雷公藤甲素对T2DM大鼠肾脏保护作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分高脂高糖喂养联合低剂量键脲佐菌素诱导的T2DM大鼠模型及其肾病特点
     研究背景和目的:糖尿病肾病(DN)是导致终末期肾脏疾病(ESRD)的主要原因,在这些糖尿病(DM)患者中,大部分是2型糖尿病(T2DM),DM动物的研究目前多侧重于大剂量链脲佐菌素(STZ,50~65 mg.kg~(-1))诱导的1型DM大鼠。因此,建立与人类T2DM发病特点类似的动物模型非常重要。但临床实验中T2DM模型建立方法不一,其特点也不尽相同,本研究以高脂高糖喂养联合小剂量链脲佐菌素诱导建立T2DM大鼠模型,旨在探讨其可行性及其肾病特点。
     方法:Wistar大鼠高脂高糖喂养8周后,腹腔注射STZ(30mg.kg~(-1))诱导建立T2DM模型,观察体重(BW)、肾重(KW)、空腹血糖(FBG)、空腹胰岛素(INS)、收缩压(SBP)、血脂、白蛋白排泄量(UAL)、肾功能,并行光镜及电镜观察肾脏结构改变。Wistar大鼠喂养常规饲料,作为对照组,实验期间不注射胰岛素。
     结果:高脂高糖喂养联合小剂量STZ诱导的DM大鼠的BW、FBG、胆固醇(CH)、甘油三酯(TG)、低密度脂蛋白(LDL)、INS及SBP较对照组明显增高,高密度脂蛋白(HDL)及胰岛素敏感指数(ISI)下降。造模成功8周后,肾肥大指数(KW/BW)、UAL、尿素氮(BUN)、肌酐(Scr)、肾小球截面积、基质面积、基质面积比均较正常对照组升高,而毛细血管面积比下降,电镜下肾脏超微结构明显受损。
     结论:高脂高糖喂养联合小剂量STZ诱导建立的DM大鼠符合T2DM发病特点及DM肾病病理改变。
     第二部分雷公藤甲素联合厄贝沙坦对T2DM大鼠肾足细胞的影响及其机制探讨
     研究背景和目的:糖尿病肾病(DN)是糖尿病(DM)最常见的慢性并发症之一,也是导致终末期肾脏疾病(ESRD)的主要原因。新近研究表明,DN是一种代谢紊乱诱导的炎症性疾病,其中巨噬细胞浸润是DN炎症的特征性表现之一,也是DN发生、发展的中心环节。DN肾组织炎症与肾小球滤过屏障通透性改变及蛋白尿形成密切相关。足细胞位于滤过屏障的外层,其损伤参与了蛋白尿形成等DN早期病理进程。研究表明,免疫抑制剂—雷公藤多甙可减轻DM大鼠及患者尿蛋白排泄,但对其机制未作进一步研究。本研究进一步探讨雷公藤多甙的有效组分—雷公藤甲素(Triptolide)是否通过足细胞的保护作用减轻DN大鼠尿白蛋白排泄,并探讨其可能机制。观察雷公藤甲素联合厄贝沙坦对T2DM大鼠足细胞的影响,探讨雷公藤甲素对DN肾脏保护作用的机制。
     方法:高脂高糖喂养8周联合小剂量STZ(30mg.kg~(-1))建立T2DM大鼠模型,将DM模型大鼠随机分为4组:雷公藤甲素治疗组(DT)、厄贝沙坦治疗组(DI)、雷公藤甲素联合厄贝沙坦治疗组(DTI)及模型对照组(DM);另设正常对照组(NC)。治疗各组分别药物干预8周后,观察大鼠体重(BW)、肾重(KW)、肾肥大指数(KW/BW)、尿白蛋白排泄量(UAL)、血糖、血清尿素氮(BUN)、肌酐(Scr)、内生肌酐清除率(Ccr)、总胆固醇(CH)、甘油三酯(TG)变化;利用光镜、电镜观察肾脏病理改变;应用免疫组化技术观察足细胞相关蛋白Nephrin、Podocin及其相关细胞因子骨形态发生蛋白(BMP-7)、结缔组织生长因子(CTGF)、转化生长因子-β_1(TGF-β_1)在肾组织分布与表达;采用实时定量PCR及Westernblot技术测定肾皮质Nephrin、Podocin、BMP-7、CTGF及TGF-β_1 mRNA及蛋白的表达。
     结果:(1)高脂高糖喂养联合小剂量诱导成功建立T2DM模型,模型具有中等高血糖、高血脂、高血压、胰岛素抵抗及肾脏损害等特点。
     (2)较NC组,DM组UAL明显升高(P<0.01),肾肥大指数及Ccr增加(P<0.01),肾脏光镜及电镜病理明显病变,肾小球硬化指数(GSI)及肾间质纤维化指数(RIFI)明显升高(P<0.01),Nephrin、Podocin、BMP-TmRNA及蛋白的表达下调(P<0.01),CTGF及TGF-β_1 mRNA及蛋白的表达显著上调(P<0.01)。相关分析表明,UAL与Nephrin、Podocin、BMP-7 mRNA存在负相关,相关系数分别为-0.825、-0.769、-0.784(P<0.01);与CTGF、TGF-β_1 mRNA存在正相关,相关系数分别为0.537、0.628(P<0.01);UAL与GSI及RIFI存在正相关(r_1=0.518,P<0.01;r_2=0.646,P<0.01)。Nephrin与BMP-7 mRNA表达存在正相关,与CTGF、TGF-β_1 mRNA呈负相关,相关系数分别为0.737、-0.675、-0.802(P<0.01);Podocin与BMP-7表达也存在正相关,与CTGF、TGF-β_1 mRNA呈负相关,相关系数分别为0.641、-0.508、-0.752(P<0.01)。
     (3)应用雷公藤甲素、厄贝沙坦及雷公藤甲素联合厄贝沙坦干预8周后,DN大鼠较DM组UAL均明显减少、肾功能改善、肾脏病理改变显著减轻、足细胞数量增多,足细胞Nephrin、Podocin、BMP-7mRNA及蛋白表达量明显上调(P<0.01),CTGF及TGF-β_1 mRNA及蛋白的表达明显抑制(P<0.01),以雷公藤甲素联合厄贝沙坦组变化更显著(P<0.05)。
     结论:在DN早期则出现的足细胞损伤,足细胞损伤与炎症反应及细胞因子表达失衡有关。雷公藤甲素联合厄贝沙坦能够更有效减轻足细胞损伤,降低蛋白尿,延缓肾功能损害的进展,可能与其抗炎及细胞因子的表达有关。提示雷公藤甲素的治疗可通过不同途径改善足细胞损伤,为临床DN新的治疗方法提供实验性理论基础。
     第三部分雷公藤甲素对2型DM大鼠肾小管-间质损伤的保护作用
     研究背景和目的:新近研究表明,糖尿病肾病(DN)是一种代谢紊乱诱导的炎症性疾病,其中巨噬细胞浸润是DN炎症的特征性表现之一,也是DN发生、发展的中心环节。以往研究表明免疫抑制剂—霉酚酸酯可通过其抗炎作用减轻STZ诱导的1型DM大鼠肾组织的炎症反应和减轻肾脏损害,本文旨在观察具有免疫抑制作用的中药—雷公藤多甙的有效组分雷公藤甲素(Triptolide)对T2DM大鼠肾小管-三间质损伤的保护作用,并探讨其机制。
     方法:高脂高糖喂养联合小剂量链脲佐菌素STZ(30mg.kg~(-1))建立T2DM大鼠模型,将DM模型大鼠随机分为2组:雷公藤甲素治疗组(DT)及模型对照组(DM);另设正常对照组(NC)。雷公藤甲素干预8周后,观察大鼠体重(BW)、肾重(KW)、肾肥大指数(KW/BW)、尿白蛋白排泄量(UAL)、血糖(FBG)、血清尿素氮(BUN)、肌酐(Scr)等变化,利用光镜观察肾脏病理改变,应用免疫组化技术观察骨形态发生蛋白(BMP-7)、结缔组织生长因子(CTGF)、骨桥蛋白(OPN)、转化生长因子-β_1(TGF-β_1)、单核/巨噬细胞表面特异性标识抗原(ED-1)及纤连蛋白(FN)在肾组织表达及定位情况。采用实时定量PCR及Western blot技术测定肾皮质BMP-7、CTGF、OPN及TGF-β_1 mRNA及蛋白的表达。
     结果:(1)较NC组,DM组UAL及肾肥大指数明显升高(P<0.01),肾脏病理明显病变。肾组织BMP-7mRNA及蛋白的表达下调(P<0.01),FN、CTGF、OPN及TGF-β_1 mRNA及蛋白的表达显著上调(P<0.01)。肾组织ED-1阳性细胞数明显增多,以肾小管-间质为主(P<0.01)。相关分析表明,尿蛋白与BMP-7 mRNA存在负相关,(r=-0.784,P<0.01);与CTGF、TGF-β_1、OPN mRNA存在正相关,相关系数分别为0.537、0.628、0.502(P<0.01);肾小管-间质内ED-1阳性细胞数与OPN和TGF-β_1的表达明显相关(r_1=0.492,P<0.05,r_2=0.406,P<0.05);TGF=β_1与CTGF的表达呈正相关(r=0.662,P<0.01),而与BMP-7存在负相关(r=-0.604,P<0.01)。萎缩肾小管比例及间质纤维化均与TGF-β_1、CTGF及OPN表达存在明显正相关(P<0.05),与BMP-7存在负相关(P<0.05)。
     (2)应用雷公藤甲素干预8周后,DN大鼠UAL明显减少、肾脏小管-间质脖湎灾跚帷⑸鲎橹疎D-1阳性细胞数明显减少,BMP-7表达上调,而FN、CTGF、OPN及TGF-β_1表达被抑制(P<0.05)。
     结论:雷公藤甲素治疗后DM大鼠肾组织TGF-β_1、CTGF、OPN mRNA和蛋白及ED-1、FN表达明显降低,BMP-7的mRNA和蛋白表达上调,萎缩肾小管及间质纤维化明显减少,并可减轻蛋白尿,不论从基因水平还是从蛋白水平,均可说明雷公藤甲素抑制促纤维化细胞因子的表达及巨噬细胞的浸润,并上调抑制纤维化因子,减少细胞外基质的合成,促进其降解,提示雷公藤甲素对肾小管-间质损害具有明显的保护作用,其机制为多方位,多靶点。
PART ONE: The study of type 2 diabetic rat model and nephropathy
     Background and Objective:Diabetic nephropathy is the major cause of end-stage renal disease(ESRD) in the worldwide.The majority of these patients are affected by type 2 diabetes.Animal models of diabetes lay particular emphasis on large dose streptozocin induced type 1 diabetes.For this reason,it is important to establish animal models which simulate the common manifesitation of type 2 diabetes in human population,but the methods of animal models of type 2 diabetes differ,and their characteristic differ too.The study aims at study the feasibility of the high-sucrose-high-fat diet and injected with the low dose STZ induced the model of type 2 diabetic rat,and observed the characteristic of nephropathy.
     Methods:Wistar rats were fed with regular chow or high-sucrose-high-fat diet. After 8 weeks,rats fed with high-sucrose-high-fat diet were injected with a low dose of STZ(30mg.kg~(-1)) into abdominal cavity to induce hyperglycemia.Pats fed with regular chow receive vehicle.Determine systolic blood pressure,serum glucose, fasting seruminsulin,serum fat,serum creatinine,blood urine nitrogen,urinary albumin excretion and kidney construction by optical microscope and electron microscope.
     Results:The rats fed with high-sucrose-high-fat diet and injected with a low dose STZ showed increase in body weight,systolic blood pressure,blood glucose,fat and serum insulin levels in comparison with normal control group,while insulin seneitivity index(ISI) was reduced.At the 8 week after DM,kidney weight/body weight,urinary albumin excretion,blood urea nitrogen,serum creatinine,mean glomerular area,mean mesangial matrix area,mean mesangial matrix area/mean glomerular area ratio were significantly increased as compared with normal control group,but the capillary plexus area/mean glomerular area ratio was reduced. Ultrastructure of kidney damaged.
     Conclusion:Rats fed a high fat diet and given a low dose of STZ develop type 2 diabete with insulin resistance,hyperinsulinemia,moderate hyperglycemia, hyperlipidemia,hypertension and proteinuria,kidney pathology lesions.We present a nongenetic rat model of type 2 diabetes mellitus and nephropathy.The Type 2 diabetic model rats were successed.
     PART TWO: The protective effect of the combination of triptolide and irbesartan on the podocytes in type 2 diabetic rat model and its mechanism
     Background and Objective:Diabetic nephropathy is one of the most common complications,and also is the major cause of end-stage renal disease(ESRD) in the worldwide.Recently,the researches show that diabetic nephropathy is inflammatory disease induced by metabolic disorder and macrophages have been thought to play a central role in the progression of diabetic nephropathy.Inflammation of renal tissue relates to glomerular filtration barrier injury and proteinuria in diabetic nephropathy. Podocytes locate in the exothecium of filtration barrier.Podocyte injury participates in the early stage of diabetic nephropathy.The studies indicated immune depressant-Tripterygium wilfordii can decrease proteinuria,but its mechanism is not still clear. The study aims to investigate the protective effect of the combination of triptolide and irbesartan on the podocytes in type 2 diabetic rat model,and evaluates its machanism.
     Methods:Wistar rats were fed with high-sucrose-high-fat diet for 8 weeks,and rats were injected with a low dose of STZ(30mg.kg~(-1)) into abdominal cavity to induce type 2 diabetic rat model.DM rats were randomly divided into 4 groups:2 diabetic model group(DM),triptolide treatment group(DT),irbesartan treatment group(DI) and triptolide combined with irbesartan treatment group(DTI).In addition,the normal rats served as a normal control group(NC).All the rats were received daily gavage respectively for 8 weeks.The urinary albumin excretion(UAL),body weight(BW), kidney weight(KW),KW/BW,glucemia,urea nitrogen,creatinine,Ccr,total cholesterol,triacylglycerol were detected with correlative methods and the pathological changes of kidney were also detected with optic microscope and transmission electron microscope.The expressions of Nephrin,Podocin and BMP-7, CTGF,TGF-β_1 mRNA and proteins were detected by immunohistochemistry, real-time PCR and Western blot.
     Results:(1) Rats fed a high fat diet and given a low dose of STZ develop type 2 diabete with insulin resistance,hyperinsulinemia,moderate hyperglycemia, hyperlipidemia,hypertension and proteinuria,kidney pathology lesions.
     (2) Compared to NC,UAL in 24 hours,KW and Ccr were increased significantly (P<0.01).Kidney lesion was severe,and GSI,RIFI were increased than NC (P<0.01).The expressions of Nephrin,Podocin and BMP-7 mRNA and proteins were down-regulated in glumorular,and CTGF,TGF-β_1 mRNA and proteins were up-regulated significantly(P<0.01).Correlation analysis showed that there were negative correlation between UAL and Nephrin,Podocin,BMP-7 mRNA(r_1=-0.825, r_2=-0.769,r_3=-0.784,P<0.01) and there were positive correlation between UAL and CTGF,TGF-β_1 mRNA(r_1=0.537,r_2=0.628,P<0.01).Nephrin correlated positively with BMP-7 mRNA(r=0.737,P<0.01),and correlated negatively with CTGF,TGF-β_1 (r_1=-0.675,r_2=-0.802,P<0.01).Podocin correlated positively with BMP-7 mRNA(r=0.641,P<0.01),and correlated negatively with CTGF,TGF-β_1(r_1=-0.508, r_2=-0.752,P<0.01).
     (3) Decrease UAL occurred in all treatment groups.A better improvement on the ultrastructure of the podcytes and alleviated the damage of kidney(P<0.01). Meanwhile,the expressions of Nephrin,Podocin and BMP-7 were up-regulated remarkably in renal tissue,and CTGF,TGF-β_1 were down-regulated remarkably in renal tissue.These changes were the best in DTI(P<0.05).
     Conclusion:There was podocyte damage in the early stage of DN,which related to inflammatory reaction and cytokine disbalance.Renoprotection of triptolide on type 2 diabetic rats may be mediated,at least partly,suppressing inflammatory reaction and balancing cytokine and attenuating podocyte injury.
     PART THREE: The protective effect of triptolide on the renal tubule-interstitium in type 2 diabetic rat model and its machanisms
     Background and Objective:Recently,the researches indicated that diabetic nephropathy was inflammatory disease induced by metabolic disorder and macrophages have been thought to play a central role in the progression of diabetic nephropathy.Mycophenolate mofetil(MMF),an anti-inflammatory agent,has been shown to suppress macrophage infiltration and to improve renal injury in streptozotocin-induced diabetic kidneys.We examined whether triptolide,which acted through immunosupres- sive mechanisms,inhibits progression of diabetic nephropathy in 2 type diabetic model rats.The study aimed to investigate the protective effect of triptolide on renal tubule-interstitium in type 2 diabetic rat model, and evaluate its machanism.
     Methods:Wistar rats were fed with high-sucrose-high-fat diet for 8 weeks,and rats were injected with a low dose of STZ(30mg.kg~(-1)) into abdominal cavity to induce type 2 diabetic rat model.DM rats were randomly divided into 2 groups:type 2 diabetic model group(DM),triptolide treatment group(DT).In addition,the normal rats served as a normal control group(NC).All the rats were received daily gavage respectively for 8 weeks.The urinary albumin excretion(UAL),bodyweight(BW), kidneyweight(KW),KW/BW,glucemia,urea nitrogen,creatinine,total cholesterol, triacylglycerol were detected with correlative methods and the pathological changes of kidney were also detected with optic microscope and transmission electron microscope.The expression of BMP-7,CTGF,OPN and TGF-β_1 mRNA and proteins were detected by immunohistochemistry,real-time PCR and Western blot.
     Results:(1) Rats fed a high fat diet and given a low dose of STZ developed type 2 diabetes with insulin resistance,hyperinsulinemia,moderate hyperglycemia, hyperlipidemia,hypertension and proteinuria,kidney pathology lesions.
     (2) Compared to NC,UAL,KW and KW/BW were increased significantly (P<0.01).The expression of BMP-7 mRNA and proteins were down-regulated in renal tubule-interstitium,and CTGF,OPN and TGF-β_1 mRNA and proteins were up-regulated significantly(P<0.01).Correlation analysis showed that there were negative correlation between UAL and BMP-7 mRNA(r=-0.784,P<0.01) and there were positive correlation between UAL and CTGF,OPN and TGF-β_1 mRNA (r_1=0.537,r_1=0.502,r_3=0.628,P<0.01).The number of ET-lpositive cells were directly correlated with RIFI(r=0.585,P<0.01),also correlated with mRNA expression of OPN,TGF-β_1 in renal interstitium(r_1=0.492,P<0.05,r_2=0.406,P<0.05). mRNA expression of TGF-β_1 correlated positively with CTGF(r_1=0.662,P<0.01),and correlated negatively with BMP-7(r=-0.604,P<0.01).The ratio of atrophic renal tubule and interstitium fibrosis all correlated positively with CTGF,OPN and TGF-β_1 (P<0.05),and correlated negatively with BMP-7(P<0.05).
     (3) Decrease in UAL occurred in triptolide treatment group.Triptolide treatment alleviated the damage of renal tubule-interstitium(P<0.01).Meanwhile,the expression of BMP-7 was up-regulated remarkably in renal tubule-interstitium,and CTGF,OPN and TGF-β_1 were down-regulated remarkably in renal tubule-interstitium.
     Conclusion:Renoprotection of triptolide on renal tubule-interstitium in type 2 diabetic rats may be mediated,at least partly,suppressing macrophage accumulation, down-regulated the expression of CTGF,OPN and TGF-β_1 in renal tissue,meanwhile up-regulated the expression of BMP-7.Triptolide had protective effect on diabetic nephropathy by multitarget,polyols pathway.
引文
[1]DeFronzo RA,Bonadonna RC,Ferrannini E.Pathogenesis of NIDDM.Abalanced overview[J].Diabetes Care,1992,15:318-368.
    [2]ReesD A,Alcolado J C.Animal models of diabetes mellitus[J].Diabet Med,2005,22:359-370.
    [3]Iizuka S,SuzukiW,TabuchiM,et al.Diabetic complications in a new animalmodel(TSOD mouse) of spontaneous NIDDM with obesity[J].Exp Anim,2005,54(1):71-83.
    [3]郭啸华,刘志红,李恒,等.实验性T2DM大鼠模型的建立[J].肾脏病与透析肾移植杂志,2000,9(4):351-355.
    [4]ReedM J,Meszaros K,Entes LJ,et al.A new ratmodel of type 2 diabetes:the fat-fed,streptozotocin-treated rat[J].Metabolism,2000,49(11):1390-1394.
    [5]杨架林,李果,刘优萍,等.长期高脂饮食加小剂量链脲佐菌素建立人类普通T2DM大鼠模型的研究[J].中国实验动物学报,2003,11(3):138-141.
    [6]Srinivasan K,Viswanad B,Asrat L,et al.Combination of high-fatdiet-fed and low-dose strep tozotocin2treated rat:a model for type 2 diabetes and pharmacological screening[J].Pharm acol Res,2005,52(4):313-320.
    [7]周迎生,高妍,李斌,等.高脂喂养联合链脲佐菌素注射的DM大鼠模型特征[J].中国实验动物学报,2005,13(3):154-158.
    [8]曾艳,贾正平,张汝学,等.地黄寡糖在T2DM大鼠模型上的降血糖作用及机制[J].中国药理学通报,2006,22(4):411-415.
    [9]Islam M S,Choi H.Nongenetic model of type 2 diabetes:a comparative study[J].Pharm acology,2007,79(4):243-249.
    [10]Ratna S.Dand A,Nusrath M.Kidney involvement in a nongenetic rat model of type 2 diabetes[J].Kidney Int,2005,68:2562-2571.
    [11]Matthews D R,Hosker J P,Rudenski A S,et al.Homeostasis model assessment:insulin resistance and beta2cell function from fasting plasma glucose and insulin concentrations in man[J].Diabetologia,1985,28(7):412 - 419.
    [12]American DiabetesAssociation,diagnosis and classification of diabetes mellitus [J].Diabetes Care,2006,29(Supp 11):S43-S48.
    [13]陈丽萌,李学旺,黄利伟等.T2DM小鼠(KKAy)动物模型的鉴定和早期肾脏病理改变[J].中国医学科学院学报,2002,24(1):71-75.
    [14]Jarvis FM,Kahncr.Understanding the pathogenesis and treatment of insulin resistance and type 2 diabetes mellitus:What can we learn from transgenic and knockout mice[J].Diabetes Metab,2000,26:433-448.
    [15]Terauehi Y,Iwamoto K,Tamemoto H,et al.Development of non-insulin -dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes,genetic reconstitution of diabetes as a polygenic disease[J].J Clin Invest.1997,99(5):861-866.
    [16]Fanglin ZHANG,Chuanzhong YE,GUO LI,et al.The rats model of type 2diabetic mellitus and glycometabolism characters[J].Exp.Anim,2003,52(5):401-407.
    [17]Lillioja S,Mott D M,Sp raulM,et al.Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus:prospective studies of Pima Indians[J].N Engl J Med,1993,329(27):1988-1992.
    [18]LebovitzH E,BanerjiM A.Treatment of insulin resistance in diabetes mellitus[J].Eur J Pharm acol,2004,490(1-3):135-146.
    [19]李光伟,陈燕燕,张景玲等.胰岛素抵抗是糖耐量正常人群糖耐量恶化的最重要危险因素,中华内分泌代谢杂志,2000,16(2):74-77.
    [20]王芳,朱大菊,孙明谨等.链尿佐菌素在DM模型中的应用及其作用机理[J].勋阳医学院学报,2004,23(1):15-17.
    [21]刘立新,刘好文,刘力强.实验性大鼠DM模型及其周围神经病变特点[J].脑与神经疾病杂志,2005,13(2):117-119.
    [22]高红莉,刘芳永,夏作理.实验性DM动物模型的理论研究与应用[J].中国临床康复杂志,2005,9(3):210-212.
    [23]SainiKS,ThompsonC,WinterfordCM,et al.Streptozotocin at low doses induces apoptosis and at high doses causes necrosis in a murine pancreatic beta cellline,INS-1[J].Biochem Mol Biol Int,1996,39(6):1229-1236.
    [24]Yli-Jarvinen H.Role of insulin resistance in the pathogenesis of NIDDM[J]. Diabetologia,1995,38:1378-1382.
    [25]Taylor SI,Accili D,Imai Y.Insulin resistance or insulin deficiency,which is the primary cause of NIDDM[J].Diabetes,1994,43:735-740.
    [26]Bell DSH.Hypertension in the person with diabetes[J].Am J Med Sci,1989,297:228-233.
    [27]Storlien LH,Pan DA,Kriketos AD et al.High fat diet-induced insulin resistance.Lessons and implications for animal studies[J].Ann NY Acad Sci,1993,683:57-65.
    [28]Hwang IS,Ho H,Hoffmann BB et al.Fructose-induced insulin resistance and hypertension in rats[J].Hypertension,1987,10:512-518.
    [29]Martinez FJ,Rizza RA,Romero JC.High Fructose feeding elicits insulin resistance,hyperinsulinism,and hypertension in normal mongrel dogs[J].Hypertension,1994,23:456-463.
    [30]Resnick LM.Hypertension and abnormal glucose metabolism:possible role of divalent ion metabolism[J].AmJ Med,1989,87(suppl 6A):17S-22s.
    [31]Codde JP,Beilin LJ.Prostaglandins and experimental hypertension:a review with special emphasis on the effects of dietary lipids[J].J Hypertens,1986,4:675-685.
    [32]Joles JA,Kunter U,Janssen U,et al.early mechanisms of renal injury in hypercholesterolemic or hypertriglyceridemic rats[J].J Am Soc Nephrol,2000,11:669 -683.
    [33]Dominguez JH,Tang N,Xu W,et al.Studies of renal injuryⅢ:lipid-induced nephropathy in type Ⅱ diabetes[J].Kidney Int,2000,57:92-104.
    [34]Ravid M,Brosh D,Ravid -Safran D,et al.Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels,mean blood pressure and hyperglycemia[J].Arch Inter Med,1998,158:998-1004.
    [35]Daniels MC,McClaln DA,Crook ED.Transcriptional regulation of transforming growth factor beta by glucose:investigation into the role of the hexosamine biosynthesis pathway[J].Am J Med Sci,2000,319:138-142.
    [36]李颖建,刘志红,刘栋等.己糖胺通路的活化介导系膜细胞转化生长因子B1的表达[J].肾脏病与透析肾移植杂志,2000,8:303-310.
    [37]Michel O,Heudes D,Lamarre I,et al.Reduction of insulin and triglycerides delays glomerulosclerosis in obese Zucker rats[J].Kidney Int,1997,52:1532-1542.
    [1]Wolf G,Ziyadeh FN.Cellular and molecular mechanisms of proteinuria in diabetic nephropathy[J].Nephron Physiol,2007,106(2):26-31.
    [2]Lee SH,Lee TW,Ibm CG,et al.Genetics of diabetic nephropathy in type 2 DM:candidate gene analysis for the pathogenic role of inflammation.Nephropathy (Carlton)[J],2005,10 suppl:S32-S36.
    [3]Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomerular capillary wall toward the center of disease:podocyte injury comes of age in diabetic nephropathy[J].Diabetes,2005,54:1626-1634.
    [4]Patrakka J,Tryggvason.Nephrin-a unique structural and signaling protein of the kidney filter[J].Trends Mol Med,2007,13(9):396-403.
    [5]Eto N,Wada T,Inagi R,et al.Podocyte protection by darbepoetin:preservation of the cytoskeleton and Nephrin expression[J].Kidney Int,2007,72(4):455-463.
    [6]Barnett AH.Preventing renal complications in diabetic patients:the diabetics exposed to telmisartan and enalapril(DETA IL) study[J].Acta Diabetol,2005,42(Suppl1):S42-S48.
    [7]刘建军,甘华,杜晓刚.洛沙坦对DM大鼠肾脏炎症反应及足细胞损伤的影响.中华肾脏病杂志,2007,23(3)189-193
    [8]郑春霞,刘志红,孙吉平等.雷公藤甲素对嘌呤霉素模型足细胞病变的影响.[J].肾脏病与透析肾移植杂志,2007,16(2):110-118.
    [9]秦卫松,刘志红,曾彩虹等.雷公藤甲素对Heymann肾炎模型足细胞病变的影响[J].肾脏病与透析肾移植杂志,2007,16(2):101-109.
    [10]Matthews D R,Hosker J P,Rudenski A S,et al.Homeostasis model assessment:insulin resistance and beta2cell function from fasting plasma glucose and insulin concentrations in man[J].Diabetologia,1985,28(7):412-419.
    [11]Kikuehi Y,Imakiire T,YamadaM,et al.Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats[J].Nephrol Dial Transp lant,2005,20(8):1573-1581.
    [12]ReesD A,Alcolado J C.Animal models of diabetes mellitus[J].Diabet Med, 2005,22:359-370.
    [13]Iizuka S,SuzukiW,Tabuchi M,et al.Diabetic complications in a new animalmodel(TSOD mouse) of spontaneous NIDDM with obesity[J].Exp Anim,2005,54(1):71-83.
    [14]Srinivasan K,Viswanad B,Asrat L,et al.Combination of high-fat Diet-fed and low-dose strep tozotocin2treated rat:a model for type 2 diabetes and pharmacological screening[J].Pharm acol Res,2005,52(4):313-320.
    [15]曾艳,贾正平,张汝学等.地黄寡糖在T2DM大鼠模型上的降血糖作用及机制[J].中国药理学通报,2006,22(4):411-415.
    [16]Islam M S,Choi H.Nongenetic model of type 2 diabetes:a comparative study[J].Pharm acology,2007,79(4):243-249.
    [17]郭啸华,刘志红,李恒等.实验性T2DM大鼠模型的建立[J].肾脏病与透析肾移植杂志,2000,9(4):351-355.
    [18]Ratan S,Danda,NM,Habiba HR et al.Kidney involvement in a nongenetic rat model of type 2 diabetes[J].Kidney Int,2005,68:2562-2571.
    [19]DallaVestra M,Masiero A,Roiter AM,et al.Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes[J].Diabetes,2003,52(4):1031-1035.
    [20]Wolf G,Chen S,Ziyadeh FN.From the periphery of the glomerular capillary wall toward the center of disease:podocyte injury comes of age in diabetic nephropathy[J].Diabetes,2005,54:1626-1634.
    [21]Pagtalunan ME,Miller PL,Jumping-Eagle S,et al.Podocyte loss and progressive glomerular injury in type Ⅱ diabetes[J].J Clin Invest,1997,99:342-348.
    [22]Steffes MW,Schmidt D,McCrery R,et al.Glomerular cell number in normal subject s and in type 1 diabetic patient s[J].Kidney Int,2001,59(6):2104-2113.
    [23]Susztak K,Raff AC,Schiffer M,et al.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J].Diabetes,2006,55:225-233.
    [24]White KE,Bilous RW.Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients[J].Nephrol Dial Transplant,2004,19(6): 1437-1440.
    [25] Dalla Vestra M, Masieroa A, Roiter AM, et al. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes [J] .Diabetes, 2003, 52(4): 1031-1035.
    [26] Hoshi S, Shu Y, Yoshiao F, et al. Podocyte injury promotes progressive nephropathy in zucker diabetic fatty rat s [J]. LabInvest, 2002, 82 (1): 25-35.
    [27] Schwarz K, Simons M, Reiser J, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and Nephrin [J]. J Clin Invest, 2001,108 (11): 1621-1629.
    [28] Roselli S, Gribouval O, Boute N, et al. Podocin localizes in the Kidney to the slit diaphragm area [J]. Am J Pat hol, 2002,160(1): 131-139.
    [29] Patrakka J, Tryggvason. Nephrin-a unique structural and signaling protein of the kidney filter [J]. Trends Mol Med, 2007,13(9): 396-403.
    [30] Eto N, Wada T, Inagi R, et al. Podocyte protection by darbepoetin: preservation of the cytoskeleton and Nephrin expression [J]. Kidney Int, 2007, 72(4): 455-463.
    [31] Benzing T. signaling at the slit diaphragm [J]. J Am Soc Nephrol, 2004, 15 (6): 1382-1391.
    [32] Koop K, EikmansM, Baelde H J, et al. Expression of Podocyte associated molecules in acquired human kidney diseases [J].J AmSoc Nephrol, 2003, 14(8): 2063-2071.
    [33] Benigni A, Gagliardini E, Tomasoni S, et al. selective impairment of gene expression and assembly of Nephrin in human diabetic nephropathy [J]. Kidney Int, 2004,65: 2193-2200.
    [34] Chen BJ. Trip tolide, a novel immunosupp ressive and anti-infalmmatory agent purified from a Chinese herb Trip terygium Wilfordii hook F [J]. Leukemia and lymphoma, 2001,42 (3): 253-265.
    [35] Lin N, Sato T, Ito A. Triptolide, a novel diterpenoid triepoxide from triperygium wilfordii Hook f, supp resses the p roduction and gene expression of p romatrix metalloproteinases 1 and 3 and augments those of tissue inhibitors ofmetallop roteinases 1 and 2 in human synovial fibroblasts [J]. Arthritis Rheum, 2001, 44 (9):2193 -2200.
    [36]Zhao G,VaszarLT,Qiu D,et al.Anti-inflammatory effects of tfiptolide in human bronchial epithelial cells[J].Am J Physiol Lung CellMol Physiol,2000,279(5):958 -966.
    [37]Cantera PH,Lee HS,Ernst E.A systematic review of randomized clinical trials of Tripterygium wilfordii for rheumatoid arthritis[J].Phytomedicine,2006,13:371-377.
    [38]Xiao C,Lu C,Zhao L,Liu Z,et al.The effects of triptolide on enteric mucosal immune responses of DBA/1 mice with collagen-induced arthritis[J].Planta Med.2006,72(14):1268-1272.
    [39]Liu Q,Chen T,Chen G,et al.Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3phosphorylation and NF-κB activation[J].Biochemical and Biophysical Research Communications,2006,345,1122-1130.
    [40]黎磊石,刘志红.应用雷公藤治疗肾炎二十五载的体会[J].肾脏病与透析肾移植杂志,2003,12(3):246-247.
    [41]Ren YX,Zhou R,Tang W,et al.(5R)-5-hydroxytriptolide(LLDT-8) protects against bleomycin-induced lung fibrosis in mice[J].Acta Pharmacol Sin.2007,28(4):518-525.
    [42]upta S,Clarkson MR,Duggan J,et al.Connective tissue growth factor:potential role in glomerulosclerosis and tubulointerstitial fibrosis[J].Kidney Int,2000,58(4):1389-1399.
    [43]Yokoi H,Mukoyama M,Mori K,et al.Overexpression of connective tissue growth factor in podocytes worsens diabetic nephropathy in mice[J].Kidney Int.2008,73(4):446-455.
    [44]Kobayashi Tatsuya,Okada Hirokazu,Inoue Tsutomu,et al.Tubular expression of connective tissue growth factor correlates with interstitial fibrosis in type 2diabetic nephropathy[J].Nephrology Dialysis Transplantation,2006,21(2):548-549.
    [45]O'Leary R J,Crean JK,Furlong F,et al.Use of a focused cDNA microarray to investigate the role of CCN2 in extracelluar matrix production and actin cytoskeleton reqrrangement in a mesangial cell model of diabetic nephropathy [J].Journal of clinical pathology,2005,58(5):471-472.
    [46]Guha M,Xu ZG,Tung D,et al,Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1and type 2 diabetes[J].FASEB J.2007,21(12):3355-3368.
    [47]ZeisbergM,HanaiJ,SugimotoH,et al.BMP-7countractsTGF-β_1 induces epithelial to mesenchymal transition and revers chronic renal injury[J].Nal Med,2003,9(7):964-968.
    [48]Wang SN,Lapage J,Hirschberg R.Loss of tubular bone morphogenetic protein-7 in diabetic nepropathy[J].J Am Soc Nephrol,2001,12(23):2392-2399.
    [49]杨勤,韩冰,谢汝佳等.骨形态发生蛋白-7及抑制性Smads在DN发生发展中的表达变化[J].生理学报,2007,59(2):190-196.
    [50]Wang S,de Caestecker M,Kopp J et al.Renal bone morphogenetic protein-7protects against diabetic nephropathy[J].J Am Soc Nephrol.2006,17(9):2504-2512.
    [51]Mitu GM,Wang S,Hirschberg RR.BMP-7 is a podocyte survival factor and rescues podocytes from diabetic injury[J].Am J Physiol Renal Physiol.2007,293(5):F1641-1648.
    [52]胡伟新,刘志红,黎磊石.双倍剂量雷公藤多甙治疗原发性肾病综合征的近期疗效[J].肾脏病与透析肾移植杂志,1997,6(3):201-204.
    [53]刘光陵,高远赋,夏正坤等.雷公藤总甙治疗儿童难治性肾病综合征的研究[J].医学研究生学报,2003,16(7):518-523.
    [54]陈朝红,刘志红,孙骅等.雷公藤甲素干预足细胞病变的体外观察.肾脏病与透析肾移植杂志[J].2007,16(2):119-126.
    [55]秦卫松,刘志红.雷公藤甲素及其作用机制.肾脏病与透析肾移植杂志[J].2007,16(2):158-161.
    [56]Roselli S,Heidet L,Sich M,et al.Early glomerular filtration defect and severe renal disease in Podocin-deficient mice[J].Mol Cell Biol,2004,24(2):550-560.
    [57]DallaVestra M,Masiero A,Roiter AM,et al.Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes[J].Diabetes,2003,52(4):1031-1035.
    [58]Bidani A K,Griffin KA.Pathophysiology of hypertensive renal damage:implications for therapy[J].Hypertension,2004,44(5):595-600.
    [59]Wendt TM,Tanji N,Guo J,et al.RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy[J].AmJ Pathol,2003,162(4):1123-1137.
    [60]Lorenzen J,Shah R,Biser A,et al.The role of osteopontin in the development of albuminuria[J].J Am Soc Nephrol.2008,19(5):884-890.
    [61]Yoo TH,Li JJ,Kim JJ,et al.Activation of the renin-angiotensin system within podocytes in diabetes[J].Kidney Int.2007,71(10):1019-1027.
    [62]Susztak K,Raff AC,Schiffer M,et al.Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy[J].Diabetes,2006,55(1):225-233.
    [63]Jefferson JA,Shanldand SJ,Pichler RH.Proteinuria in diabetic kidney disease:A mechanistic viewpoint[J].Kidney Int.2008,74(1):22-36.
    [64]龙海波,钟娟,魏连波等.厄贝沙坦对早期DN大鼠足细胞Nephrin表达的影响.中国病理生理杂志[J].2007,23(6):1176-1180.
    [65]刘建军,甘华,杜晓刚.洛沙坦对DM大鼠肾脏炎症反应及足细胞损伤的影响[J].中华肾脏病杂志,2007,23(3):189-193.
    [66]Yoshida K,Xu HL,Kawamura T,et al.Chronic angiotensin converting enzyme inhibition and Ⅱ antagonism in rats with renal failure[J].J Cardiovasc Pharmacol,2002,40(4):533-542.
    [67]Mensah-Brown EP,Obineche EN,Galadari S,et al.Streptozotocin-induced diabetic nephropathy in rats:the role of inflammatory cytokines[J].Cytokine,2005,31(3):180-190.
    [1] Ziyadeh FN, Sharma K. Overview: combating diabetic nephropathy [J]. J Am Soc Nephrol, 2003,14:1355-1357.
    [2] Mason RM, Wahab NA.Extracellular matrix metabolism in diabetic nephropathy [J]. J Am Soc Nephrol, 2003,14: 1358-1373.
    [3] Kikuchi Y, Imakiire T, Yamadc M, et al. Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats [J] .Nephrol Dial Transplant. 2005,20(8): 1573-1579.
    [4] Kelly DJ, Chanly A, Gow RM et al. Protein kinase Cbeta inhibition attenuates osteopontin expression, macrophage recruitment, and tubulointerstitial injury in advanced experimental diabetic nephropathy [J].J Am Soc Nephrol.2005, 16(6): 1654-60.
    [5] Yu HT. Progression of the chronic renal failure [J]. Arch Intern Med, 2003, 163 (12):1417-1429.
    [6] upta S, Clarkson MR ,Duggan J , et al. Connective tissue growth factor : potential role in glomerulosclerosis and tubulointerstitial fibrosis [J]. Kidney Int, 2000, 58 (4): 1389-1399.
    [7] Wang Shinong, Denichilo Mark, Brubaker Carrie, et al. Connective tissue growth factor in tubulointerstitial injury of diabetic nephropathy [J]. Kidney Int, 2001, 60: 96-105.
    [8] Wang SN, Lapage J, Hirschberg R. Loss of tubular bone morphogenetic protein-7 in diabetic nepropathy [J]. J Am Soc Nephrol, 2001,12,2392-2399
    [9]. Kikuchi Y, Ikee R, Hemmi N et al. Fractalkine and its receptor, CX3CR1, upregulation in streptozotocin-induceddiabetic kidneys [J]. Nephron Exp Nephrol 2004,97:e17-e25.
    [10].Aoyama I, Shimokata K, Niwa T. An oral adsorbent downregulates renal expression of genes that promote interstitial inflammation and fibrosis in diabetic rats [J]. Nephron 2002,92: 635-651.
    [11]. Li C, Yang CW, Park CW et al. Long-term treatment with ramipril attenuates renal osteopontin expression in diabetic rats[J].Kidney Int 2003;63:454-463.
    [12]Matthews D R,Hosker J P,Rudenski A S,et al.Homeostasis model assessment:insulin resistance and beta2cell function from fasting plasma glucose and insulin concentrations in man[J].Diabetologia,1985,28(7):412-419.
    [13]Kikuchi Y,Imakiire T,YamadaM,et al.Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats[J].Nephrol Dial Transplant,2005,20(8):1573-1581.
    [14]Chevalier RL.Pathogenesis of renal injury in obstructive uropathy[J].Curr Opin Pediatr,2006,18(2):153-160.
    [15]Chen BJ.Triptolide,a novel immunosupp ressive and anti- infalmmatory agent purified from a Chinese herb Trip terygium Wilfordii hook F[J].Leukemia and lymphoma,2001,42(3):253-265.
    [16]Lin N,Sato T,Ito A.Triptolide,a novel diterpenoid triepoxide from triperygium wilfordii Hook f,suppresses the p roduction and gene expression of pro-matrix metalloproteinases 1 and 3 and augments those of tissue inhibitors of metallop roteinases 1 and 2 in human synovial fibroblasts[J].Arthritis Rheum,2001,44(9):2193 - 2200.
    [17]Liu Q,Chen T,Chen G,et al.Immunosuppressant triptolide inhibits dendritic cell2mediated chemoattraction of neutrophils and T cells through inhibiting Stat3phosphorylation and NF-jB activation[J].Biochemical and Biophysical Research Communications,2006,345,1122 -1130.
    [18]Cantera PH,Lee HS,Ernst E.A systematic review of randomized clinical trials of Tripterygium wilfordii for rheumatoid arthritis[J].Phytomedicine,2006,13:371-377.
    [19]黎磊石,刘志红.应用雷公藤治疗肾炎二十五载的体会[J].肾脏病与透析肾移植杂志,2003,12(3):246-247.
    [20]曹国富,刘海涛,陈冬.雷公藤多甙片治疗DM蛋白尿的短期疗效[J].中国康复,2007,5,63-64.
    [21]宋海翔,龚静,陈雯.雷公藤多甙对DM肾病患者尿单核细胞趋化蛋白的影响 [J].中国中西医结合杂志,2005,5,45-48.
    [22]Simon M,Maresh J qHarris SE et al.Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidne[J].Am J Physiol,1999,27(6):F382-389.
    [23]杨勤,韩冰,谢汝佳等.骨形态发生蛋白-7及抑制性Smads在DM肾病发生发展中的表达变化[J].生理学报,2007,59(2):190-196.
    [24]Klahr S,Morrissey J,Hruska K,et al.New approaches to delay the progression of chronic renal failure[J].Kidney Int,2002,61(suppl 80):23-30.
    [25]Allison MM.Mapping the literature of nephrology nursing[J].J Med Libr Assoc,2006,94(2 Suppl):E74-E79.
    [26]Zhang X L,Selbi W,Motte C,et al.Bone morphogenic protein-7 inhibits monocyte-stimulated TGF-betal generation in renal proximal tubular epithelial cells[J].J Am Soc Nephrol,2005,16(1):9-11.
    [27]Morrissey J,Hruska K,Guo G,et al.Bone morphrogenetic protein-7 improves renal fibrosis and accelerates the return of renal function[J].J Am Soc Nephrol,2002,13(suppl):S14-S21.
    [28]Itoh F,Asao H,Sugamura K,et al.Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads[J].EMBO J,2001,20,4132-4142.
    [29]LiJ H,ZhuH J,Huang X.et al.Smad7 in hibits fibrotic effect of TGF-β_1 on renal tubular epithelial cells by blocking Smad2 activation[J].J Am Socephrol,2002,13(6):1464-1472.
    [30]Zeisberg M,Hanai J,Sugimoto H,et al.BMP-7 countracts TGF-β_1 induces epithelial to mesenchymal transition and revers chronic renalin jury[J].Nal Med,2003,9(7):964-968.
    [31]Wang S,Hirschberg R.BMP-7 antagonizes TGF-beta-depentdent fibrogenesis in mesangial cell s[J].Am J Physiol Renal Physiol,2003,284(5):1006-1013.
    [32]Klahr S,Mordssey J.Obstructive nephropathy and renal fibrosis:The role of bone morphogenetic protein-7 and hepatocyte growth factor[J].Kidney Int,2003,87(11):S105-112.
    [33] Banu N, Mozes MM, Kopp JB, Kopp JB et al. Regulation of inducible class II MHC, costimulatory molecules, and cytokine expression in TGF-betal knockout renal epithelial cells: effect of exogenous TGF-betal. Exp Nephrol, 2002, 10(5-6): 320-331.
    [34] Wang SE Wu FY, Shin I, Qu S, et al. Transforming growth factor {beta} (TGF-{beta} )-Smad target gene protein tyrosine Phosphatase receptor type kappa is required for TGF-{beta} function. Mol Cell Biol, 2005, 25(11): 4703-4715.
    [35] Hruska K A.Treatment of chronic tubulointerstitial disease: a new concept [J]. Kidney Int, 2002, 61 (5): 1911-1922.
    [361] Wahab Nadia Abdel, Mason Roger M. Connective tissue growth factor and renal diseases: some answers [J]. More questions Current Opinion in Nephrology and Hypertension, 2004,13(1): 53-58.
    [37] McLennan SV, Wang XY, MorenoV, et al.Connective tissue growth factor mediates high glucose effects on matrixde gradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy [J].Endocrinology, 2004,145 (12): 5646-5455.
    [38] Murphy M, Godson C, Cannon S, et al. Suppression subtractive hybridization identifies high glucose levels as a stimulus for expression of connective tissue growth factor and other genes in human mesangial cells [J]. J Biol Chem, 1999, 274 (9): 5830- 5834.
    [39] Liu Bi-Cheng, Chen Long, Sun Jing, et al. Connective tissue growth factor mediated angiotensin II-induced hypertrophy of proximal tubular cells [J]. Nephron Experimental Nephrology, 2006,103 (1):16 -26.
    [40] Yokoi H, MukoyamaM, Nagae T, et al. Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis [J].J Am Soc Nephrol, 2004,15 (6): 1430-1414.
    [41] Wahab NA, Yevdokimova N, Weston BS, et al. Role of connective tissue growth factor in the pathogenesis of diabetic nephropathy [J]. Biochem J, 2001, 359: 77-88.
    [42] Ito Y, Goldschmeding R, Bende RJ, et al. Kinetics of connective tissue growth factor expression during exprimental proliferative glomerulonephritis[J]. J Am Soc Nephrol, 2001,12: 472-481.
    [43]Verhulst A, Persy VP, Van Rompay AR,et al. Osteopontin synthesis and localization along the human nephron. J Am Soc Nephrol, 2002,13: 1210-1218.
    [44]Junaid A, Amara FM. Osteopontin: correlation with interstitial fibrosis in human diabetic kidney and PI32kinase2mediated enhancement of expression by glucose in human proximal tubular epithelial cells. Histopathology, 2004,44: 136-146.
    [45] Chow F, Ozols E, Nikolic-Paterson DJ, et al. Macrophages in mouse type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int, 2004; 65: 116-128.
    [46] Utimura R, Fujihara CK, Mattar AL et al. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003; 63: 209-216.