化工过程非正常工况自愈调控理论及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了追求更高的经济效益,化工企业大量采用了结构复杂的现代化工装备。在高温、高压的操作条件下,装备更容易发生故障。化工过程系统是一个由人、工艺过程、装备、仪表控制系统和环境等因素组成的复杂系统。任何偏离设计意图的偏差都有可能使系统进入非正常工况。一旦导致紧急停车不仅会造成经济损失,由此偏离引发重大事故甚至会造成严重的社会灾难。当前的DCS等控制系统依然存在着报警点过多、报警逻辑简单以及无法及时判断报警重要性大小等诸多问题。
     工程实践表明,事故的发生是有一个渐进过程的,都有一个由正常工况向非正常工况变化的趋势。如果事先认识并能及时遏止这种变化趋势,事故是可以避免的。本文研究的化工过程非正常工况自愈调控系统,以系统中变量间的相互影响关系模型及能够正确描述系统的机理模型等为依据,实时监测系统中重要变量的变化,将危险与可操作性(HAZOP)分析报表等资料与实际化工生产结合在一起。在实际装置中,应用化工过程非正常工况自愈调控系统,可减少非计划停车次数,保障企业本质安全,由此提高经济效益。
     论文的主要研究内容和具有技术创新性的研究成果如下:
     1、阐述了化工过程复杂系统自愈调控理论。化工过程系统是一个耗散结构,也是一个由许多相互联系且实时变化的因素构成的开放的复杂系统。化工过程非正常工况自愈调控的目的就是在化工生产系统运行过程中实时监测分析可能引发事故的条件及事故发生前的征兆,采用诊断预测、智能决策和主动控制等方法使化工生产系统在事故早期阶段就发现最初的原因并彻底根除它。
     2、针对化工过程中大多数事故是由于人工误操作而导致的这一问题,本论文总结了常见的误操作形式和导致误操作的原因,开发了人工误操作危险与可操作性(MO-HAZOP)分析软件,并提出了系统的误操作分析方法,从而弥补了危险与可操作性分析方法对分析操作步骤颠倒和遗漏操作步骤等分析不全的缺陷。计算误操作发生概率值大小,并对所有的情况进行排序,可以找出较容易发生的或后果较严重的误操作。确定风险等级后,采取防范措施避免由误操作导致的事故发生,或采取有效措施将事故发生造成的不利后果的影响控制在最小程度;
     3、针对计算机辅助HAZOP分析结果过多,主次性差等问题,本论文以层次分析法与基于符号定向图的HAZOP(SDG-HAZOP)分析方法结合为例,介绍了基于层次分析法的计算机辅助HAZOP分析方法。建立过程中节点变量间的层次结构,将危险路径按照相对重要度进行排序,减少了人为因素对分析结果的影响。这些优势在一定程度上可弥补SDG-HAZOP分析报表结论多且主次性差等缺点,为定量和定性方法的结合提供技术依据。这种方法可以使专家忽略小概率事件而关注紧急或严重的问题,有针对性地对化工生产过程中存在的重要危险隐患提出防范建议或措施。
     4、针对化工过程中爆炸事故重复发生的问题,本论文归纳和总结了化工过程中爆炸事故案例原因五类46种,以及导致事故发生的65个影响因素。以此为建立化工过程非正常工况自愈调控系统的知识库基础依据之一,可以更有针对性地避免重大事故的重复发生。
     5、以硝基苯初馏塔分离工艺为例,阐述了防范人工误操作及爆炸事故分析技术的应用。基于前述方法的分析结果,采用程序控制、联锁或联动机构等措施可以减少和防范误操作并且保证正常生产。
     6、基于多功能过程与控制实验系统(MPCE)建立丙烯聚合过程非正常工况操作指导系统,可以保障MPCE的丙烯聚合过程成功开车,实时应对生产过程中出现的各种问题。将此系统应用于丙烯聚合过程,可以及时发现过程中存在的故障、事故原因,尽可能地将故障或事故消除在萌芽阶段,减少非计划停车次数,拓宽复杂化工过程正常工况的范围,在一定程度上提高企业的经济效益。
     7、本质安全应该是系统风险为0或接近于0。从设计阶段通过最小化或强化、替代、简化、稀释或缓和等手段消除或减少风险;在系统运行阶段通过技术手段来控制风险,可以在一定程度上提高石化企业本质安全水平。本论文以轻质碳酸镁的制备过程为研究对象,分析了化工过程本质安全化的相关问题,并给出了提高石化企业本质安全水平的建议。
In order to obtain more economic benefits, chemical industries always adopt complex modern chemical plants. Furthermore, the plants are often operated at extremes of pressure and temperature to achieve optimal performance, which makes equipment more vulnerable to failures. Chemical process system is a complex system which includes human, process, equipment, environment, instrument and control system and so on. The system state will become abnormal because of every deviation from design intent. It will bring catastrophic consequences to the society if an accident occurs. Although emergency shutdown can eliminate this abnormal situation, it may cause economic losses. The current DCS and other control system have some disadvantages, such as too many alarm points, too simple warning logic and too many difficulties in judging the importance of alarm instantly.
     Engineering practice shows that accident which has a gradual process from normal situation to abnormal situation can be avoided if the development trend of the accident can be understood beforehand and prevented instantly. The abnormal situation self-recovering system studied in this thesis, taking interactional relationship models of variables and other mechanism models which can correctly simulate the system as a basic and monitoring the fluctuation of the key variables which were determined beforehand in this system, can integrate the hazard and operability (HAZOP) analysis report and other information into the practical chemical industry producing process. Applying this system into real plant can decrease the times of non-plan shutdown to ensure the inherently safe of the industry and obtain more economic benefits.
     The main contributions of this dissertation are summarized as follows:
     (1) Abnormal situation self-recovery regulation for chemical process is presented in this thesis. Chemical process system is not only a dissipative structure, but also a complex system made up of a lot of factors which are interrelated and real-time changing. The objective of the system is preventing accidents before emergency shutdown system (ESD) or shutdown by adopting diagnosis and prediction, intelligent decision and active control method used to automatically find the initial cause, and eliminate the accidents at their very early stage after the real-time monitoring of conditions which will cause accident and analyzing symptoms of accident.
     (2) According to most of accidents caused by misoperations, this thesis summarizes presentation forms of common misoperations and the reasons which will cause misoperations, and then it introduces the misoperation hazard and operability (MO-HAZOP) software and an analysis method developed for misoperation, which makes up for the deficiency that HAZOP analysis can not systematically analyze the operation step neglect and inversion. The misoperations are arranged in terms of the probability, with high probability misoperations assigned as the critical situations. Adopting preventive measure , may prevent misoperation or control the influence of the accident consequence to the least extent after the risk rank.
     (3) According to the problem, the report of the computer aided HAZOP analysis has a huge number of HAZOP results and the important issues can not be separated from the general ones, this thesis presents a SDG (signed directed graph)- HAZOP analysis method based analytic hierarchy process (AHP), taken as an example to introduce the computer aided HAZOP analysis method. Establishing hierarchical structure of nodes and variables in the process, dangerous paths are arranged in terms of the relative importance degree, with high relative importance degree paths assigned as the critical situations which will decrease the effect of human factor to the analysis result. These advantages will make up for the deficiencies that computer aided HAZOP analysis has a huge number of HAZOP results and the important issues can not be separated from the general ones, and this method will provide technological basis for the combination of qualitative and quantitative method. This method not only can help experts ignore small probability events, but also can help experts focus on the urgent and serious problems and provide correspondingly preventive measures for potential hazards which are important in the chemical process.
     (4) According to the explosion repeated emergence problem in chemical process, 5 categories and 46 kinds of explosion accidents and 65 kinds of influence factors are summarized in this thesis. Taking them as one of the basics to establish the knowledge database of abnormal situation self-recovery system for chemical process will correspondingly prevent the repeated emergence of major explosions.
     (5) The separation process of nitrobenzene primary tower was taken as an example to explain real application of misoperations prevention and the explosion accidents analysis technology in chemical process. Based on the results got from the above analysis, the measures in terms of full automatic mechanism, programmed control system and interlock mechanism, can be adopted to reduce and prevent misoperations and to maintain the normal production.
     (6) Abnormal situation operation guide system for propylene polymerization process based multifunction process and control experiment system (MPCE) can ensure the starting of process successfully, and it may resolve problems occurring in the production process instantly. Before ESD or shutdown, the system utilized in the propylene polymerization process, on the one hand, may automatically find the initial cause and then eliminate the accidents at their very early stage as much as possible. On the other hand, it may extend the range of normal situation of chemical process and gain more benefits for the industry to a certain extent.
     (7) Inherently safe system means that the risk of a system is 0 or close to 0. At the design stage, some measures, such as intensification, minimization, substitution, attenuation or moderation, can be utilized to eliminate or , decrease risk. At the operation stage of the system, some control measures can be used to control risk. All of those technological methods can enhance the level of inherently safe of chemical industry. Taking the production process of light magnesium carbonate as a research objective, this thesis studies the inherently safe process of chemical process and provides some suggestions for improving of the inherent safe level for chemical industry.
引文
[1]Venkat Venkatasubramanian,Zhao Jinsong,Shankar Viswanathan.Intelligent system for HAZOP analysis of complex process plants[J].Computer and Chemical Engineering,2000,24:2291-2302
    [2]高金吉.提高我国危险化学品生产重大事故防范能力势在必行[J].科技导报,2006,24(11):1
    [3]高金吉,王峰.石化企业本质安全化理论及工程应用研究[A].见:本质安全化研讨会大会论文集[C].北京:中国安全生产协会,2008,11,7-20
    [4]高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48
    [5]崔克清.危险化学品安全技术与管理[M].北京:煤炭工业出版社,2006.245
    [6]高金吉,杨剑锋.工程复杂系统灾害形成与自愈防范原理研究[J].中国安全科学学报,2006,16(9):15-23
    [7]高金吉.未来装备医工程思维[J].中国工程科学,2003,5(12):31-35
    [8]祝世讷.中西医学差异与交融[M].北京:人民卫生出版社,2001.38-39
    [9]廖学品.化工过程危险性分析[M].北京:化学工业出版社,2004.12-63
    [10]Gao Jinji.A study of the fault self-recovering regulation for process equipment[A].In:proceedings of IMS2003,Xi'an China,2003
    [11]Gao Jinji,Jiang Zhinong.Research on fault self-recovery engineering[A].In:IMS2004proceedings 2-c,Arles France,2004
    [12]张雪,高金吉.化工过程非正常工况实时操作指导系统研究[J].控制工程,2008,15(4):466-469
    [13]郭勇,郇爽,李志远.化工装置设计中的危害和可操作性研究(HAZOP)[J].河北化工,2007,30(7):79-80
    [14]McVey S R,Davis J F,Venkatasubramanian V.A safety verification using a hybrid knowledge-based mathematical programming framework[J].AIChE,1998,44(2):361-371
    [15]Palmer C,Chung P W H.An automated system for batch hazard and operability studies[J].Reliability Engineering & System Safety,2009,94(6):1095-1106
    [16]Venkatasubramanian V,Vaidhyanathan R.A knowledge-based framework for automating HAZOP analysis[J].AIChE,1994,40(3):496-505
    [17]张贝克,马昕,吴重光.化工系统风险辨识和防护层设计[J].控制工程,2007,14(S3):157-159
    [18]沈翠霞,吴重光.计算机辅助危险与可操作性分析技术的发展[J].计算机工程与应用,2004,40(36):208-212
    [19]张贝克,吴重光.一种基于SDG用于危险分析的新型定性仿真技术[J].系统仿真学报,2005,17(6):1339-1342
    [20]Venkatasubramanian V,Vaidhyanathan R.A knowledgebased framework for automating HAZOP analysis[J].American Institute of Chemical Engineering Journal,1994,40,496-505
    [21]Viswanathan S,Zhao J,Venkatasubramanian V.Integrating operating procedure synthesis and hazards analysis automation tools for batch processes[J].Computers & Chemical Engineering,Supplement,1999,$747-750
    [22]张贝克,吴重光.一种基于SDG用于危险分析的新型定性仿真技术[J].2006,17: 1339-1346
    [23]王峰,高金吉,张贝克,等.基于层次分析法的计算机辅助HAZOP分析技术[J].化工进展,2008,27(12):2013-2018
    [24]Zhao Lindu.Integrated automatic HAZOP analysis and fault diagnosis based on Petri net[J].Journal of Southeast University,2003,13(3):240-245
    [25]张斌,赵东风,周乐平,等.HAZOP分析技术改进研究[J].中国安全科学学报,2007,17(10):160-164
    [26]付罡,张贝克,吴重光.基于风险的半定量SDG-HAZOP的研究[J].系统仿真学报,2008,20(5):1126-1129
    [27]徐庆松,王凯全,袁雄军.基于序列偏差的HAZOP分析[J].江苏工业学院学报,2008,20(3):30-35
    [28]赵劲松,赵利华,崔林,等.基于案例推理的HAZOP分析自动化框架[J].化工学报,2008,58(1):111-117
    [29]Antonio C F,Guimar(?)es,Celso Marcelo Franklin Lapa.Hazard and operability study using approximate reasoning in light-water reactors passive systems[J].Nuclear Engineering and Design.2006.236(12):1256-1263
    [30]王维民.离心压缩机轴位移故障自愈调控及密封改进增效技术研究[D].北京化工大学博士学位论文,2006
    [31]郭保全,侯宏花,潘玉田.智能材料和结构的应用及展望[J].科技情报开发与经济,2005,15(6):131-132
    [32]徐滨士,张伟,刘世参,等.现代装备智能自修复技术[J].中国表面工程,2004,17(1):1-4
    [33]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997
    [34]霍尼韦尔.霍尼韦尔推出新的解决方案[J].造纸信息,2008,8:32
    [35]窦东阳,赵英凯.因特摩系统在锅炉故障诊断中的研究及应用[J].微计算机信息,2008,24(5-1):168-170
    [36]饶明.因特摩实时智能监控及事故预报防范系统-人工智能与计算机技术在安全生产中的应用[J],安全与环境学报,2002(5):48-53
    [37]刘宇慧.SDG-HAZOP建模与HAZOP模块库开发[D].北京化工大学,2005
    [38]权渭锋,毛剑琴,李超.智能结构与智能控制在振动主动控制中的应用[J].信息与电子工程,2004,2(3):232-237
    [39]姚熊亮,顾玉钢,杨志国.压电类智能结构在船体振动控制方面的应用研究[J].哈尔滨工程大学学报,2004,25(6):695-699
    [40]于勇,施斌,徐洪钟,等.基于仿生学的建筑物智能结构系统初探[J].防灾减灾工程学报,2004,24(4):412-416
    [41]李燕,王维民,高金吉.离心压缩机轴位移故障自愈调控系统仿真研究[J].流体机械,2008,36(1):34-38
    [42]王维民,高金吉,江志农.高压离心式压缩机轴向推力研究[J].风机技术,2006,(6):1-3
    [43]黄钟岳,王晓放.透平式压缩机[M].北京:化学工业出版社,2004.124-130.
    [44]Rao M,Sun X,Feng J.Intelligent system architecture for process operation support[J].Expert Systems with Applications,Volume 19,Issue 4,November 2000,Pages 279-288
    [45]张荣涛.复杂装备远程智能监测、诊断与维护系统研究[D].南京理工大学,2002
    [46]杜一,张沛超,郁惟镛.基于事例和规则混合推理的变电站故障诊断系统[J].电网技 术,2004,28(1):34-37
    [47]时文刚,戴静君,杜华军.基于遗传算法的故障诊断规则提取方法的研究[J].航天控制,2005,23(5):79-82,95
    [48]曹文亮,王兵树,马良玉,等.基于SDG推理规则和定量分析的故障诊断技术[J].热能动力工程,2005,20(6):621-623
    [49]徐翔斌,周新建.基于决策树和规则引擎的挖掘机液压故障诊断专家系统[J].液压与气动,2008,(3):13-16
    [50]赵熙临,刘辉.基于规则获取的Petri网故障诊断模型研究[J].控制工程,2008,15(2):196-199
    [51]左健民,王书城.基于模糊故障树理论的液压系统故障诊断方法研究[J].南京航空航天大学学报,1999,31(6):716-721
    [52]丁彩红,黄文虎.应用Petri网改进基于故障树的诊断方法[J].振动工程学报,2000,13(2):277-282
    [53]龙志强,吕治国,常文森.基于模糊故障树的磁浮列车悬浮系统故障诊断[J].控制与决策,2004,19(2):139-142
    [54]倪绍徐,张裕芳,易宏,等.基于故障树的智能故障诊断方法[J].上海交通大学学报,2008,42(8):1372-1386
    [55]章维一,侯丽雅.基于实例学习的神经网络及其在故障诊断中的应用[J].电子学报,1999,27(8):5-8
    [56]朱逸鹏,翁敬农.基于实例的推理在直升机故障诊断专家系统中的应用[J].计算机工程,2004,30(15):134-135,168
    [57]田世英,胡良明,朱爱华.基于实例推理的自行火炮故障诊断[J].武器装备自动化,2007,26(4):14-15,23
    [58]王侃夫,刘溪涓,于忠海,等.基于实例推理的数控机床故障诊断系统研究[J].机械设计与制造,2008,(10):170-172
    [59]杜文莉,钱锋.基于神经网络的实时专家控制系统及其PTA工业应用[J].控制与决策,2005,20(6):694-697
    [60]陈维,陈永革,赵强.基于BP神经网络的装备故障诊断专家系统研究[J].指挥控制与仿真,2008,30(4):103-105,113
    [61]Feng Wang,Jinji Gao,Kai Guo.A hazard and operability analysis method for the prevention of misoperations in the production of light magnesium carbonate[J].Journal of Loss Prevention in the Process Industries,2009,22(2):237-243
    [62]高金吉,王峰,张雪,等.化工生产人工误操作危险与可操作性分析研究[J].中国工程科学,2008,10(8):47-51
    [63]Wang H Z,Chen B Z,He X R et al.SDG-based HAZOP analysis of operating mistakes for PVC process[J].Process Safety and Environmental Protection,2009,87(1):40-46
    [64]王峰,高金吉,刘文彬.化工过程危险与可操作性及爆炸事故分析技术[J].化工学报,2008,59(12):3184-3190
    [65]钱宇,李秀喜,江燕斌,等.化工过程集成型智能故障诊断系统研究与开发[J].华南理工大学学报,2002,(11):331-337
    [66]黄启明.化工过程集成运行系统与故障诊断的研究[D].华南理工大学博士学位论文,2001
    [67]李秀喜,江燕斌,钱宇.化工过程集成运行系统平台的研究与开发[J].化工自动化及仪表,2001,28(2):1-3
    [68]Dennis C.Hendershot.Inherently safer chemical process design[J].Journal of loss prevention in the process industries,1997,10(3):151-157
    [69]姚玉英.化工原理[M].天津:天津大学出版社,2003
    [70]沈禄庚.系统科学概要[M].北京:北京广播学院出版社,2000
    [71]钱学森.建立系统学[M].太原:山西人民出版社,2001
    [72]魏宏森,曾国屏.系统论-系统科学哲学[M].北京:清华大学出版社,1999
    [73]何学秋.安全工程学[M].徐州:中国矿业大学出版社,2000
    [74]鲍征宇.耗散结构理论及其地学应用[J].地质科技情报,1987,6(4):33-37
    [75]池英剑.浅谈耗散结构理论的应用和科学价值[J].三明高等专科学校学报,2002,19(2):104-109
    [76]段晓静.耗散结构理论及其广泛应用[J].乐山师范学院学报,2003,18(4):64-67
    [77]普利高津,伊.斯唐热.从混沌到有序-人与自然的新对话[M].上海:上海译文出版社,1987
    [78]申维.耗散结构、自组织、突变理论与地球科学[M].北京:地质出版社,2004
    [79]Bornyakov S A,Truskov V A,Cheremnykh A V.Dissipative structures in fault zones and their diagnostic criteria(from physical modeling data)[J].Russian Geology and Geophysics,2008,49(2):138-143
    [80]Mescheryakov Yu I,Zhigacheva N I,Divakov A K,etal.Dissipative structures in copper under impact deformation[J].Physical Mesomechanics,2007,10(5-6):275-280
    [81]胡晓婷.基于突变理论的复杂网络系统行为预测研究[D].西安建筑科技大学硕士学位论文,2006
    [82]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000
    [83]韩政军.复杂控制系统的全局协调与优化[D].北京化工大学硕士学位论文,2007
    [84]Du Jian-guo,Huang Tingwen,Sheng Zhaohan.Analysis of decision-making in economic chaos control[J].Nonlinear Analysis:Real World Applications,2009,10(4):2493-2501
    [85]Jiang Zhenhua.Design of a nonlinear power system stabilizer using synergetic control theory[J].Electric Power Systems Research,2009,79(6):855-862
    [86]涂序彦,王枞,郭燕慧.大系统控制论[M].北京:北京邮电学院出版社,2005
    [87]杨盐生.不确定系统的鲁棒控制及其应用[M].北京:科学出版社,2004
    [88]张洪钢,杨艾军,张勇.行为可变性在指挥决策仿真中的运用研究[J].2008,22(1):69-74
    [89]Wassila Bena(i|¨)ssa,Nadine Gabas,Michel Cabassud,etal.Evaluation of an intensified continuous heat-exchanger reactor for inherently safer characteristics[J].Journal of Loss Prevention in the Process Industries,2008 21(5):528-536
    [90]Chidambaram Palaniappan,Rajagopalan Srinivasan,Iskandar Halim.A material-centric methodology for developing inherently safer environmentally benign processes[J].Computers and Chemical Engineering 2002,26:757-774
    [91]Eid M,Al-Mutairi,Jaffee A,etal.An optimization approach to the integration of inherently safer design and process scheduling[J].Journal of Loss Prevention in the Process Industries,2008,21(5):543-549
    [92]Kletz T A.Inherently Safer Design-Its Scope and Future[J].Process Safety and Environmental Protection,2003,81(6):401-405
    [93]Gupta J P.A course on Inherently Safer Design[J].Journal of Loss Prevention in the Process Industries,2000,13(1):63-66
    [94]常新宇,高金吉.基于案例的动态RCM维修管理模式及其应用分析[J].机械制造,2008,47(533):71-73
    [95]王滢.间歇过程计算机辅助HAZOP研究[D].北京化工大学硕士学位论文,2006
    [96]王保国,许锡恩.间歇过程设计与优化[M].北京:中国石化出版社,1998
    [97]Mushtaq F,Chung P W H.A systematic Hazop procedure for batch processes,and its application to pipeless plants[J].Journal of Loss Prevention in the Process Industries,2000,13(1):41-48
    [98]Rajagopalan Srinivasan,Venkat Venkatasubramanian.Automating HAZOP analysis of batch chemical plants:Part Ⅰ.The knowledge representation framework[J].Computers &Chemical Engineering,1998,22(9):1345-1355
    [99]Shimon Eizenberg,Mordechai Shacham,Neima Brauner.Combining HAZOP with dynamic process model development for safety analysis[J].Computer Aided Chemical Engineering,2006,21(1):389-394
    [100]Bartolozzi V,Castiglione L,Picciotto A,etal.Qualitative models of equipment units and their use in automatic HAZOP analysis[J].Reliability Engineering & System Safety,2000,70(1):49-57
    [101]吕宁,王雄.一类连续反应的SDG HAZOP与故障诊断[J].化工自动化及仪表,2005,32(6):7-11
    [102]Ning Lv,Xiong Wang.SDG-Based HAZOP and Fault Diagnosis Analysis to the Inversion of Synthetic Ammonia[J].Tsinghua Science & Technology,2007,12(1):30-37
    [103]吴重光,夏涛,张贝克.基于符号定向图(SDG)深层知识模型的定性仿真[J].系统仿真学报,2003,15(10):1351-1355
    [104]Masoud Zare Naghadehi,Reza Mikaeil,Mohammad Ataei.The application of fuzzy analytic hierarchy process(FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine,Iran[J].Expert Systems with Applications,2009,36(4):8218-8226
    [105]Saaty.T.Modeling unstrutured decision problems:A theory of analytical hierarchies[C].Proceedings of the first international conference on mathematical modeling,1977,69-77
    [106]孙水玲.关于平均随机一致性指标的新定义方法[J].广东技术师范学院学报,2005,(6):72-74
    [107]王筠.网络信息检索系统的模糊综合评判[J].情报杂志,2003,(8):53-54
    [108]孙水玲.层次分析法中判断矩阵的一致性检验法[J].曲阜师范大学学报,1991,17(3):24-26
    [109]许树柏.层次分析法原理[M].天津:天津大学出版社,1986
    [110]Jinkyun Park,Wondea Jung.OPERA- a human performance database under simulated emergencies of nuclear power plants[J].Reliability Engineering & System Safety,2007,92(4):503-519
    [111]Kunda S.Quantifying Risk Factors for Human Brucellosis in Tanzania[J].International Journal of Infectious Diseases,2008,12(1):233
    [112]Thivel P X,Bultel Y,Delpech F.Risk analysis of a biomass combustion process using MOSAR and FMEA methods[J].Journal of Hazardous Materials,2008,151(1):221-231
    [113]北川彻三.爆炸事故的分析[M].北京:化学工业出版社,1984
    [114 克劳尔.化工过程安全理论及应用(原著第2版)[M].北京:化学工业出版社,2006
    [115]刘相臣,张秉淑.化工装备事故分析与预防[M].北京:化学工业出版社,1994
    [116]王志荣,蒋军成,王三明.典型化工过程灾害性事故的模拟分析系统[J].天然气工业,2004,24(5):123-126
    [117]张贝克,卢秉南,马听.化工事故案例库的建立与查询[J].计算机与应用化学,2008,25(10):1303-1306
    [118]崔克清.工业装置爆炸事故过程与机理分析[J].中氮肥,2006,(5):1-7
    [119]崔克清.工业装置爆炸事故过程与机理分析(续)[J].中氮肥,2006,(6):1-8
    [120]徐晓明.两起硝基苯爆炸事故的分析[J].化工劳动保护,1999,20(8):284-285
    [121]匡永泰,高维民.石油化工安全评价技术[M].北京:中国石化出版社,2005:19-23
    [122]Gao Jinji,Ma Bo,Jiang Zhinong.Research on fault self-recovery engineering[J].Journal of Dalian University of Technology,2006,46(3):460-468
    [123]刘云生,卢炎生,王道忠.实时数据库系统(RTDBs)及其特征[J].华中理工大学学报,1994,22(6):66-70
    [124]Rohan F M Aranha,Venkatesh Ganti,Srinivasa Narayanan,etal.Implementation of A Real-time Database System[J].Information system,1996,21(1):55-74
    [125]许丹丹.生产过程海量数据管理与处理技术及其系统研究[D].北京化工大学硕士学位论文,2008
    [126]杜殿林.FCCU反-再系统基于神经网络和SDG模型的混合故障诊断系统研究与开发[D].北京化工大学博士学位论文,2006
    [127]张建广,邱彤,赵劲松,等.智能安全屏障-非正常工况管理系统简述[J].计算机与应用化学,2008,25(4):385-389
    [128]卢江,梁晖.高分子化学[M].北京:化学工业出版社,2005
    [129]马琳,姚飞.聚合反应机理模型的建立及在聚丙烯生产流程模拟中的应用[D].北京化工大学硕士学位论文,2000
    [130]罗雄麟.化工过程动态学[M].北京:化学工业出版社,2005
    [131]殷剑宏.组合数学[M].北京:机械工业出版社,2006
    [132]商利容,王健红.PET聚合反应器的建模及在聚合流程动态模拟中的应用[J].计算机仿真,2003,20(2):99-102
    [133]史子瑾.聚合反应工程基础[M].北京:化学工业出版社,1991
    [134]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004
    [135]胡庆福,胡晓湘,胡晓波,等.白云石碳化法生产活性氧化镁新工艺[J].无机盐工业,2004(6):37
    [136]刘宝树,胡庆福.白云石灰浆碳化反应动力学研究[J].镁盐工业,2002(2):110
    [137]胡庆福,宋丽英.提高镁回收率的途径及效益分析[J].化工进展,1997(2):51-55
    [138]陈建峰.超重力技术及应用-新一代反应与分离技术[M].北京:化学工业出版社,2003
    [139]王峰,孙思,郭锴.旋转填充床一次碳化法制备轻质碳酸镁[J].无机盐工业,2006,38(2):31-33
    [140]王峰.旋转填充床一次碳化制备轻质碳酸镁新工艺的研究[M].北京化工大学硕士学位论文,2006
    [141]何立东,沈伟,刘锦南,等.双平面和单平面主动平衡控制转子振动的对比实验研究[J].中国电机工程学报,2005,25(23):106-109
    [142]Hredzak Branislav,Guo Guoxiao.Investigation of the feasibility of active balancing of hard disk drives[J].Mechantronics.2004.14(7):853-859
    [143]Zhou S,Shi J.Optimal one-plane active balancing of a rigid rotor during celebration[J].Journal of Sound and Vibration,2002,249(1):196-205
    [144]Zhou S,Shi J.Imbalance estimation for speed varying rigid rotors using time-varying observer[J].Journal of Dynamic Systems,Measurement and Control.2001,123(4):637-644
    [145]沈伟.旋转机械主动平衡技术及工程应用的研究[D].北京化工大学博士学位论文,2006