钾离子通道在小鼠精子获能中的作用及氰戊菊酯对获能的影响机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分 钾离子通道在小鼠精子体外获能中的作用
     以金霉素(chlortetracycline,CTC)荧光染色法评价小鼠精子的体外获能,并观察K~+离子载体缬氨霉素(Val)对小鼠精子体外获能的影响,CTC荧光染色后涂片观察,以B型精子的发生率来评价精子获能,B型精子发生率越高,获能越完全。
     钾离子载体缬氨霉素能促使体细胞钾离子外流,实验以终浓度为50nmol·L-1的缬氨霉素处理小鼠精子,其B型精子发生率(%)与对照组相比显著增加(n=10,p<0.05),表明缬氨霉素能促进小鼠精子的体外获能,由于缬氨霉素能促使体细胞内钾离子外流,提示在精子体外获能过程中,钾离子外流是重要的一环。
     进一步采用全细胞膜片箝技术记录小鼠粗线期精母细胞延迟整流钾电流(I_(DRK)),并分析其电流特性,同时观察缬氨霉素对I_(DRK)的影响。结果显示:在小鼠粗线期精母细胞上能记录到一个被缓慢激活
    
    南京医科大学硕十学位论文
    的外向钾电流,其幅度随去极化电压的升高而增大,该电流的上升幅
    度具有明显的电压依赖性,但通道的开放没有明显的时间依赖性失
    活。本实验使用的电极内液含有10mmol.L一’的caZ+鳌合剂EGTA,可
    有效地防止胞内游离Ca2+浓度升高,因此该外向钾电流中基本不包含
    Ca2+激活的钾通道电流,而且该电流对4一AP不敏感,但TEACI可显
    著抑制该电流,因此可初步判断该电流为延迟整流钾电流(ID二)。
     进一步观察到加入50nmol.L一’颧氨霉素后,小鼠生精细胞上延
    迟整流钾电流显著增大,I一V曲线上调。分析实验结果:颧氛霉素通
    过激活延迟整流钾通道,增加胞内钾离子的外流,从而使精子膜电位
    发生超极化,进而促发小鼠精子体外获能。
    第二部分氛戊菊醋对小鼠精子获能的影响及机制探讨
     200川小鼠精子细胞悬液加入不同终浓度氰戊菊醋(Fen)染毒后,
    eo:孵箱37℃培育2,J、时,结果显示:以终浓度(林mol·L一,)为。、
    0.625、1 .25、2.5、5.0、10.0、20.0的Fen处理小鼠精子,其B
    型精子发生率(%)分别为55.05士0.43、52.02士1 .29、47.13士0.87、
    40.08士0.32、35.79士0.88、28.66土0.96、27.89士1 .56,半数有效剂量
     (E DS。)为5尽mol·L一’。表明氰戊菊醋抑制小鼠精子体外获能,其作
    用呈剂量一反应关系(P<0.05,n一12),同时具有时间依赖性。
     我们进一步探讨了Fen抑制小鼠精子体外获能机制,发现氰戊菊
    醋可轻微抑制小鼠粗线期精母细胞延迟整流钾电流,提示氰戊菊醋主
    要不是通过延迟整流钾离子通道途径影响精子体外获能。同时实验还
    观察到,氰戊菊醋能显著抑制精子细胞膜的脂质流动性。我们选择l,
    6一二苯已三烯(DPH)为荧光探针结合细胞染毒,测定小鼠精子细胞
    膜脂质的荧光偏振度(P值),来观察氰戊菊醋对精子细胞膜脂质流
    动性的影响。结果表明,以O、0.625、1 .25、2.5、5.0、10.0、20.0
    
    南京医科大学硕l学位论文
    。molL一’的Fen处理小鼠精子,从2.5 0 mol·L一’起,氰戊菊醋即显著
    增高小鼠精子细胞膜脂质DPH探针的荧光偏振度(P值)、降低膜脂
    质流动度LFu(P<0.05,n=15):10抖mol·L一,一20林mol·L一,浓度的
    氰戊菊醋组,其P值与LFU到达平台期。提示氰戊菊醋可增高小鼠
    精子细胞膜脂质的荧光偏振度,降低细胞膜脂质流动性,并具有浓度
    依赖关系。经相关分析发现,氰戊菊醋抑制小鼠精子体外获能及降低
    精子细胞膜脂质流动性,这两者的作用剂量高度相关(:2=0 .968),提
    示氰戊菊醋可通过降低精子细胞膜的脂质流动性而抑制小鼠精子体
    外获能。
Part one: Role of potassium channel on sperm in vitro capaictaion in mice
    The primary aim of this study was to observe the correlation between the mouse sperm capacitaion state and K+ channel, and then to observe the effect of valinomycin (Val), a potassium ionophore, in sperm in vitro capacitation. Mouse in vitro sperm capacitation was assessed by the B pattern of staining by chlortetracycline (CTC), a Ca2+-dependent fluorescence microscopictechnique, and its is currently the assay of choice because it distinguishes five different stages of sperm activation: noncapacitated, capacitated acrosome-intact , capacitated acrosome-reacted, in an early stage of the AR and nonidentified sperm.
    When spermatozoa were cultured in valinomycin (Val) at the
    
    
    concentration of 50nmol.L-1, the capacitation was increased significantly (n=10,p<0.05).As we all know, valinomycin induces potassium efflux in cell, suggesting that potassium efflux is important in capatitation.
    Then we recorded the delayed rectifier K+ currents(IDRK) in mouse pachytene spermatocyte using whole-cell patch clamp technique so as to determine their characteristics. Meanwhile we observed the effects of valinomycin (Val) on delayed rectified K+ currents presents in mouse pachytene spermatocyte. A outward current activated at -40mV was obtained when inward Ca2+ current and outward Ca2+-dependent potassium current were blocked by Cd2+and EGTA separated. The current increased dramatically when depolarization in creased from -40mV to +70 mV, without any deactivation in 400MS. And it had an outwardly rectifying current-voltage relationship. According to the characteristics of the current, we primarily inferred that it was delayed rectifier K+ current. Furthermore , 4-AP, a know transient inactivation K+ current blocker, did not significantly affect these K+ currents. The current were blocked by 20mmol.L-1 TEAC1, a know voltage-dependent K+ currents. These observations suggest that the outward K+ currents are generated by activate relayed rectifier K+ channels.
    We found that 50nmol.L-1 Val increased the amplitude of IDRK currents significantly, up-regulated the I-V curve of IDRK current. These results suggest that valinomy promotes potassium ion efflux by activation of delayed rectifier potassium channels in mouse pachytene spermatocyte, and then mediated hyperpolarization itself appears capable of inducing sperm capacitation.
    Part two: Effect of fenvalerate on sperm in vitro capaciation in mice and its mechanism
    When spermatozoa were cultured in various fenvalerate
    
    concentrations(umol .L-1, 0, 0.625, 1.25, 2.5, 5.0, 10.0, 20.0) for 2 h in an atmosphere of 5%co2 in air at 37C, the percentage of spermatozoa showing pattern B was 55.05 + 0.43, 52.02+1.29, 47.13 + 0.87, 40.08+0.32, 35.79 + 0.88,28.66 + 0.96,27.89+1.56 separately, the ED50 is 5 u mol.L/-1.This suggest that fenvalerate can inhibit capacitation was in a concentration-dependent manner. In the same time we also observed that fenvalerate can inhibit capacitation in a time-dependent manner.
    To study the mechanism of fenvalerate's action, we observe the effect of fenvalerate on IDRK channels in moue pachytene spermatocyte, was observed using patch clamp technique. The results showed that fenvalerate had a slightly inhibitory effect on the currents presented in moue pachytene spermatocyte, even though at higher fenvalerate concentration. These results indicated that 1DRK channel was not the primary regulation for fenvalerate to inhibit sperm capacitation.
    Insecticides have been shown to partition into membrane and cause change in membrane fluidity. So at the same time we monitored the fluidity parameters to reveal the dynamic changes in sperm membrane due to fenvalerate interaction by measuring the fluorescence polarization of l,6-diphlnyl-1,3,5-hextriene DPH incorporated into the membrane. Fenvalerate was found to increase the DPH fluorescence polarization value in a concentration-dependent manner, implication that it makes the membrane less fluid. These results suggest that
引文
1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neil JD(eds). The physiology of Reproduction. Vol. 1, New York: Raven press Ltd, 1988:135-185
    2. Schlenk WJ, Kahmann H. Die chemische zusammensetzung des spermliquors undihre physiologische bedeuyung. Bioch Zeit, 1938; 259:283-301
    3. Boitano S, Omoto CK. Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. J Cell Sci. 1991 ;98 (Pt 3):343-9.
    4. Izumi H, Marian T, Inaba K, Oka Y, Morisawa M. Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev Biol. 1999;213(2):246-56.
    5. Babcock DF, Bosma MM, Battaglia DE, Darszon A. Early persistent activation of sperm K+ channels by the egg peptide speract. Proc Natl Acad Sci U S A.1992;89(13):6001-5.
    6. Zeng Y, Clark EN, Florman HM. Sperm membrane potential: hyperpolarization during capacitation regulates zona pellucida-dependent acrosomal secretion. Dev Biol. 1995;171 (2):554-63.
    7. Santi CM, Darszon A, Hernandez-Cruz A. A dihydropyridine-sensitive T-type Ca2+ current is the main Ca2+ current carrier in mouse primary spermatocytes.Am J Physiol. 1996;271(5 Pt 1):C1583-93.
    8. Arnoult C, Villaz M, Florman HM. Pharmacological properties of the T-type Ca2+ current of mouse spermatogenic cells. Mol Pharmacol. 1998;53(6): 1104-11.
    9. Yanagimachi R. Mammalian fertilization. In Knobil E and Neill JD(eds): "The Physiology of Reproduciton 2nd", New York: Raven Press Ltd, 1994; P189~317
    10. Ravind SE, Muller CH. Stimulation of human sperm capacitaion in proteinfree medium by lipid transfer protein. J Androl(Japan/Feb, Suppl) (abstr), 1991; p 27
    11. Wolf DE, Hagopian SS, Ishijima S. Changes in sperm plasma membrane lipid diffusibility after hyperactivation during in vitro capacitation in the mouse. J Cell Biol. 1986;102(4):1372-7.
    12. Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM,Colenbrander B, Gadella BM. Bicarbonate stimulated phospholipid scrambling
    
    induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci. 2001;114(Pt 19):3543-55.
    13. Visconti PE, Ning X, Fornes MW. Alvarez JG. Stein P, Connors SA, Kopf GS.Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol. 1999;214(2):429-43.
    14. Hiroake FUNAHASHI. Effect of Methyl-β-Cyclodextrin and Fertilization Promoting Peptide on Capacitation of Boar Spermatazoa in Protein-Free Medium.Journal of Reproduction and Development, 2002; 48:57-63
    15. Pati PC, Bhunya SE Cytogenetic effects of fenvalerate in mammalian in vivo test system. Mutat Res. 1989;222(3): 149-54.
    16.詹宁育,王心如,王沐沂等,辛硫磷与氰戊菊酯对雄性生殖毒性联合作用。中华劳动卫生职业病杂志,2001;19(4):261-264
    17.张习春,氰戊菊酯对小鼠精子顶体反应影响及作用机理冲国药理学与毒理学杂志[J].2002;16(2):21-24
    18. Sarkar SN, Balasubramanian SV, SIDRKdar SK. Effect of fenvalerate, a pyrethroid insecticide on membrane fluidity. Biochim Biophys Acta.1993;1147(1):137-42.
    19. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod.1997;3(3):175-94.
    20. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development. 1995;121 (4):1129-37.
    21. Harrison RA, Ashworth PJ, Miller NG. Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol Reprod Dev. 1996;45(3):378-91.
    22. Christensen R Whitfield CH, Parkinson TJ. In vitro induction of acrosome reaction in stallion spermatozoa by heparin and A23187. The riogenlolgy, 1996; 45:1201-1210
    23. Burkman LJ. Discrimination between nonhyperactivated and classical
    
    hyperactivated motility patterns in human spermatozoa using computerized analysis. Fertil Steril. 1991;55(2):363-71.
    24. Mortimer ST, Swan MA. Kinematics of capacitating human spermatozoa analysed at 60 Hz. Hum Reprod. 1995;10(4):873-9.
    25. Rathi R, Colenbrander B, Bevers MM, Gadella BM. Evaluation of in vitro capacitation of stallion spermatozoa. Biol Reprod. 2001 ;65(2):462-70.
    26.石其贤,袁玉英,精子获能及其发展,生理科学进展,1998;29(3)243-245
    27. Tsien RY. Fluorescent indicators of ion concentrations. Methods Cell Biol.1989;30:127-56.
    28. Gillan L, Evans G, Maxwell WM. Capacitation status and fertility of fresh and frozen-thawed ram spermatozoa. Reprod Fertil Dev. 1997;9(5):481-7
    29. Fraser LR, Abeydeera LR, Niwa K. Ca(2+)-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Mol Reprod Dev. 1995;40(2):233-41.
    30. Si Y, Olds-Clarke R Mice carrying two t haplotypes: sperm populations with reduced Zona pellucida binding are deficient in capacitation. Biol Reprod.1999;61(1):305-11.
    31. Shi QX, Roldan ER. Bicarbonate/CO2 is not required for zona pellucida-or progesterone-induced acrosomal exocytosis of mouse spermatozoa but is essential for capacitation. Biol Reprod. 1995;52(3):540-6.
    32. Wang L, Li T, Lu L. UV-induced corneal epithelial cell death by activation of potassium channels. Invest Ophthalmol Vis Sci. 2003;44(12):5095-101.
    33. Ortiz PA, Hong N J, Garvin JL. NO decreases thick ascending limb chloride absorption by reducing Na(+)-K(+)-2CI(-) cotransporter activity.Am J Physiol Renal Physiol. 2001 ;281(5):F819-25.
    34. Alberto Darszon and Pedro Labarca et al. Ion channels in sperm physiology.Physiological Reviews. 77:481-502,1999.
    35. Hagiwara S, Kawa K. Calcium and potassium currents in spermatogenic cells dissociated from rat seminiferous tubules. J Physiol. 1984;356:135-49.
    36. Jacob A, Hurley IR, Goodwin LO, Cooper GW, Benoff S. Molecular characterization of a voltage-gated potassium channel expressed in rat testis. Mol
    
    Hum Reprod. 2000;6(4):303-13
    37. Felix R, Serrano CJ, Trevino CL, Munoz-Garay C. Bravo A, Navarro A, Pacheco J, Tsutsumi V, Darszon A. Identification of distinct K+ channels in mouse spermatogenic cells and sperm. Zygote. 2002:10(2):183-8.
    38. Gong XD, Li JC, Leung GP, Cheung KH, Wong PY. A BK(Ca) to K(v) switch during spermatogenesis in the rat seminiferous tubules. Biol Reprod.2002;67(1):46-54.
    39. Fedulova SA, Vasilyev DV, Veselovsky NS. Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects.Neuroscience. 1998 Jul;85(2):497-508.
    40. Gold MS, Shuster MJ, Levine JD. Characterization of six voltage-gated K+ currents in adult rat sensory neurons. J Neurophysiol. 1996;75(6):2629-46.
    41. Krick S, Platoshyn O, Sweeney M, Kim H, Yuan JX. Activation of K+ channels induces apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol.2001 ;280(4):C970-9.
    42. Snyders DJ. Structure and function of cardiac potassium channels. Cardiovasc Res. 1999;42(2):377-90.
    43. Izumi H, Marian T, Inaba K, Oka Y. Morisawa M. Membrane hyperpolarization by sperm-activating and -attracting factor increases cAMP level and activates sperm motility in the ascidian Ciona intestinalis. Dev Biol. 1999;213(2):246-56.
    44. Munoz-Garay C, De la Vega-Beltran JL. Delgado R, Labarca P, Felix R, Darszon A. Inwardly rectifying K(+) channels in spermatogenic cells: functional expression and implication in sperm capacitation. Dev Biol. 2001 ;234(1):261-74.
    45. Jonas EA, Kaczmarek LK. Regulation of potassium channels by protein kinases.Curr Opin Neurobiol. 1996;6(3):318-23.
    46. Tabarean Ⅳ, Narahashi T. Kinetics of modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels by tetramethrin and deltamethrin. J Pharmacol Exp Ther. 2001 ;299(3):988-97.
    47.张莉,张习春,高蓉。小鼠粗线期精母细胞钙通道特性及硝苯地平的作用,中国药理学与毒理学杂志,2003;17(3:216-220)
    48. Flesch FM, Gadella BM. Dynamics of the mammalian sperm plasma membrane
    
    in the process of fertilization. Biochim Biophys Acta. 2000;1469(3):197-235.
    49. Therien I, Moreau R, Manjunath P. Major proteins of bovine seminal plasma and high-density lipoprotein induce cholesterol effiux from epididymal sperm. Biol Reprod. 1998;59(4):768-76.
    50. Ramakrishnan M, Anbazhagan V. Pratap TV, Marsh D, Swamy MJ. Membrane insertion and lipid-protein interactions of bovine seminal plasma protein PDC-109 investigated by spin-label electron spin resonance spectroscopy.Biophys J. 2001 ;81 (4):2215-25.
    51. Frits M.Flesh, Jos F.H.M, Brouwrers. Bicarbonate stimulated phospholipid scrambing induces cholesterol redistribution and enables cholsesterol depletion in the sperm plasma membrane. Journal of Cell Science, 2001,114-:3543-3555.
    52.林克椿.用荧光探针DPH研究腹水癌细胞膜脂流动性[J].生物化学与生物物理学进展,1981,6(1):32-35
    53. Leifert WR, McMurchie EJ, Saint DA. Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids. J Physiol. 1999;520 Pt 3:671-9.
    54. Ignacio A. Demarco, Felipe Espinosa, Jennifer Edwards,et al. Involvement of a Na/HCO_3~-cotransporter in mouse sperm capacitaion. J Biol Chem. 2003,278(9):7001-9.
    55. Patrat C, Serres C, Jouannet R Induction of a sodium ion influx by progesterone in human spermatozoa.Biol Reprod. 2000;62(5):1380-6.