interface in Solidifying Tin-Lead-Anitimony Alloys. Journal of Institute of Metals. 1963, 92:323
    11 T. S. Plaskett, W. C. Winegard. Cellular Growth in Tin Alloys. Canadian Journal of Physics. 1959,37:1555
    12刘东戎. TiAi合金锭凝固组织形成的数值模拟.哈尔滨工业大学博士论文. 2006:4
    13柳百成,荆涛.铸造工程的模拟仿真与质量控制.机械工业出版社, 2002:153~189
    14常国威,王建中.金属凝固过程中的晶体生长和控制.冶金工业出版社, 2002:64~115
    15 G. P. Ivantsov. Temperature Field around a Spheroidal, Cylindrical and Acicular Crystal Growing in Supercoolied Melt. Dokl Akad Nauk SSSR, 1947,58(4):567~569
    16 J. S. Langer, J. Muller-Krumbhaar. Stability Effects in Dendritic Crystal Growth. Journal of Crystal Growth. 1977, 42:11~14
    17 J. S. Langer, H. Muller-krumbhaar. Theory of Dendritic Growth-I. Elements of a Stability Analysis. Acta Metallurgy. 1978,26(11):1681~1687
    18 J. S. Langer, H. Muller-krumbhaar. Theory of Dendritic Growth-II. Instabilities in the Limit of Vanishing Surface Tension. Acta Metallurgy. 1978,26(11):1689~1695
    19 H. Muller-krumbhaar, J. S. Langer. Theory of Dendritic Growth-III. Effects of Surface Tension. Acta Metallurgy. 1978,26(11):1697~1708
    20 R. Trivedi. Growth of Dendritic Needles from a Supercooled Melt. Acta Metallurgica. 1970,18(3):287~296
    21 M. E. Glicksman, R. J. Schaefer and J. D. Ayers. Dendritic Growth-a Test of Theory. Metallurgical Transactions A. 1976,7:1747~1759
    22 W. Oldfield. Computer Model Studies of Dendritic Growth. Material Science and Engineering. 1973,11:211~218
    23 W. Kurz, B. Giovanola and R. Trivedi. Theory of Microstructural Development during Rapid Solidification. Acta Metallurgica. 1986,34(5): 823~830
    24 M. Rappaz, P. Thevoz. Solute Diffusion Model for Equiaxed dendritic Growth. Acta Metallurgica. 1987,35(7):1487~1497
    25周振丰,张文钺.焊接冶金与金属焊接性.1987:27~28
    26张文钺.焊接冶金学.机械工业出版社, 1989:1~107
    27 Y. Saito. The Monte Carlo Simulation of Microstructure Evolution in Metals. Material Science and Engineering. 1997,223:114~124
    28莫春立,丁春辉,何若宏.用Monte Carlo方法模拟晶粒长大.沈阳工业学院学报. 2001,20(1):61~66
    29温俊芹,刘新田,莫春立等.焊接热影响区晶粒长大过程的微观组织模拟.焊接学报. 2003(6):48~52
    30王维斌,刘建萍,史耀武等.超细晶粒钢闪光焊热影响区显微特性分析及其组织有限元模拟.机械工程材料. 2004,8:4~6
    31李斌,王思刚,张红伟.金属凝固微观组织数值模拟研究进展.材料与冶金学报. 2002,6(2):95~101
    32 C. A. Gandin, M. Rappaz. A 3D Cellular Automaton Algorithm for thePrediction of Dendritic Grain Growth. Acta Matellurgica. 1997,45(5): 2187~2195
    33 Y. Liu, Q. Y. Xu and B. C. Liu. A Modified Cellular Automaton Method for the Modeling of the Dendritic Morphology of Binary Alloys. Tsinghua Science and Technology. 2006,11(5):495~500
    34 S. M. Seo, I. S. Kim, C. Y. Jo, et al. Grain Structure Prediction of Ni-base Superalloy Castings Using the Cellular Automaton-Finite Element Method. Material Science and Engineering. 2007,449:713~716
    35 M. A. Miodomik, A. Cerepo and J. W. Martin. Simulation of Particle Pinning. Philosophical Magazine A. 1999,79:203
    36 G.J. Fix. Free Boundary Problems: Theory and Applications. 1983:580
    37 J. A. Warren, W. J. Boettinger. Prediction of Dendritic Growth and Microsegregation Patterns in a Binary Alloy Using the Phase-field Method. Acta Materialia. 1995,43(2):689~703
    38 R. S. Qin, E. R. Wallach and R. C. Thomason. A Phase-field Model for the Solidification of Multicomponent and Multiphase Alloys. Journal of Crystal Growth. 2005,279:163~169
    39 D. Weygand, Y. Brechet, J. Lepinoux, et al. A Two-dimensional Vertex Computer Simulation. Acta Metallurgica. 1999,47:961~970
    40 H. W. HesselBarth, I. R. Goebel, Simulation of Recrystallization by Cellular Aautomaton. Acta Metallurgica. 1991,39:2135~2143
    41 H. Cerjak, K. E. Easterling. Mathematical Modeling of Weld Phenomena. Pressed by the Institute of Materials. 1992:109~178
    42单博炜,魏雷,林鑫等.采用元胞自动机法模拟凝固微观组织的研究进展.铸造. 2006,55(5):439~443
    43 S. A. David, S. S. Babu and J. M. Vitek. Trends in Microstructure Modeling in Weld Metals. Theoretical Prediction in Joining and Welding. 1996:155~172
    44 N. Yurioka, T. Koseki. Modeling activities in Japan, Proc. Theoretical Prediction in Joining and Welding. 1996:39~58
    45 S. S. Babu, S. A. David and M. A. Quintana. Modeling Microstructure Development in Self-Shielded Flux Cored Arc Welds. Supplement to the Welding Journal. 2001,80(4):4
    46 M. Ushio. Metallo-thermo-mechanics Application to Phase Transformation Incorporated Processes. Theoretical Prediction in Joining and Welding. Osaka, 1996:89~111
    47 M. P. Anderson, D. J. Srolovitz and G. S. Grest. Computer Simulation of Grain growth-Ⅰ. Kinetics. Acta Matellurgica. 1984,32(5):783~791
    48 M. P. Anderson, D. J. Srolovitz and G. S. Grest. Computer Simulation of Grain growth-Ⅱ.Grain Size Distribution, topology and local dynamics. Acta Matellurgica. 1984,32(5):793~802
    49 M. P. Anderson, D. J. Srolovitz and G. S. Grest. Computer Simulation of Grain growth-Ⅲ.Influence of Particle Dispersion. Acta Matellurgica. 1984,32(9):1429~1438
    50 M. P. Anderson, D. J. Srolovitz and G. S. Grest. Computer Simulation of Grain growth-Ⅳ.Anisotropic Grain Boundary Energies. Acta Matellurgica. 1985,33(3):509~520
    51 M. P. Anderson, D. J. Srolovitz and G. S. Grest. Computer Simulation of Grain growth~Ⅴ. Abnormal Grain Growth. Acta Matellurgica. 1985,33(12): 2233~2247
    52李午申,周念国,陈煜等.焊接金相组织自动定量识别软件系统.焊接学报. 1998,19(1):60~65
    53王成,张旭东,陈武柱等.超细晶粒钢激光焊接HAZ晶粒长大的数学模型及实验研究.应用激光. 2002, 4:181~184
    54陈茂爱,武传松,廉荣. GMAW焊接熔滴过度动态过程的数值分析.金属学报. 2004,11:1227~1232
    55裴鹿成,王仲奇.蒙特卡罗方法及其应用.海洋出版社, 1998:1~138
    56 B. Radhakrishnan, T. Zacharia. Monte Carlo Simulation of Grain Boundary Pinning in the Weld-Heat-Affected Zone. Phys. Metallurgical and Materials Transactions A. 1995,26(8):2123~2130
    57 J. Gao, R. G. Thompon. Real Time-Temperature Models for Monte Carlo simulations of normal grain growth. Acta Materialia. 1996,44(11):4565~4570
    58 S. Jahanian, W. Lei. Monte Carlo Simulation of Grain Growth at Heat Affected Zone of Weldment. Engeering Technical Conferences. 1999:98~111
    59 Z. Yang, S. Sista, J. W. Elmer, et al. Three Dimensional Monte Carlo Simulation of Grain Growth during GTA Welding of Titanium. ActaMaterialia. 2000,48:4813~4825
    60 T. Koseki, H. Inoue, Y. Fukuda, et al. Numerical Simulation of Equiaxed Grain Formation in Weld Solidification. Science and Technology of Advanced Materials. 2003,4:183~195
    61徐艳利. SUS316和NIMONIC263焊接接头晶粒长大MONTECARLO模拟.哈尔滨工业大学博士论文. 2008:1~101
    62 Y. L. Xu, Z. B. Dong, Y. H. Wei, et al. Marangoni Convection and Weld Shape Variation in A-TIG Welding Process. Theoretical and Applied Fracture Mechanics. 2007,48(2):178~186
    63 A. Farzadi, M. D. Quang, S. Serajzadeh, et al. Phase-field Simulation of Weld Solidification Microstructure in an Al-Cu Alloy. Modelling and Simulation of Materials Sciences and Engineering. 2008,16:1~18
    64黄安国,王永生,李志远.焊缝金属凝固元胞自动机模型的研究.焊接技术. 2003,12:13~16
    65黄安国,余圣甫,李志远.焊缝金属凝固组织元胞自动机模拟.焊接学报. 2008,29(4):45~48
    66 Y. H. Wei, X. H. Zhan, Z. B. Dong. Numerical Simulation of Columnar Dendritic Grain Growth during Weld Solidification Process. Science and Technology of Welding and Joining. 2007,12(2):138~146
    67 X. H. Zhan, Z. B. Dong, Y. H. Wei. Dendrite Grain Growth Simulation in Weld Molten Pool Based on CA-FD Model. Crystal Research and Technology. 2008,43(3):253~259
    68 X. H. Zhan, Y. H. Wei, Z. B. Dong. Cellular Automaton Simulation of Grain Growth with Different Orientation Angles during Solidification Process. Journal of Materials Processing Technology. 2008,208:1~8
    69占小红,魏艳红,马瑞. Al-Cu合金凝固枝晶生长的数值模拟.中国有色金属学报. 2008,18(4):710~716
    70赵军.基于CA法的熔池凝固过程模拟初探.哈尔滨工业大学硕士学位论文. 2006:1~52
    71 Ph. Bouissou, B. Perrin and P. Tabeling. Influence of an External Flow on Dendritic Crystal Growth. Physical Review A. 1989,40:509~512
    72 Y. W. Lee, R. Ananth and W. N. Gill. Selection of a Length Scale in Unconstrained Dendritic Growth with Convection in the Melt. Journal ofCrystal Growth. 1993,132:226~230
    73 V. Emsellem, P. Tabeling. Experimental Study of Dendritic Growth with an External Flow. Journal of Crystal Growth. 1995,156:285~295
    74朱鸣芳,戴挺,李成允.对流作用下枝晶生长行为的数值模拟.中国科学. 2005,35(7):673~688
    75 M. F. Zhu, C. P. Hong. A three Dimensional Modified Cellular Automation Model for the Prediction of Solidification Microstructures. ISIJ International, 2002,42(5):520~526
    76 R. T?nhardt, G. Amberg. Phase-Field Simulation of Dendritic Growth in a Shear Flow. Journal of Crystal Growth. 1998,194(1):406~428
    77 R. T?nhardt, G. Amberg. Dendritic Growth of Randomly Oriented Nuclei in a Shear Flow. Journal of Crystal Growth. 2000,213:161~187
    78 D. M. Anderson, G. B. McFadden and A. A. Wheeler. A Phase-field Model with Convection: Sharp-interface Asymptotics. Physica D. 2001,151(2-4): 305~331
    79 D. M. Anderson, G. B. McFadden and A. A. Wheeler. A Phase-field Model of Solidification with Convection. Physica D. 2000,135(1-2):175~194
    80 C. Beckermann, R. Viskanta. Mathematical Modeling of Transport Phenomena during Solidification of Alloys. Applied Mechanics Reviews. 1993,46(1):1~7
    81 C. Beckermann, H. J. Diepers, I. Steinbach, et al. Modeling Melt Convection in Phase-Field Simulations of Solidification. Journal of Computational Physics, 1999,154(1):468~496
    82 X. Tong, C. Beckermann, A. Karma, et al. Phase-field Simulations of Dendritic Crystal Growth in a Forced Flow. Physical Review E. 2001,63:1~16
    83 Y. Lu, C. Beckermann and J. C. Ramirez. Three-dimensional Phase-field Simulations of the Effect of Convection on Free Dendritic Growth. Journal of Crystal Growth. 2005,280:320~334
    84 C. W. Lan, C. M. Hsu and C. C. Liu. Efficient Adaptive Phase Field Simulation of Dendritic Growth in a Forced Flow at Low Supercooling. Journal of Crystal Growth. 2002,241:379~386
    85 C. W. Lan. Phase Field Simulation of Non-isothermal Free Dendritic Growth - 111 -of a Binary Alloy in a Forced Flow. Journal of Crystal Growth. 2004,264(1-3):472~482
    86 B. Nestler, A. A. Wheeler, L. Ratke, et al. Phase-field Model for Solidification of a Monotectic Alloy with Convection. Physica D. 2000,141:133~154
    87 A. Das, S. Ji and Z. Fan. Morphological Development of Solidification Structures under Forced Fluid Flow: A Monte-Carlo Simulation. Acta Materialia. 2002,50:4571~4585
    88 D. Li, R. Li and P. Zhang. A Cellular Automaton Technique for Modeling of a Binary Dendritic Growth with Convection. Applied Mathematical Modelling. 2007,31:971~982
    89 W. Miller, I. Rasin and S. Succi. Lattice Boltzmann Phase-field Modeling of Binary-alloy Solidification. Physica A. 2006,362:78~83
    90 M. F. Zhu, S. Y. Lee and C. P. Hong. Modified Cellular Automaton Model for the Prediction of Dendritic Growth with Melt Convection. Physical Review E. 2004,69:1~12
    91苏敏,孙东科,朱鸣芳. Lattice Boltzmann方法在枝晶生长模拟中的应用.机械工程材料. 2007,31(2):75~78
    92 A. Wheeler, N. A. Ahmad and W. J. Boettinger. Recent Developments in Phase-field Models of Solidification. Advances in Space Research. 1995,16(7):163~172
    93 W. J. Boettinger, S. R. Coriell, A. L. Greer, et al. Solidification Microstructures: Recent Developments, Future Directions. Acta Materialia. 2000,48(1):43~70
    94 M. Asta, C. Beckermann, A. Karma, et al. Solidification Microstructure and Solid-State Parallels: Recent Developments, Future Directions. Acta Materialia. 2009,57:941~971
    95张光跃,荆涛,柳百成.相场方法原理及其在微观组织模拟中的应用.机械工程学报. 2003,39(5):6~9
    96熊守美,许庆彦,康金武.铸造过程模拟仿真技术.机械工业出版社, 2004:207~260
    97 J. V. Neumann. The General and Logical Theory of Automata. MIT Press, 1963:1~25
    98胡汉起.金属凝固原理.机械工业出版社, 2000:42~103
    99 W. Wang, P. D Lee. A Model of Solidification Microstructures in Nickel-based Superalloys: Predicting Primary Dendrite Spacing Selection. Acta Materialia. 2003,51:2971~2987
    100 L. Nastac. Numerical Modeling Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Metallurgica. 1999,47(17):4253~4262
    101 H. B. Dong, P. D. Lee. Simulation of the Columnar-to-equiaxed Transition in Directionally Solidified Al-Cu Alloys. Acta Materialia. 2005,53:659~668
    102 R. C. Atwood, P. D. Lee. Simulation of the Three-Dimensional Morphology of Solidification Porosity in an Aluminium-Silicon Alloy. Acta Materialia. 2003,51:5447~5466
    103 X. H. Zhan, Z. B. Dong and Y. H. Wei. Simulation of Grain Morphologies and Competitive Growth in Weld Pool of Ni-Cr Alloy. Journal of Crystal Growth. 2009,311(23-24):4778~4783
    104汪建华.焊接数值模拟技术及其应用.上海交通大学出版社, 2003:25~33
    105张文铖.焊接冶金学(基本原理).机械工业出版社, 1999:1~107
    106武传松.焊接热过程数值分析.哈尔滨工业大学出版社, 1990:1~155
    107陶文铨.数值传热学.西安交通大学出版社, 1988:1~721
    108陶文铨.数值传热学(第二版).西安交通大学出版社, 2001:1~566
    109李人宪.有限体积法基础.国防工业出版社, 2005:1~180
    110李人宪.有限体积法基础(第二版).国防工业出版社, 2008:1~226
    111 S. V. Patankar, D. B. Spalding. A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. International Journal of Heat and Mass Transfer. 1972,15(10):1787~1806
    112 S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere Pub. Corp, 1980:1~185
    113王福军.计算流体动力学分析——CFD软件原理及应用.清华大学出版社, 2004:74~91
    114 S. V. Patankar. A Calculation Procedure for Two-Dimensional Elliptic Situations. Numerical Heat Transfer. 1981,4:409~425
    115崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社, 2007:1~246
    116雷松鹤.晶体凝固过程微流动的实时观察研究.西北工业大学硕士学位论文. 2006:1~58
    117刘山,黄韬,鲁德洋等.液相对流作用下的枝晶生长.第二届全国材料科学会议论文. 1989:11
    118刘山,鲁德洋,周尧和.强制性晶体生长过程中的对流效应——柱状晶生长方向的变化.西北工业大学学报. 1991,9(1):13~18
    119刘山.强迫对流对强制性晶体生长过程的影响.西北工业大学硕士学位论文. 1989:1~51
    120焦育宁,刘清民,杨院生等.流体受迫流动下的柱状枝晶非对称生长.材料工程. 1993,7:14~16
    121肖莉.强迫对流对胞、枝晶间距影响的数值模型与模拟.辽宁工程技术大学硕士学位论文. 2002:1~64
    122丁国陆,林鑫,黄卫东等.定向凝固一次枝晶间距的历史相关性.金属学报. 1995,31(10):469~474
    123黄卫东,商宝禄,周尧和.定向凝固的胞晶和枝晶一次间距研究.航空学报. 1992,13(7):377~380
    124刘山,鲁德洋,黄韬等.液相流动对柱晶一次间距的影响.金属学报. 1993,29(4):147~152
    125朱昌盛,王智平,荆涛等.二元合金微观偏析的相场法数值模拟.物理学报. 2006,55(3):1502~1507
    126黄庆,陈义良.二元合金凝固过程宏观偏析的数值模拟.中国科学技术大学学报. 2005,35(4):499~505
    127郭磊,王玲,董建新等. GH742合金等温凝固过程中偏析规律的研究.稀有金属材料与工程. 2007,36(11):1942~1946
    128 H. D. Brody, M. C. Flemings. Solute Redistribution in Dendritic Solidification. Aime Met Soc Trans. 1966,236(5):615~624