不确定规划的群体智能计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的发展,现有的确定论方法在许多的研究领域遇到了无法克服的困难,传统的经典数学规划模型不能处理所有的决策问题。不确定规划是不确定环境下的优化理论与方法,为随机、模糊、粗糙以及多重不确定环境下的优化问题提供统一的理论基础。不确定规划的理论研究已成了十分热门的课题,在电子技术、通讯、自动控制、光学、生物学等许多领域中具有巨大的应用潜力及发展前景。
     鉴于不确定规划模型的复杂性,为适应大规模不确定规划问题的求解需要,有必要在算法设计方面作进一步的改善或进行新的尝试,例如设计有效和强大的新型群体智能算法。群体智能算法中许多简单个体通过交互合作产生复杂的智能行为。群体智能技术具有重大意义和广阔前景,其发展和应用领域的不断扩大,为更加复杂的决策系统中的不确定规划提供了丰富的求解算法。本文完善和充实了群体智能理论及其在不确定规划中的应用研究,设计了新型群体智能算法来求解不确定规划模型,并运用于空间机器人随机故障容错规划。论文的主要研究工作和成果体现在:
     (1)对群体智能算法的统一框架、收敛性、鲁棒性、生存分析等方面理论做了证明和分析。对群体智能算法统一框架的协作、自适应和竞争这三个基本环节进行数学化描述与解释;分别基于Markov链和基于图论两种方法证明群体智能算法的收敛性;分析群体智能算法的鲁棒性与灵敏度,把参数摄动作为特殊输入量以考虑参数摄动对算法性能的影响,采用统计学测度为比较不同策略提供均值和方差;首次将多元生存分析引入进化算法,为算法收敛过程建立了带伴随变量的参数生存模型,进行Kaplan-Meier生存分析计算期望生存时间和生存函数曲线,求解COX比例危险率回归模型,运用了数据统计分析软件SPSS分析了参数选择对早熟收敛的影响。
     (2)设计了多种新型群体智能算法。借鉴人类社会学活动原理,提出了基于班级选举的动态递阶差分进化算法,根据班级选举这一社会行为模式,将差分进化算法分为组内选举、选举班长和小组重建三个阶段,引入多阶性和动态可变拓扑策略;根据病毒进化理论采用纵向和横向两层结构,将主群体的全局进化和病毒群体的局部进化动态结合,提出病毒感染差分进化算法;引入多元生存分析,设计了一种生存模糊自适应的蚁群算法,将生存模型、模糊控制与蚁群算法相结合,实现对种群规模的模糊自适应调控。
     (3)不确定规划的假设检验群体智能计算。对于含不确定参数的不确定规划问题,在群体智能算法中引入假设检验在统计意义下进行有效的性能评估和比较,进而提高种群的整体质量并保证种群的分散性。对差分进化算法进行多级嵌套,提出基于班级选举的动态递阶差分进化算法。以不确定环境下具有多极小值的典型Benchmark函数优化问题为实例,验证了算法在不同的噪声强度因子、设计变量维度和小组规模下,都具有较好的搜索性能和鲁棒性。
     (4)双重不确定规划的鲁棒群体智能计算。描述了模糊相关机会规划模型和随机模糊机会约束规划模型;设计了一种基于模糊模拟的蚁群优化算法,证明了该算法的收敛性,并估算期望收敛时间以分析该算法的收敛速度;提出了基于随机模糊模拟的病毒感染差分进化算法,分析了其收敛性;从不确定环境、参数敏感度、初值无关性、置信水平、抗噪声干扰等五个测度,分析讨论该算法处理不确定双重规划的鲁棒性。
     (5)空间机器人随机故障容错轨迹规划。分析了两自由度和六自由度空间机器人的系统不确定性,基于微分变换法,分析关节参数如杆长与关节角度的误差对轨迹精度的影响;建立了6自由度空间机器人故障容错轨迹规划的随机数学模型,以加权最小驱动力矩为优化性能指标,涉及故障前后运动学与动力学约束限制;用生存自适应的蚁群算法求解故障前后的最优轨迹,保证机械臂在发生故障后能够继续完成后续的操作任务,并应用机械系统动力学分析软件和虚拟样机分析开发工具ADAMS,联合仿真验证。
     综上所述,本文为不确定规划提出了群体智能计算的理论与方法,具有科学性和有效性,不仅在理论上值得深入研究,而且还具有较好的工程应用价值。
With the development of modern technology, the existing deterministic methods have encountered troublesome difficulties in many research areas. Many important decision problems can not be solved effectively by traditional mathematical programming models. Uncertain programming, as the theory and methodology of optimization under uncertain environment, provides a unified theoretic foundation for optimization problems under all kinds of uncertainties such as random, fuzzy, rough, birandom and fuzzy random environment. Research on the theory of uncertain programming has become the hotspots and frontal problems due to its potential developments and applicabilities in many areas of science and technology, such as electronics, communication, automatic control, optics and biology.
     To satisfy the need of solving uncertain programming model of large scale, it is necessary to make further improvement and new attempt on algorithm designing in the light of its complication, such as designing effective and powerful new swarm intelligence algorithms. In swarm intelligence complex goups and intelligent behave can emerge through interaction and cooperation among individuals.Swarm intelligence has great significance, both theoretically and practically, which provide powerful computational tools to solve diverse complex uncertain programming problems in many decision systems. This thesis devotes to the improvement and enlargement of the theory of swarm intelligence with applications to uncertain programming. Several novel swarm intelligence algorithms are designed and applied to solve uncertain programming problems, especially to random fault tolerant trajectory planning of space manipulator. The main research work and contributions of the present thesis are as follows:
     (1) The theory of swarm intelligence such as unified framework, convergence, robustness and survival analysis are proved and analyzed. Three basic courses of the uniform framework of swarm intelligence algorithms, that is, cooperation, adaptation and competition, are mathematically described and explained. The convenience of swarm intelligence is proved based on Markov chain and gragh theory, respectively. The robustness and sensitivity of swarm intelligence algorithms are analyzed. The disturbance of parameters is considered as a special input to test its influence on the performance of algorithms. The statistics measurement is used to provide mean value and variance for comparing different strategies. Multivariate survival analysis is for the first time introduced into evolutionary algorithm. Parametric survival model with concomitant variables is built up for the convergence process of ant colony optimization algorithm. Kaplan-Meier survival analysis method is used to compute the estimated survival time and survival function curve. The regression model of COX proportional danger rate is solved. The data statistics and analysis softerware, SPSS is used to analyze the influence of parameter choice on premature convergence.
     (2) Several novel swarm intelligence algorithms are proposed. Inspired by the principle of human social activity, dynamic multi-level differential evolution algorithm based on group election is proposed. Based on the complex social behaviour model of western political leader election, differential evolution algorithm integrating multiple level and dynamic changeable topology strategy is made up of the following three stages: election within the group, representative election and group rebuilding. Based on virus evolution theory, virus evolutionary differential evolution algorithm with transverse orientation and longitudinal orientation two layer structure is proposed through dynamically integrating global evolution of the main population and local evolution of the virus population. With multivariate survival analysis for the first time introduced into evolutionary algorithm, an ant colony optimization algorithm is proposed. Population size and the survival time of invidiuals are adjusted by a fuzzy adaptive controller through intergrating survival analysis, fuzzy control and ant colont optimization algorithm.
     (3) Swarm intelligence computation based on hypothesis test for uncertain programming. For uncertain programming with non-deterministic parameters, through integrating hypothesis test into swarm intelligence, effective performance evaluation and comparison can be done from the aspect of statistics, so as to improve the whole quality of population and guaranty the dispersion of population. Dynamic multi-level differential evolution algorithm based on group election is proposed by nesting multilayer differential evolution. Typical benchmark function optimization problems with multiple minima under uncertain environment are taken as experimental examples to validate the robustness of the proposed algorithm and its good performance of searching under different noise strength factor, the dimension of independent variable and scale of the group.
     (4) Robust swarm intelligence algorithm for double uncertain programming. Fuzzy dependence chance programming model and random fuzzy chance constrained programming model are built. An ant colony optimization algorithm based on fuzzy simulation is designed. A proof of its convergence is given and its convergence speed is analyzed through evaluating the expected time needed for convergence. Virus evolutionary differential evolution algorithm based on random fuzzy simulation is developed and its convergence is analyzed. The robustness of the proposed algorithm for dealing with double uncertain programming is discussed from the following five aspects: uncertain environment, parameter sensitivity, initial value independence, confidence level and noise disturbance resistance.
     (5) Random fault tolerant trajectory planning of space manipulator. The uncertainty of 6 D.O.F. space robot and 2 D.O.F. space robot systems is analyzed. The influence of joint parameters on trajectory precision such as errors of link length and joint angle is discussed based on the differential transformation method. A stochastic mathematical model of fault tolerant trajectory planning of a 6 D.O.F. space manipulator with both kinematical and dynamical restrictions before and after joint failures taken into account is built with minimal weighted driven torque as the objective of performance optimization. The optimal trajectory of the manipulator all along the work time before and after its joint failure is computed by ant colony optimization with fuzzy adaptive surviva, to guarantee that the manipulator has high manipulability after joint failure to accomplish its successive operational task continually. ADAMS, that is, the mechanical system dynamics analysis software and virtual prototype analysis development tool, is used in the simulation experiments.
     Taken as a collection, the proposed theoretics and method of swarm intelligence algorithm for uncertain programming has scientific significance and validity. Not only does it deserve deep research in theory, but also does it have better application values for engineering.
引文
[1] Reynolds C W.Flocks, herds , and schools: A distributed behavioral model [J]. Computer Graphics, 1987, 21(4): 25~34.
    [2]De Jong K A. Evolutionary Computation: A unified approach[M]. Britain: Cambridge, Mass. : MIT Press, 2006:1~43.
    [3]Eiben A, Aarts E, Van Hee K, et al. A unifying approach on heuristic search[J]. Annals of Operations Research, 1995, 55: 81~99.
    [4]Eiben A, Smith J E. Introduction to Evolutionary Computing[M]. Heidelberg: Springer, 2003: 20~39.
    [5]Hertz A, Kobler D. A framework for the description of evolutionary algorithms[J]. Eur. J. Oper. Res. ,2000, 126: 1~12.
    [6]Calegari P, Coray G, Hertz A, et al. A taxonomy of evolutionary algorithms in combinatorial opyimization[J]. Journal of Heuristics, 1995, 5: 145~158.
    [7]Smith J. Self adaptation in evolutionary algorithms[D]. England: U.K.: Univ. West of England, 1998: 1-43.
    [8]Taillard E D, Gambardella L M, Gendreau M, et al. Adaptive memory programming: A unified view of metaheuristics[J]. Eur. J. Oper. Res. 2001, 135: 1~16.
    [9]Back T. Evolutionary slgorithms in theory and practice[M]. Britain: Oxford University Press, 1996.
    [10]Talbi E. A taxonomy of hybrid metaheuristics[J]. Journal of Heuristics, 2002, 8: 541~564.
    [11]Krasnogor N, Smith J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues[J]. IEEE Trans. Evolut. Comput. ,2005, 9:474~488.
    [12]A. Colorni, Marco Dorigo, and V. Maniezzo, Distributed optimization by ant colonies[C]//Proc. First European Conference on Artificial Life, Paris,France, 1992:134~142.
    [13]Marco Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996,26(1):29~41.
    [14]Marco Dorigo and Luca Maria Gambardella, Ant colonies for the traveling salesman problem[J]. BioSystems, 1997, 43:73~81.
    [15]Marco Dorigo and Luca Maria Gambardella, Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J],IEEE Transaction On Evolutionary Computation, 1997, 1(1):53~66.
    [16]Marco Dorigo, Thomas Stützle. Ant Colony Optimization[M]. London, England:The MIT Press, 2004:128~130.
    [17]Kennedy J , Eberhart R. Particle swarm optimization [C]//Proc IEEE Int Conf onNeural Networks.Perth : IEEE , 1995. 1942~1948.
    [18]Eberhart R , Kennedy J . A new optimizer using particle swarm theory [C]//Proc 6th International Symposium on Micro Machine and Human Science. Nagoya: IEEE ,1995. 39~43.
    [19]李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,11(11):232~236.
    [20]李晓磊,钱积新.基于分解协调的人工鱼群优化算法研究[J].电路与系统学报,2003,2,8(1):145~147.
    [21]Adleman L M. Molecular Computation of Solutions to Combinatorial Problems[J]. Science, 1994, 266: 1021~1024.
    [22]Lipton R. DNA Solution of hard computational problems[J]. Science,1995, 268:49~66.
    [23]Csuhaj Varju E. DNA computing based on splicing:universality results[C]//Proc. of First Annual Pacific Symposium on Biocomputing. Hunter L ,Klein T E , eds. Singapore : World Sci Publ, 1996.179~190.
    [24]Rozen D E. Molecular computing : does DNA compute[J] . Current Biology, 1996,6 (3):254~257.
    [25]Jerne N K. Towards a Network Theory of the Immune System[J].Annual Immunology, 1974, 125C: 373~389.
    [26]J D Farmer ,N H Packard ,A S Perelson. The Immune System[J] .Adaptation ,and Machine Learning. Physica ,1986 ,22D:187~204.
    [27]Perelson A S. Immune Network Theory[J]. Immunological Review ,1989,10:5~ 36.
    [28]Bersini H,Varela F J . Hints for Adaptive Problem Solving Gleaned from Immune Networks[C]//Proc the 1st Workshop on Parallel Problem Solving from Nature. 1990. 343~354.
    [29]Varela F J , Stewart J . Dynamics of a Class of Immune Network. Global Stability of Idiotype Interactions[J] . J Theoretical Biology, 1990,144(1):93~101.
    [30]Hunt J ,Cooke D.Learning Using an Artificial Immune System[J].Journal of Network and Computer Applications :Special Issue on Intelligent Systems Design and Application, 1996, 19:189~212.
    [31]STORN R,PRICE K.Difeontial Evolution-a Simple and Eficient Adaptive scheme for Globle Optimization over Continuous Spaces [J].Technical Report, International Computer Science Institute, 1995(8): 22~25.
    [32]Seeley, T.D. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies[M]. Cambridge, Massachusetts: Harvard University Press, 1996: 11~25.
    [33]H.A. Abbass. Marriage in Honey Bees Optimization (MBO): A Haplometrosis Polygynous Swarming Approach[C]//Congress on Evolutionary Computation, CEC2001,Seoul, Korea, 2001:207~214.
    [34]H.A. Abbass. A Single Queen Single Worker Honey-Bees Approach to 3-SAT[C]//Proc. of the Genetic and Evolutionary Computation Conference, GECCO2001, San Francisco, USA, 2001: 807~814.
    [35]Jason Teo, Hussein A. Abbass. An Annealing Approach to the Mating-Flight Trajectories in the Marriage in Honey Bees Optimization Algorithm[R]. England: Technical Report CS04/01, School of Computer Science, University of New South Wales at ADFA, 2001:1-42.
    [36]B. Basturk, D. Karaboga. An artificial bee colony (ABC) algorithm for numeric function optimization[C]//Proceedings of the IEEE Swarm Intelligence Symposium,Indianapolis, USA, 2006.
    [37]D. Karaboga, B. Basturk. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007,39:459~471.
    [38]S. Nakrani and C. Tovey. On honey bees and dynamic server allocation in Internet hosting centers[J]. Adaptive Behavior, 2004,12(3-4):223~240.
    [39]EUSUFFM M. I ANSEY K E Optimization of Water Distrihution Network Design Using Shuffled Frog leaping Algorithm[J]. Journal of Water Resources Planning and Management,2003,129(3):210~225.
    [40]Dawid H,Hornik K. The Dynamic of Genetic Algorithms in Interactive Environments[J]. Journal of Network and Computer Applications,1996,19:5~19.
    [41]Forrest S, Mayer-Kress G. Genetic Algorithms[J]. Nonlinear Dynamical Systems. And Models of International Security, 1991, 51,166~185.
    [42] Nix A, Vose M D. Modeling Genetic Algorithms with Markov Chains[R]. Annals of Math. And AI,1992,5:79-88.
    [43]Maury M. Gouvêa Jr. and Aluizio F. R. Araújo.Population Dynamics Model for Gene Frequency Prediction in Evolutionary Algorithms[C]//2008 IEEE Congress on Evolutionary Computation (CEC 2008), 2008: 1603~1610.
    [44]Vose M D, Liepins G E.Punctuated Equilibria in Genetic Search[J]. Complex Systems, 1991,5:31~44.
    [45]Vose M D.Modeling Simple Genetic Algorithms[R]. USA: Foundations of Genetic Algorithms (FOGA-3), 1993: 53-73.
    [46]Whitley D. An Executable Model of a Simple Genetic Algorithm[R]. USA: Foundations of Genetic Algorithms (FOGA 2),1993: 45-62.
    [47]Sambarta Dasgupta, Arijit Biswas, Swagatam Das and Ajith Abraham.The Population Dynamics of Differential Evolution:A Mathematical Model[C]//2008 IEEE Congress on Evolutionary Computation (CEC 2008), 2008: 1439~1446.
    [48]Vose M D. The simple Genetic Algorithm[M]. Cambridge, Massachusetts: TheMIT Press,1999:21~35.
    [49]Vose M D, Wright A H. The simple genetic algorithm and the Walsh transform: Part I:theory[J]. Evolutionary Computation, 1998,6(3):253~273.
    [50]Wright A H, Rowe J E,Stephens C R, Poli R. Bistability in a Gene Pool GA with Mutation[J]. Morgan Kaufmann, 2003,63~80.
    [51]Wright A H, Rowe J E, Neil J R. Analysis of the simple genetic algorithm on the single-peak and double-peak landscape[C]//Proceedings of the 2002 Congress on the Evolutionary Computation. Hawaii, USA: IEEE,2002,214~219.
    [52]Wright A H, Cripe G. Bistability of the Needle Function in the Presence of Truncation Selection[M]. Berlin: Springer-Verlag,2004:330~342.
    [53]E .Ozcan and C .Mohan.Particle swarm optimization;surfing the waves[C]//Proc. of the C o ng res so nE volutionary Computation, 1999: 1939~1944.
    [54]J .Kennedy.The behavior of particles[C]//Proc.7th Annual Conf:on Evolutionary Programming,1998: 581-591.
    [55]S. Tsutsui, A. Ghosh, Y. Fujimoto, A robust solution searching scheme in genetic search[M]. H.-M. Voigt, W. Ebeling, I. Rechenberg,H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature, vol. 4, Springer, Heidelberg, 1996:543~552.
    [56]S. Tsutsui, A. Ghosh, Genetic algorithms with a robust solution searching scheme[J]. IEEE Trans. Evolution. Comput. 1997,1 (3):201~208.
    [57]S. Tsutsui, A comparative study on the effects of adding perturbations to phenotypic parameters in genetic algorithms with a robust solution searching scheme[C]// Proc. of the 1999 IEEE System, Man, and Cybernetics Conference– SMC99, vol. 3, IEEE, 1996:585~591.
    [58]A. Thompson, Evolutionary techniques for fault tolerance[C]//Proc.UKACC Intl. Conf. on Control, IEE Conference Publication, 1996:693~698.
    [59]H. Loughlin, S. Ranjithan, Chance-constrained genetic algorithms[C]//W. Banzhaf, J. Daida, A. Eiben, M. Garzon, V. Honavar, M.Jakiela, R. Smith (Eds.), GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, San Francisco, CA, 1999:369~376.
    [60]A. Sebald, D. Fogel, Design of fault-tolerant neural networks for pattern classification[C]//D. Fogel, W. Atmar(Eds.), Proc. of the First Annual Conf. on Evolutionary Programming, Evolutionary Programming Society, La Jolla, CA, 1992:90~99.
    [61]D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, B. Lee, Inverse multiobjective robust evolutionary design[J], Genetic Programm. Evolvable Mach. 2006, 7(4): 383~404.
    [62]Y. Ong, P. Nair, K. Lum, Max–min surrogate assisted evolutionary algorithm for robust design[J], IEEE Trans. Evolution. Comput. 2006,10(4):392~404.
    [63]D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, Trusted evolutionaryalgorithm[C]//Congress on Evolutionary Computation (CEC), IEEE Press, 2006:456~463.
    [64]T. Ray, W. Smith, A surrogate assisted parallel multiobjective evolutionary algorithm for robust engineering design[J], Engrg. Optim. 2006, 38 (8):997~1011.
    [65]H. Greiner, Robust filter design by stochastic optimization[C]//F.Abeles (Ed.), Proc. SPIE, vol. 2253, The International Society for Optical Engineering, 1994:150–160, paper: AIAA 2002~3140.
    [66]A. Kumar, A. Keane, P. Nair, S. Shahpar, Robust design of compressor fan blades against erosion[J]. J. Mech. Des. 2006, 128(4):864~873.
    [67]M. Sevaux, Y. Le Quere, Solving a robust maintenance scheduling problem at the French railways company[R]. France: Research Report LAMIH SP-2003-3, University of Valenciennes, CNRS, UMR 8530, 2003:10-38.
    [68]M. Sevaux, K. So¨rensen, A genetic algorithm for robust schedules in a just-in-time environment[R]. France: Research Report LAMIH SP-2003-1, University of Valenciennes, CNRS, UMR 8530, 2003:2-19.
    [69]E. Zechmann, S. Ranjithan, An evolutionary algorithm to generate alternatives (EAGA) for engineering optimization problems[J], Engrg. Optim. 2004, 36(5):539~553.
    [70]D. Wiesmann, U. Hammel, T. Back, Robust design of multilayer optical coatings by means of evolutionary algorithms[J], IEEE Trans.Evolution. Comput. 1998,2(4):162~167.
    [71]D. Wiesmann, Robust design mit evolutionsstrategien[D]. Germany: University of Dortmund, Department of Computer Science, 1997:13-18.
    [72]E. Kazancioglu, G. Wu, J. Ko, S. Bohac, Z. Filipi, S. Hu, D.Assanis, K. Saitou, Robust optimization of an automobile valvetrain using a multiobjective genetic algorithm[C]//Proceedings of DETC03 ASME 2003 Design Engineering Technical Conferences, Chicago, September 2–6, 2003, DETC03/DAC-48714.
    [73]O. Pictet, M. Dacorogna, B. Chopard, M. Oussaidene, R. Schirru, M. Tomassini, Using genetic algorithms for robust optimization in financial applications[R]. Switzerland: OVP.1995-02-06, Olsen & Associates, Research Institute for Applied Economics, Zurich, 1996: 1-40.
    [74]M. McIlhagga, P. Husbands, R. Ives, A comparison of search techniques on a wing-box optimisation problem[M]. Berlin: H.-M. Voigt, W. Ebeling, I. Rechenberg, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature, vol. 4, Springer, 1996: 614~623.
    [75]E. Sandgren, T. Cameron, Robust design optimization of structures through consideration of variation[J], Comput. Struct. 2002,80 (20~21):1605~1613.
    [76]J. Herrmann, A genetic algorithm for minimax optimization problems[C]//Proc. of the Congress on Evolutionary Computation, vol. 2, IEEE Press, 1999:1099~1103.
    [77]M. Papadrakakis, N. Lagaros, V. Plevris, Design optimization of steel structures considering uncertainties[J], Engrg. Struct. 2005,27(9):1408~1418.
    [78]N. Lagaros, V. Plevris, M. Papadrakakis, Multi-objective design optimization using cascade evolutionary computation[J]. Comput.Methods Appl. Mech. Engrg. 2005, 194:3496~3515.
    [79]A. Thompson, P. Layzell, Evolution of robustness in an electronics design[C]//J. Miller, A. Thompson, P. Thomson, T. Fogarty (Eds.),Evolvable Systems: From Biology to Hardware, Proceedings of the Third International Conference (ICES-2000), LNCS, vol. 1801,Springer-Verlag, Berlin, 2000: 218~228.
    [80]Kennedy J.Small worlds and mega-minds:Effects ofneighborhood topology on particle swaml performance[C]//Proc.of the IEEE Congress on Evolutionary Computation,Washington:IEEE,1999,193l~1938.
    [81]Kennedy J,Mendes R.Population structure and particle swarm performance[C]//Proc. of the Congress On Computational Intelligence. Honolul: IEEE Press,2002.1671~1676.
    [82]Mendes R,Population topologies and their influence in particle swarm performance [D]. Portugal:Escola de Engenharia:Universidade do Minho,2004: 21-39.
    [83]Kennedy J,Mendes R.Neighborhood topologies in fully informed and best-of-neighborhood particle swarlns[J].IEEE Trans.On Systems,Man,and Cybernetics,Part C:Applications and Reviews, 2006, 36(4):515~519.
    [84]Suganthan PN.Particle swarm optimiser wim neighbonrhood operator[C]//Proc.of the Congress on Evolutionary Computation.Washington: IEEE Press,1999:1958~1962.
    [85]Wang XF, Wang F, Qiu YH. Research on anovel particle swarm algorithm with dynamic topology[J]. Computer Science, 2007, 34(3):205~207.
    [86]Wen W, Hao Z . Improved particle swaml optimizer based on dynamic topology[J]. Computer Engineering and Applications,2005,41(34):82~85.
    [87]Kennedy J.Dynamic-Probahilistic particle swarm[C]//Proc.of the Conf. on Genetic and Evolutionary Computation.Washington:ACM Press,2005,201~207.
    [88]Kennedy J. In search of the essential particle swarm[C]//Proc. Of the IEEE Congress on Evolutionary Computation. Vancouver: IEEE Press. 2006.1694~1701.
    [89]倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法[J].软件学报, 2009,20(2): 348~360.
    [90]P. Kall and S.W.Wallace, Stochastic Programming[M]. Britain: John Wiley and Sons, Chichester, 1994:2~34.
    [91]D. Dubois and H. Prade, Possibility Theory[M]. New York: Plenum Press, 1988:22~41.
    [92]G. J. Klir, On fuzzy-set interpretation of possibility theory[J]. Fuzzy Sets Syst., 1999, 108: 263~273.
    [93]L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility[J]. Fuzzy Sets Syst., 1978, 1: 3~28.
    [94]R.E. Belhnan, L.A. Zadeh. Decision making in a fuzzy environment[J]. Management Science, 1970, 17: 141~164.
    [95]W. Ostasiewiez. A new approach to fuzzy programming[J]. Fuzzy Sets and Systems, 1982, 7: 139~152.
    [96]H.-J. Zimmermann, Applications of fuzzy set theory to mathematical programming[J]. Inform, 1985, 36: 29~58.
    [97]蔡文.可拓集合和不相容问题[J].科学探索学报, 1983, (1): 83~97.
    [98]CAI Wen. The extension Set and Non-compatible Problems[M]. China: Advances Mathematics and Mechanics in China, International Academic Publishers, 1990: 1~42.
    [99]蔡文.物元分析[M].广州:广州高等教育出版社,1987: 14~65.
    [100]蔡文.物元模型及其应用[M].北京:科学技术文献出版社,1994: 2~48.
    [101]蔡文,杨春燕,林伟初.可拓工程方法[M].北京:科学出版社,2001: 1~59.
    [102]蔡文.可拓论及其应用[J].科学通报,1999,44(7): 673~682.
    [103]CAI Wen. Extension theory and its application[J]. Chinese Science Bulletin, 1999, 44(17): 1538~1548.
    [104]蔡文,孙弘安,杨益民.从物元分析到可拓学[M].北京:科学技术文献出版社,1995: 2~34.
    [105]Gail Wenlung,Buehrer D J.Vague sets[J].IEEE Transaction oYt System.Man and cybernetic.1993,23(2):610~615.
    [106]Gau W L, Buehrer D J. Vague sets[J]. IEEE Transaction on System, Man and Cyberbetics, 1993, 23(2): 610~614.
    [107]刘华文,王凤英.Vague值的转化与相似度量[J].计算机工程与应用,2004,40 (32):79~81.
    [108]Chen shyi-Ming, Tan Jiantr Mean. Handling multicriteria fuzzy decision making problems based on vague set theory[J]. Fuzzy Sets and Systems, 1994, 67(2):163~172.
    [109]Hong D H, Choi C H. Multicfitefia fuzzy decision-making problems based on vague set theory[J]. Fuzzy Sets and Systems, 2000,114(1):103~113.
    [110]冯林,罗芬,刘照鹏.Vague集之间的相似度量及应用[J].计算机工程与应用,2006,42(21):165~168.
    [111]Chen shyi-Ming. Measures of similarity between vague sets[J]. Fuzzy Sets and Systems, 1995, 74(2): 217~223.
    [112]Chen Shyi-Ming. Similarity measure between Vague sets between elements[J]. IEEE Trans On Systems, Man and Cybernetics, 1997, 27(1):153~158.
    [113]Hang D H, Kime. A note on similarity measure between Vague sets and between elements[J]. Information Sciences, 1999, 115:83~96.
    [114]Szmidt E, Kaeprzyk J. Distances between intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2000, 114(3):505~518.
    [115]Li D F, Cheng C T. New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions[J]. Pattern Recognition Letters, 2002, 23(13):221~225.
    [116]Liu, B. Theory and practice of uncertain programming[M]. Heidelberg: Physica-Verlag, 2002: 78~81.
    [117]Liu, Y.-K., & Liu, B. Expected value operator of random fuzzy variable and random fuzzy expected value models[J]. International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems., 2003, 11(2):195~215.
    [118]Liu, B. Random fuzzy dependent-chance programming and its hybrid intelligent algorithm[J]. Information Sciences, 2002, 141(3~4):259~271.
    [119]Liu, B. Theory and practice of uncertain programming[M]. Heidelberg: Physica-Verlag,2002: 112~157.
    [120]Liu. B. Random fuzzy dependent-chance programming and its hybrid intelligent algorithm[J]. Information Sciences, 2002, 141(3):259~271.
    [121]Liu, Y., Liu, B. Expected value operator of random fuzzy variable and random fuzzy expected value models[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2003, 11(2): 195~215.
    [122]Liu, Y.-K., & Liu, B. Fuzzy random variable: A scalar expected value operator[J]. Fuzzy Optimization and Decision Making, 2003, 2(2),143~160.
    [123]Liu, B. Fuzzy random chance-constrained programming[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5), 713~720.
    [124]Liu, B. Fuzzy random dependent-chance programming[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(5), 721~726.
    [125]R.E. Belhnan, L.A. Zadeh. Decision making in a fuzzy environment[J]. Management Science,1970,17:141~164.
    [126]W. Ostasiewiez. A new approach to fuzzy programming[J]. Fuzzy Sets and Systems,1982,7:139~152.
    [127]H.J. Zimmermann, Applications of fuzzy set theory to mathematical programming[J]. Inform,1985,36:29~58.
    [128]M.K. Luhandjula. Linear programming under randomness and fuzziness[J]. Fuzzy Sets and Systems,1983,10:45~55.
    [129]M.K. Luhandjula. On possibilistic linear programming[J]. Fuzzy Sets and Systems,1986,18:15~30.
    [130]A.V. Yazenin, On the problem of possibilistic optimization[J]. Fuzzy Sets and Systems 81,1996,133~140.
    [131]Kwakernaak H. Fuzzy random variables-I[J]. Information Sciences,1978,15 :1~29.
    [132]Kwakernaak H. Fuzzy random variables-II[J]. Information Sciences,1979,17:253~278.
    [133]Liu B. Random fuzzy variables and random fuzzy programming [R]. Beijing: Deportment of Mafhematilcal Sciences, Tsinghua University, 2000: 23-56.
    [134]Dantzig, G. B. Linear programming under uncertainty[J]. Management science, 1955, 1: 197~206.
    [135]Charnes, A., & Cooper, W. W. Chance-constrained programming[J]. Management Science, 1959, 6(1): 73~79.
    [136]Charnes, A., & Cooper, W. W. Deterministic equivalents for optimizing and satisfying under chance-constraints[J]. Operations Research, 1963, 11(1):18~39.
    [137]Birge, J. R. Models and model value in stochastic programming[R]. Annals of Operations Research, 1995,59:1-18.
    [138]Birge, J. R., & Louveaux, F. V. Introduction to stochastic programming[M]. New York: Springer,1997: 1~64.
    [139]Dupacova, J. Applications of stochastic programming: Achievements and questions[J]. European Journal of Operational Research, 2002,140(2):281~290.
    [140]Wets, R. J. B. Challenges in stochastic programming[J]. Mathematical Programming, 1996,75(2):115~135.
    [141]Liu, B. Uncertain programming[M]. New York: John Wiley & Sons.1999: 23~68.
    [142]Charnes A , Cooper W W. Chance-constrained programming[J]. Management Science , 1959 , 6(1): 73~79.
    [143]B. Liu, K.Iwamura.Chance constrained programming with fuzzy parameters [J].Fuzzy Sets and Systems,1998,94:227~237.
    [144]Liu B., Dependent chance Programming: A Class Of Stochastic optimization[J]. Computers and Mathematics with Applications, 1997,199(1):293~311.
    [145]Dubwsky S, Papadopoulos E G. The kinematics, dynamics and control of free flying space robotic systems[J]. IEEE Trans, Rob. Aurora., 1993, 9(5):531~543.
    [146]Vava Z, Dubowsky S. On the dynamics of space manipulators using the virtual manipulator, with applications to path planning[J]. J. Astron. Sci., 1990,38(4):441~472.
    [147]刘延柱.航天器姿态动力学[M].北京:国防工业出版社,1995:11~36.
    [148]李俊峰,王照林.带空间机械臂的充液航天器姿态动力学研究[J].宇航学报,1999,(2):8l~86.
    [149]陈力,刘延柱.漂浮基空间机器人协调运动的自适应控制与鲁棒控制[J].机械工程学报,2001,37(8):18~22.
    [150]Lumina R.UsingNASREM for real-time sensory interactive robot control[J].Robotica, 1994, 12(2): 127~130.
    [151]Hirzinger G, Brunner B, Dietrich J, et a.l ROTEX the first remotely controlled robot in space[C]//Proc. of IEEE Int. Con.f on Rob. And Auto. San Diego,CA,USA, 1994: 2604~2 611.
    [152]HirzingerG,LandzettelK, Fagerer C. Teleroboticswith large time delays the ROTEX experience[C]//Proc. of IEEE/RSJ/GI Int. Con.f on Intelligent Robots and Systems.Munich, Germany, 1994: 571~574.
    [153]Kazuya Yoshida, Kenichi Hashizume and Satoko Abiko, Zero Reaction Maneuver: Flight Validation with ETS-VII Space Robot and Extension to Kinematically Redundant Arm[C]//Proceedings IEEE International Conference on Robotics and Automation , 2001: 441~446.
    [154]Yoshida, Kazuya, Engineering test satellite VII flight experiments for space robot dynamics and control: Theories on laboratory test beds ten years ago, now in orbit[J]. International Journal of Robotics Research, 2003, 22(5):321~335.
    [155]A.A.Maciejewski. Fault Tolerant Properties of Kinematically Redundant Manipulators[C]//Proc.IEEE Int. Conf. Robotics and Automation. May. 1990:638~642.
    [156]袁赣男,王志荣.实时双机容错冗余系统设计与研究[J].黑龙江自动化技术及应用,1998,17(2):281~283.
    [157]胡谋.计算机容错技术[M].工北京:中国铁道出版社,1995:46~57.
    [158]Gordon, R. Pennock, and Charles, C. Squires, Velocity Analysis of wo 3-R Robots Manipulating a Disk[J]. Mech.Mach.Theory, 1998, 33(12):71~86.
    [159]C.L.Lewis,A.A.Maciejewski.Fault Tolerant Operation of Kinematically Redundant Manipulators for Locked Joint Failures[J]. IEEE Trans.Robot. Automat.1997, 13(4): 622~629.
    [160]C .L.Lewis,A .A .Maciejewski.An Example of Failure Tolerant Operation of a Kinematically Redundant Manipulator[R].School of Electrical Engineering.Purdue University.West Lafayette, 1994:1380-1387.
    [161]C.J.J.Paredis, W.K.F.Au, and P.K.Khosia, Kinematic Design of Fault Tolerant Manipulators[J]. Comput.Elect.Eng.,1994,20(3):211~220.
    [162]J .D.English, A. A.Maciejewski. Measuring and Reducing the Euclidean-space Effects of Robotic Joint Failures[J].IEEE Trans.Robot.Automat,2000,16(1):20~28.
    [163]李鲁亚,张启先扬宗煦.基于运动可优化度的冗余度机器人运动学实时控制研究[J].机械工程学报,1994,30(6):93~99.
    [164]唐世明.冗余度机器人优化控制研究及飞行机器人初步研制[D].北京:北京航空航天大学,1998:20-49.
    [165]C.J.J.Paredis and P.K.Khosla. Fault Tolerant Task Execution Through Global Trajectory Planning[J]. Rel.Eng.Syst.Safety,1996,53(3):225~235.
    [166]Y.Nakamura, H.Hanafusa and T.Yoshikawa. Task-Priority Based Redundancy Control of Robot Manipulators[J].Int.J. Robot.Res, 1987, 6(2): 3~15.
    [167]H.Seraji. Configuration Control of Redundant Manipulators: Theory and Implementation[J].IEEE Trans.Robot.Automat.1989,5(4):472~490.
    [168]Alford, C. O., and Belyeu, S. M., Coordinated Control of Two RobotArms[C]//Proc.IEEE Conf Rob Autom,1984:468~473.
    [169]Christopher Cocca, Daniel Cox and Delbert Tesar. Failure Recovery in Redundant Serial Manipulators Using Nonlinear Programming[C]//Proc. IEEE Int.Conf Robotics and Automatic, Detroit.Michigan.May.1999:867~873.
    [170]Scott K. Ralph and Dinesh K. Pai. Computing Fault Tolerant Motions for a Robot Manipulator[C]//Proc.IEEE Int.Conf.Robotics and Automatic, Detroit .Michigan.M ay.1999:867~873.
    [171]J. D. English and A. A. Maciejewski. Failure Tolerance through Active Braking :A Kinematic Approach[C]//Int.J .Robotics Res.20,(4),April 2001:287~299.
    [172]G Liu. Control of Robot Manipulators with Consideration of Autuator Performance Degradation and Failure[C]//Proc.IEEE Int.Conf.Robotics and Automatic,Seoul,Korea. May21-26.2001:2566~2571.
    [173]M. GRamos and A. J. Koivo. Fault-Tolerant Dynamic Control for Under actuated Manipulators[C]//Proc.IEEE Int.Conf.Robotics and Automatic,May,1999:123~128.
    [174]Saeedd B .Niku著.孙富春等译.机器人学导论——分析、系统及应用[M].北京:电子工业出版社,2004:1~154.
    [175]Papadopoulos E.Path Planning for Space Manipulators Exhibiting Nonholonomic Behavior[C]//Proc.of the Int.Conf.on Intelligent Robots and Systems,Raleigh,North Carolina,1992:669~675.
    [176]吴立明.工业机器人时间最优轨迹规划及轨迹控制的理论与实验研究[D]:长沙:中南工业大学,2001: 3-62.
    [177]Lin C. S., Chang P R., Luh J.Y.S.. Formulation and optimization of cubic polynomial joint trajectories for mechanical manipulators[J]. IEEE Trans. On Automatic Control, 1983, A C-28:1066~1070.
    [178]徐向荣,马香峰.机器人运动轨迹规划与算法[J].机器人,1988, 2(6):18~25.
    [179]叶桦,冯纯伯.机械手的运动学最短时间轨迹规划[J].东南大学学报,1990, 20(3):74~79.
    [180]王幼民,徐蔚鸿.机器人关节空间B样条轨迹优化设计[J].机电工程,2000, 17(4):57~60.
    [181]王幼民,徐蔚鸿.机器人连续轨迹控制中的B样条轨迹优化设计[J].机械设计,2000,10(10):33~35.
    [182]刘铁彪,王日爽.一种非性规划全局最小解的算法[J].北京航空航天大学学报,1994,20 (3):324~329.
    [183]何哲明.混沌优化方法及其在机械工程中的应用[J].机械设计与研究,2002, 18(2):17~21.
    [184]Walter J. Gutjahr. On the Finite-Time Dynamics of Ant Colony Optimization[J].Methodol Comput Appl Probab, 2006, 8: 105~133.
    [185]Stüezle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 358~365.
    [186]Hans-Georg Beyer, Bernhard Sendhoff.Robust optimization: a comprehensive survey[J]. Computer methods in applied mechanics and engineering, 2007,196:3190~3219.
    [187]Ackermann J., Kwakernaak H., et al. Uncertainty and Control[M]. New York: Springer-Verlag,1985: 33~69
    [188]Bastos, L. S. and D. Gamerman. Dynamic survival models with spatial frailty[J]. Lifetime Data Analysis. 2006,12:441~460.
    [189]Klein JP.Moeschberger ML.Survival analysis[M].New York: Spring-Verlag, 2003: 11~18.
    [190]Aris Perperoglou, Saskia le Cessie, Hans C. van Houwelingen. A fast routine for fitting Cox models with time varying effects of the covariates[J]. Computer methods and programs in biomedicine,2006,8(1):154~161.
    [191]Cox, D. R. Regression models and life-tables[J]. Journal of Royal Statistical Society, Series B, 1972,34:187~220.
    [192]Koehler A B. Time Series Analysis and Forecasting with Applications of SAS and SPSS[J]. International Journal of Forecasting, 2001,17:301~302.
    [193]SPSS Inc. SPSS regression models TM 10.0[M]. Chicago: SPSS Inc. 1999: 21~60.
    [194]SPSS Inc. SPSS Base 10. 0 User’s Guide [M] . USA : SPSS Inc ,1999: 431~434.
    [195]Liu B. Uncertainty Theory. 2nd ed[M]. Berlin, Germany: Springer-Verlag, 2007: 11~32.
    [196]Pugachev V S. Probability theory and mathematical statistic for engineers[M]. NY: Pergamon Press, 1984: 21~56.
    [197]Kennedy J. Dynamic-Probahilistic particle swarm[C]//Proc. of the Conf. on Genetic and Evolutionary Computation. Washington: ACM Press, 2005:201~207.
    [198]Kennedy J. In search of the essential particle swarm[C]//Proc.of the IEEE Congress on Evolutionary Computation.Vancouver:IEEE Press.2006,1694~1701.
    [199]Liu Baoding. Dependent-chance programming in fuzzy environments[J]. Fuzzy Sets and Systems, 2000,109(1):97~106.
    [200]LIU B, Iwamura K. Chance constrained programming with fuzzy parameters[J]. Fuzzy Sets and Systems, 1998, 94(2):227~237.
    [201]LIU B, Iwamura K. A note on chance constrained programming with fuzzy coefficients[J]. Fuzzy Sets and Systems, 1998, 100(1-3):229~233.
    [202]Badard R., The law of large numbers for fuzzy processes and the estimation problem[J], Inform. Sciences, 1983,1(8): 260~272.
    [203]Fuller R. A law of large numbers for fuzzy numbers[J]. Fuzzy sets Syst., 1992, 45:299~303.
    [204]Triesch E.,Characterization of Archimedean t-norms and a law of large numbers[J]. Fuzzy Sts Syst.,1993, 58:339~342.
    [205]Stüezle T, Dorigo M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4): 358~365.
    [206]KUBOTA N,SHIMOJIMA K.The role of virus infection in virus evolutionary genetic algorithm [C]//Evolutionary Computation, 1996 Proceeding of IEEE International Conference on.Nagoya,Japan:IEEE,1996:182~187.
    [207]Kubota N,Arakawa T,et al.Fuzzy manufacturing scheduling by virus-evolutionary genetic algorithm in self-organizing manufacturing system[C]//Fuzzy Systems,Proceedings of the Sixth IEEE International Conference on.Barcelona, Spain: IEEE, 1997.1283~1288.
    [208]Kubota N,Arakawa T,et al.Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm[C]//Robotics and Automation, Proceedings, IEEE International Conference on.Albuquerque, USA:IEEE,1997.205~210.
    [209]Kubota N,et al.Schema representation in virus evolutionary genetic algorithm for knapsack problem[C]//Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence.The 1998 IEEE International Conference on.Anchorage, USA:IEEE,1998.834~839.
    [210]C.L.Lewis and A.A.Maciejewski. Fault Tolerant Operation of Kinematically Redundant Manipulators for Locked Joint Failures[J]. IEEE Trans.Robot.Automat. 1997, 13(4):622-629.
    [211]洪炳熔,柳长安.双臂自由飞行空间机器人地面试验平台系统设计[J].机器人,2000 ,22(2) :1082~1141.
    [212]Loasman R W.The kinematics and workspace of a satellte-mounted robot[J]. J Astron Sciences,1990,38(4):423~440.
    [213]系统灵敏度理论导论[M].上海:上海科学技术出版社,1985:1-70
    [214]马振华等.现代应用数学手册·概率统计与随机过程卷[M].北京:清华大学出版社,1997:188-207