聚驱后复合热泡沫体系性能评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合热泡沫驱油技术是燃烧柴油产生高温烟道气,与含发泡剂的水溶液混合,形成复合热泡沫体系进行驱油,以提高原油采收率的技术。该体系具有泡沫驱油和热力采油的优点,同时又具有一定的二氧化碳驱油和氮气驱油的作用,是一种新的三次采油方法。
     一、对国内外泡沫驱油技术发展状况进行系统调研,论述了复合热泡沫的驱油机理。
     二、用气流法对多种表面活性剂进行热烟道气发泡性能实验,用泡沫综合指数方法进行性能评价,优选出一种能够耐高温的发泡剂HY-3,研究气液比、发泡剂浓度、水质矿化度、稳泡剂、压力、温度等因素对复合热泡沫体系性能的影响,对发泡剂在多孔介质中的吸附滞留量进行了测定。
     三、用热烟道气为泡沫气体,HY-3表面活性剂为发泡剂,模拟实际地层温度和压力条件,利用高压热泡沫装置进行复合热泡沫高压渗流实验,研究岩心渗透率、气液比、岩心非均质性以及注入速度等因素对复合热泡沫在多孔介质中的渗流能力影响。
     四、在高压条件下,选择聚合物和羧甲基纤维素钠作为稳泡剂,进行复合热泡沫体系驱油效果室内实验研究,研究了泡沫段塞大小及组合方式、注入速度、岩心渗透率、温度等因素对复合热泡沫体系驱油效果的影响。
     五、进行数值模拟技术评价,根据油田实际注采井组,建立数学模型和地质模型,进行了井组的含水和采出程度等历史拟合,优化复合热泡沫体系驱油方案。
     研究表明:表面活性剂HY-3是一种效果较好的发泡剂,具有较强的发泡性能和耐高温能力。渗流实验表明,岩心渗透率越高,阻力系数越大,泡沫封堵效果越好;在平均渗透率相近情况下,非均质岩心注入泡沫后的封堵效果明显好于均质岩心;随气液比增大,泡沫渗流阻力亦增大,气液比达到1:1时,可形成稳定的泡沫,气液比太大就出现气窜;注入速度越高,形成泡沫强度越大,泡沫封堵能力越好。
     复合热泡沫体系具有较好的驱油效果,而且随着泡沫段塞和渗透率的增加,驱替压差和泡沫驱采收率随之增加;而注入速度对复合热泡沫驱采收率的影响不大,注入速度从0.35mL/min增加到1.00mL/min,泡沫驱采收率仅增加了1.7%。聚驱后复合热泡沫驱提高采收率的幅度随温度的提高而增加,油层温度为70℃时,复合热泡沫的采收率达到11.39%;油层温度为90℃时,复合热泡沫的采收率达到12.84%;120℃时,聚驱后复合热泡沫的采收率达到16.29%。三管并联分流实验结果表明,注入泡沫后,中、低渗岩心驱油效果和分流效果得到了明显的改善,说明复合热泡沫体系具有较好的调剖作用。
     因此,研究表明在聚合物驱后复合热泡沫驱是一种三次采油新技术,可以有效提高石油采收率。
According to the principle of rocket's engine, the technology of Composite hot foam flooding is proposed. It is that combustion of diesel oil in the combustion chamber produces high temperature and high pressure flue gas, which mixes with the aqueous solution of foaming agent to form Composite hot foam flooding system in order to enhance oil recovery. The system has not only the advantage of foam flooding and thermal flooding, but also playing some roles of carbon dioxide and nitrogen flooding. Therefore, it is a new method of tertiary recovery.
     Firstly, this paper investigated into foam flooding technical development at home and abroad and analyzed the Composite hot foam flooding mechanism.
     Secondly, using hot flue gas as foaming gas, the foamability of a variety of surfactant was tested through air current method. Using foam composite index, the foamability was evaluated. Consequently, foaming agent HY-3 which has high temperature resistant was selected. At the same time, gas-liquid ratio, concentration of foaming agent, water salinity, foam stabilizer, pressure, temperature and other factors were researched how to effect system properties, and adsorption of foaming agent in porous media was measured.
     Thirdly, hot flue gas was chosen as foaming gas and surfactant HY-3 was chosen as foaming agent. Through simulating the actual formation temperature and pressure conditions, using high pressure thermal foam displacement devices, high pressure Composite hot foam seepage experiments were performed in order to study the effect of core permeability, gas-liquid ratio, heterogeneity and injection rate on seepage capacity of the Composite hot foam in porous media.
     Fourthly, under the high-pressure conditions, polymer and sodium carboxymethyl cellulose were chosen as foam stabilizer and Composite hot foam flooding experiments were carried out. In the experiments, size and composition of foam slug, injection rate, core permeability, temperature and other factors how to affect the Composite hot foam system displacement effect was studied.
     Finally, numerical simulation was carried out. In accordance with the actual injection-production well groups, mathematical model and geological model were established. And then using the model, history matching of water cut and degree of reserve recovery were also performed for the purpose of optimization of the Composite hot foam flooding program.
     The research shows that the surfactant HY-3 has better foaming effects, which has strong foaming performance and high temperature resistance. Seepage flow experiments show that the higher permeability is, the bigger resistance coefficient is, and the better sealing characteristic of foam is. Under the same permeability, sealing characteristic of foam in heterogeneous cores is better than that in homogeneous cores. And the greater gas-liquid ratio is, the bigger foam flow resistance is. When gas-liquid ratio reaches 1:1, stable foam can be formed. Furthermore, the higher injection rate is, the stronger foam is, and the better sealing characteristic of foam is.
     Composite hot foam system has good flooding effect, and along with the foam slug and core permeability increasing, displacement differential pressure and foam flooding recovery increases; injection rate has little effect on the Composite hot foam flooding recovery. When injection rate increases from 0.35mL/min to 1.00mL/min, foam flooding recovery increased by only 1.7%. After polymer flooding, Composite hot foam flooding recovery increased with the temperature increasing. When reservoir temperature is 70℃, Composite hot foam recovery reaches 11.39%; when reservoir temperature is 90℃, Composite hot foam recovery reaches 12.84%; in the temperature of 120℃,Composite hot foam recovery reaches 16.29% after the polymer flooding. Three-tube parallel experimental results show that after foam was injected, flooding and diversion effect has been improved obviously in medium and low-permeability cores, which indicates that Composite hot foam system plays a good role of profile control.
     Therefore, the research indicated that the Composite hot foam flooding was a new tertiary recovery technology, which could increase oil recovery effectively after polymer flooding.
引文
1、郭万奎,程杰成,廖广志.大庆油田三次采油技术研究现状及发展方向[J].大庆石油地质与开发,2002,26(3):1-6.
    2、叶仲斌.提高采收率原理[M].北京:石油工业出版社,2000:58-60.
    3、李干佐,翟利民,郑立强,等.我国三次采油进展[J].日用化学品科学,1999,15(1): 1-9.
    4、葛广章,王勇进,王彦玲,等.聚合物驱及相关化学驱进展[J].油田化学,2001,18(3):282-284.
    5、李治龙.我国油田泡沫流体应用综述[J].石油钻采工艺,1993,15(6):88-94.
    6、宋育贤.泡沫流体在油田上的应用[J].国外油田工程,1997,8(1):12-15.
    7、王其伟,郭平,周国华,等.泡沫体系封堵性能影响因素实验研究[J].特种油气藏,2003,10(3):79-83.
    8、贾中胜.泡沫及泡沫驱油室内实验研究[J].油田化学,1986,3(4):279-283.
    9、颜五和,谢尚贤.泡沫与泡沫驱油[J].油田化学,1990,7(4):380-385.
    10、袁士义,刘尚奇,张义堂,等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报,2004,25(1):57-61.
    11、赵文章.稠油注蒸汽热采工程[M].北京:石油工业出版社,1997:458-470.
    12、毛卫荣.孤岛油田中二中Ng5薄层稠油环蒸汽吞吐中后期调整技术[J].油气地质与采收率,2005,12(6):61-63.
    13、陈荣灿,霍进,郭新和.稠油注蒸汽加氮气吞吐试验研究[J].特种油气田,1999,6(3):59-64.
    14、付美龙,易发新,张振华,等.冷43块稠油油藏氮气泡沫调剖实验研究[J].油田化学,2004,21(1):64-67.
    15、吕广忠,刘显太,尤启东,等.氮气泡沫热水驱油室内实验研究[J].石油大学学报(自然科学版),2003,27(5):51-54.
    16、廖广志,李立众,孔繁华,等.常规泡沫驱油技术[M].北京:石油工业出版社,1999:1-6.
    17、陈玉英,刘子聪,陈清伟,等.百色油田泡沫驱油效果初步分析[J].油田 化学,1998,15(2):141-145.
    18、翁高富.百色油田上法灰岩油藏空气泡沫驱油先导试验研究[J].油气采收率技术,1998,5(2):6-11.
    19、付继彤,张莉,尹德江,隋志起.强化泡沫的封堵调剖性能及矿场试验[J].油气地质与采收率,2005,12(5):47-49.
    20、吴文祥,姜海峰.多元泡沫分流作用及其驱油效果影响因素研究[J].油田化学,2002,6(2):173-177.
    21、王增林,王其伟.强化泡沫驱油体系性能研究[J].石油大学学报(自然科学版),2004,8(3):49-51.
    22、伍晓林,陈广宇,张国印.泡沫复合体系配方的研究[J].大庆石油地质与开发,2000,19(3):27-29.
    23、Fried A.N. The Foam Drive Process for Increased Recovery of Oil[C]. United States Bureau of Mines Report#5866,1961
    24、Heller J.P.,Lien C.L.and Kuntamukkula M.S.. Foam-Like Dispersions for Mobility Control in CO2 Floods[C]. SPE 11233,1982
    25、Hadlow R.E.Update of industry Experience with CO2 Injection[C].SPE 24928 1992
    26、Bond D.G. and Bernard G.G.. Rheology of Foams in Porous Media[C]. The SPE-AIChE Joint Sympoosium, Dallas,1966
    27、Bernard G.G.. Effect of Foam on Recovery of Oil by Gas-Drive[M]. Producers Monthly,1963:18-21
    28、David L H. Improvements Enhance CO2,Flooding[J]. SPEJ,1997,40(9): 113-116.
    29、David A. and Marsden S.S. The Rheology of Foams[C]. SPE 2544,1969
    30、Kolb G.E. Several Parameters Affecting the Foam-Drive Process for the Removal of Water From Consolidated Porous Media[C]. M.S.Thesis.Penn State U., 1964
    31、Holm L.W.. Foam injection Test in the Siggins Field[J]. Illinois. J.Pet.Tech,1970: 1499-1506
    32、Grigg R.B.and Schechter D.S..State of the Industry in CO2 Floods[C]. SPE 38849,1997
    33、王克亮,王凤兰,李群,等.改善聚合物驱油技术研究[M].北京:石油工业出版社,1997:1-3.
    34、王其伟,周国华,郭平,等.DP-4泡沫剂应用于油田采油的试验研究[J].精细石油化工进展,2002,3(11):37-40.
    35、伍晓林,陈广宇,张国印.泡沫复合体系配方的研究[J].大庆石油地质与开发,2000,19(3):27-29.
    36、杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社.2004:8-12.
    37、王天鹏,冷42断块CO2吞吐试验研究[J].特种油气藏,2003,10(增刊):123-126.
    38、白凤瀚,申友青,孟庆春,等.雁翎油田注氮气提高采收率现场试验[J].石油学报,1998,19(4):61-68.
    39、赵长久,麻翠杰,杨振宇,等.超低界面张力泡沫体系驱先导性矿场试验研究[J].石油勘探与开发,2005,32(1):127-130.
    40、刘向斌,韩重莲,王波.泡沫在碳酸盐岩心中的流动性和吸附性[J].国外油田工程,2007,23(1):18-20.
    41、于会宇,黄梅.泡沫复合驱应用方案的模拟评价[J].地质调查与研究,2006,29(2):145-149.
    42、周莉,刘波.PEP与阴离子表面活性剂复配体系泡沫性能的研究[J].功能高分子学报2001,12(4):461-464.
    43、曹正权,马辉,姜娜,等.氮气泡沫调剖技术在孤岛油田热采井中的应用[J].油气地质与采收率,2006,13(5):75-77.
    44、周国华,宋新旺,王其伟,等.泡沫复合驱在胜利油田的应用[J].石油勘探与开发,2006,33(3):369-373.
    45、刘泽凯,闵家华.泡沫驱油在胜利油田的应用[J].油气采收率技术,1996,3(3):23-29.
    46、贾忠盛.泡沫及泡沫驱油室内实验研究[J].油田化学,1986,3(4):279-283.
    47、韩显卿编著.提高采收率原理[M].北京:石油工业出版社,1993:134-193.
    48、赵长久,么世椿,鹿守亮,等.泡沫复合驱研究[J].油田化学,2004,21(4):358-360.
    49、杨承志,黄琰华,刘彦丽,等.泡沫驱油过程中发泡剂分配方式的研究[J].石油勘探与开发,1985,12(3):57-64.
    50、侯吉瑞.化学驱原理与应用[M].北京:石油工业出版社,1998:54-59.
    51、周伟,肖建洪,陈辉,等.发泡剂筛选试验及在油井堵水调剖中的应用[J].江汉石油学院学报,2002,24(1):64-65.
    52、陈惟明,乌效鸣.泡沫体系流动特性的初步测试分析[J].探矿工程,1993,25(3):3-5.
    53、姜继水,宋吉水.提高石油采收率技术[M].北京:石油工业出版社,1999:46-49.
    54、王其伟,曹绪龙,周国华,等.泡沫封堵能力试验研究[J].西南石油学院学报,2003,25(6):40-43.
    55、钟双飞,维新俊.泡沫稳定性能评价及泡沫分流效果试验研究[J].西南石油学院学报,2003,25(1):34-36.
    56、郭平,孙良田,李士伦,等.CO2注入对原油高压物性影响的理论模拟和实验研究[J].天然气工业,2003,20(2):79-80.
    57、赵明国,刘崇江.CO2注入方式对芳48油藏开发效果的影响[J].新疆石油地质,2006,27(4):449-451.
    58、周明,杨燕,蒲万芬.应用微观模型研究NTCP泡沫驱油机理[J].试采技术,2002,23(3):32-34.
    59、赵福麟.EOR原理[M].北京:石油大学出版社,2001:66-67.
    60、杨彪,于永,李爱山.CO2驱对油藏的伤害及其保护措施[J].石油钻采工艺,2002,24(4):42-44.
    61、郝永卯,陈月明,于会利.CO2驱最小混相压力的测定与预测[J].油气地质与采收率,2005,12(6):64-66.
    62、陈荣沂.表面活性剂化学与应用[M].纺织工业出版社,1990:2-5.
    63、郑忠.表面活性剂的物理化学原理[M].华南理工学出版社,1995:13-15.
    64、王云峰,张春光.表面活性剂及其在油气田中的应用[M].北京:石油工业 出版社,1995:10-12.
    65、杨金华,曹亚,李惠林.高分子表面活性剂与原油形成超低界面张力的研究[J].精细化工,1999,16(2):3-6.
    66、周静,谭永生.稳定泡沫流体的机理研究[J].钻采工艺,1999,22(6):75-78.
    67、杨燕,蒲万芬,周明.驱油泡沫稳定剂的性能研究[J].西南石油学院学报,2002,24(3):60-62.
    68、徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000:22-24.
    69、朱友益,韩冬,沈平平.表面活性剂结构与性能的关系[M].北京:石油工业出版社,2003:1-6.
    70、赵福麟.采油化学[M].北京:石油大学出版社,1989:21-26.
    71、王培义,徐宝财,王军.表面活性剂—合成·性能·应用[M].北京:化学工业出版社,2007:230-233.
    72、赵国玺.表面活性剂物理化学(修订版)[M].北京:北京大学出版社,1991:56-59.
    73、陆先亮,陈辉,栾志安,等.氮气泡沫热水驱油机理及实验研究[J].西安石油学院学报,2003,18(3):49-52.
    74、刁素,蒲万芬,赵金州,林波,等.新型耐温抗高盐驱油泡沫体系的性能[J].精细石油化工,2007,24(2):1-4.
    75、周明,蒲万芬,王霞,赵金洲.抗温抗盐泡沫复合驱驱油特性研究[J].钻采工艺,2007,30(2):112-114.
    76、刘中春,侯吉瑞,岳湘安,等.泡沫复合驱微观驱油特性分析[J].石油大学学报(自然科学版),2003,27(1):49-53.
    77、David L. H. Chemistry, physicalnature and rheology of aqueous stimulation foams[J]. Society of Petroleum Engineers Journal,1981,21(4):410-414.
    78、Patton J. T., Holbrool S.T. Rheology of mobility control foams[J]. Society of Petroleum Engineers Journal,1983,18(3):456-460.
    79、谢剑耀,樊世忠.泡沫稳定性[J].油田化学,1988,5(1):56-63.
    80、李作锋,潭惠民.表面活性剂混合体系的起泡性和泡沫稳定性[J].油气田地面工程,2003,22(4):13-15.
    81、万里平,孟英峰,赵晓东.泡沫流体稳定性机理研究[J].新疆石油学院学 报,2003,15(1):38-41.
    82、樊西惊.原油对泡沫稳定性的影响[J].油田化学,1997,14(4):384-388.
    83、于书平,张正英,樊西惊.酸性条件下泡沫的稳定性[J].油田化学,1994,11(1):70-73.
    84、钱昱,张思富,吴军政,等.泡沫复合驱泡沫稳定性及影响因素研究.大庆石油地质与开发,2001,20(2):33-35.
    85、李兆敏,唐晓红,王渊.DY-1高温发泡剂的流变性和稳定性研究[J].钻采工艺,2005,28(3):91-92.
    86、张黎明,黄少杰,陈丹青.羧甲基纤维素钠/羟乙基纤维素复合溶液的性能[J].应用化学,1998,10(5):115-116.
    87、鹿守亮,周润才.砂岩油藏中成功二氧化碳泡沫驱的表面活性剂标准[J].国外油田工程,2002,18(2):1-5.
    88、周明,蒲万芬,杨燕.NTCP泡沫体系的注入方式及驱油效率[J].西南石油学院学报,2003,25(1):62-64.
    89、Vassenden. Foam propagation on semi-reservoir scale [C]. SPE 58047,1999.
    90、Mannhardtk. Comparative evaluation of foam stability [C]. SPE 60686,2000.
    91、Yaghoobi, Hossein. Laboratory investigation of parameters affecting CO2-foam mobility in sandstone at reservoir conditions[C]. SPE 29168,1994.
    92、王载肱,张余善译.阴离子表面活性剂[M].轻工业出版社,1983:3-6.
    93、汤小燕,蒲万芬,杨燕.阳离子双子表面活性剂的静态吸附行为研究[J].精细石油化工进展,2005,6(8):12-15.
    94、段世铎,王万兴.非离子表面活性剂[M].中国铁道出版社,1990:5-8.
    95、王克亮,冷德富,仇凯,等.HY-3型表面活性剂发泡性能室内评价[J].大庆石油地质与开发,2008,27(3):106-109.
    96、Mungan N. Enhanced Oil Recovery Using Water as a Driving Fluid-Part4: Fundamentals of Alkaline Flooding[J]. World Oil,1981:9-20.
    97、Raimondi Pet .Alkaline Water Flooding Design and Implementation of a Field Pilot [J]. J.pet.Tech,1977:59-68.
    98、Karin Mannhardt. Comparative Evaluation of Foam Stability[J]. SPEJ,2000: 23-33.
    99> Francols Friedmann, W. H. Chen and P. A. Gauglitz. Ex-perimental and simulation study of high-temperature foam displacement in porous media[C]. SPE17357,1991.
    100、程浩.泡沫驱数值模拟进展[J].断块油气田,1998,7(5):26-30.
    101、张烈辉.泡沫驱经验模型及应用[J].西南石油学院学报,2000,22(3):50-52.
    102、陈国,廖广志,牛金刚.多孔介质中泡沫流动等效数学模型[J].大庆石油地质与开发,2001,20(2):72-74.