稠油油藏混气表面活性剂驱技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对普通稠油油藏的特点,提出了混气表面活性剂驱提高采收率技术。为满足混气驱用表面活性剂乳化性能好、起泡能力高的要求,设计了双子型非离子-阴离子表面活性剂。首先优化了合成双子型非离子-阴离子表面活性剂所需中间体——双子二醇的条件,在此基础上合成了硫酸盐双子型非离子-阴离子表面活性剂。评价表明,分子中含有5个氧丙烯链节的硫酸盐非离子-阴离子双子表面活性剂9BS-5-0起泡能力与常用表面活性剂AOS相当;9BS-5-0使用质量分数为0.3%时可将油水界面张力降至0.028mN/m,优于胜利石油磺酸盐和重烷基本磺酸盐(高于0.05mN/m);其乳化能力则远好于胜利石油磺酸盐、重烷基本磺酸盐和AOS等表面活性剂。以新型表面活性剂9BS-5-0为主剂,通过与碱、甜菜碱复配,界面张力可达超低,乳化效果好(低于250转/min),起泡能力强(泡沫半衰期长达6min、起泡体积高于500ml)的有碱复合体系、无碱复合体系,可分别作为氮气混气驱、二氧化碳混气驱用表面活性剂复合体系。
     以9BS-5-0构建的驱油体系为基础,进行了混气驱岩心封堵试验。结果发现,相同气液比时,泡沫对渗透率为2.409μm2、3.340μm2的亲油岩心具有较好的封堵效果,而对于渗透率为0.286μm2的亲油岩心封堵效果较差;与此相反,对于亲水岩心,渗透率越低,泡沫封堵性能越好。通过对比岩心中聚丙烯酰胺溶液的封堵能力发现,气液比分别为0.1、0.125的泡沫在渗透率为2.409μm2、3.340μm2的亲油岩心中所生产的阻力系数与粘度为40mPa·s的聚丙烯酰胺所产生的阻力系数相当,气液比为0.156的泡沫在渗透率为1.627μm2的亲水岩心所生产的阻力系数与粘度为20mPa·s的聚丙烯酰胺所产生的阻力系数相当,说明低气液比的泡沫对一定渗透率的岩心可具有好的封堵效果,为低气液比泡沫驱提供了支持。以50℃下粘度为327mPa·s的桩西稠油为对象,对混气表面活性剂驱进行物理模拟,研究表明气液比采用0.15~0.2时的混气驱即可取得较好的采油效果。微观驱油试验表明,混气驱通过乳化机理提高了驱油剂的洗油效率,通过贾敏效应提高了驱油体系的波及系数,通过泡沫的挤压携带作用将盲孔和管壁中的残余油驱替出来。
     在室内试验的基础上,在桩106区块3个井组进行了混气表面活性剂驱矿场试验,到2009年9月底,不考虑递减累计净增油14128t,井组综合含水最高下降5.11%,取得了较好的经济效益。
Gas-surfactant flooding technology was proposed for conventional heavy oil reservoirs. The surfactants must have good emulsifying power and foaming ability, hence the molecular sructure of a nonionic-anionic Gemini surfactant was designed. A series of sulfate nonionic-anionic Gemini surfactants were synthesized after optimizing the synthetic conditions of their intermediate—Gemini diol. Then the foaming ability and the capacity to reduce IFT of these Gemini surfactants were evaluated. The results show that the Gemini surfactant of 9BS-5-0 which contains five oxypropylene groups has equivalent foaming ability with the common surfactant AOS; 9BS-5-0 with the mass fraction of 0.3% can lower IFT to 0.01mN/m, exibiting better performance than Shengli petroleum sulfonate and heavy alkylbenzene sulfonate ( more than 0.05mN/m ); Furthermore, its emulsifying capacity is much higher than these common surfactants too. Alkali and alkali-free compound systems can be obtained by combining 9BS-5-0 respectively with alkaline and betaine. The two systems have goog ability to reduce interfacial tension and emulisify crude oil ( minimum rotation rate is lower than 250r/min ), and good foaming ability ( foaming volume is larger than 500ml). So they can be used in N2-surfactant and CO2-surfactant flooding.
     Gas-surfactant core plugging tests were carried out with the displacing systems developed from 9BS-5-0. The results indicated that the foams generated under the same gas/liquid ratio have better plugging effect on the oil-wet cores with permeability of 2.409μm2 and 3.340μm2, but worse plugging effecton the one with permeability of 0.286μm2. While for the water-wet cores, the lower permeability, the better plugging effect. The comparison and analysis of the plugging ability difference between foam and HPAM indicate that foams with GLR 0.1, 0.125 obtain the same resistance coefficient as HPAM solution with viscocity of 40mPa·s in oil-wet cores whose permeabilities are 2.409μm2 and 3.340μm2, and for the water wet core with permeability of 1.627μm2, the resistance coeifficent generated by foam with gas and liqulid ratio of 0.156 is as large as that generated by HPAM solutuin with viscocity of 20mPa·s. So it can be improved that low gas/liquid ratio foam has good plugging effect on the core with a certain permeability and provides support for the foam flooding with low gas and liqulid ratio. Gas-surfactant core flooding tests for Zhuangxi heavy oil (327mPa·s at 50℃) suggest that gas-surfactant systems with gas-liquid ratio ranging from 0.15 to 2.0 can achieve relatively high oil recovery. Micromodel flood tests show that the gas-surfactants can improve displacement efficency by emulsifying and sweep efficiency by Jamin effect, and drive residual oil in blind ends and on pore walls by compression and entrainment of foam.
     Based on lab tests, gas-surfactant flooding pilot tests were carried out in three well groups of Zhuang106 block. The cumulative net oil increment amounted to 14128t regardless of production decline, and composite water cut was reduced by a maxium of 5.11% by the end of September, 2009.
引文
[1]沈平平.大幅度提高采收率的基础研究[J].中国基础科学,2003,(2):9-14.
    [2]袁士义,刘尚奇,张义堂,等.热水添加氮气泡沫驱提高稠油采收率研究[J].石油学报,2004,52(1):57-65.
    [3] Subknow P. Process for the removal of bitumen from bituminous deposits [P]. US 2288857, 1942.
    [4] Jenning H.Y. A caustic water flooding process for heavy oils [Z]. SPE 4741, 1974.
    [5] Ender Okandan. Improvement of water flooding of a heavy crude oil by adding of chemicals to injection water [Z]. SPE 6597, 1976.
    [6] M.W.Alam. Mobility control of caustic flood [Z]. SPE14179,1986.
    [7] Qiang Liu, Mingzhe Dong, Shanzhou Ma, et al. Surfactant enhanced alkaline flooding for westen Canadian heavy oil recovery[J]. Colloids and Surface A: physicochem. Eng.A spects, 2006, 273: 219-228.
    [8] Q.Liu, M.Dong and S.Ma. Alkaline/ surfactant flood potential in Western Candian heavy oil reservoirs [Z]. SPE99791, 2006.
    [9]史权.用化学方法提高稠油油藏采收率[J].国外油田工程,2002,18(4):1-10.
    [10]黄立信,田根林.化学吞吐开采稠油试验研究[J].特种油气藏,1996,3(1):44-50.
    [11]吴国庆,黄立信,陈立峰.稠油化学吞吐技术研究[J].西安石油学院学报,2000,15(2):29-34.
    [12]何志勇,徐新俊,贾金辉,等.大港油田官109-1断块稠油油藏碱/表面活性剂吞吐采油技术[J].油田化学,2006,23(2):116-119.
    [13]周雅萍,刘其成,孟平平.碱/表面活性剂改善千22块普通稠油开采效果实验研究[J].特种油气藏,2000,7(2):39-43.
    [14]张润芳,王纪云,张燕,等.古城油田B125断块表面活性剂驱技术[J].石油钻采工艺,2005,27(4):51-55.
    [15]李宜坤,赵福麟,王业飞.以丙酮作溶剂合成烷基酚聚氧乙烯醚羧酸盐[J].石油学报(石油加工),2003,19(2):33-38.
    [16] Kenoth.H.Flournoy, Russell D.Shupe, surfactant oil recovery process usable in formations containing water having high concentration of polyvalent ions such as calcium and magnesium [P].US 3811507, 1974.
    [17] Water W.Gale, Rhoderick.K.Saunders, Thomas.L.Ashcraft. oil recovery method using asurfactant [P].US 3977471, 1976.
    [18] Rusell.D.Shupe. surfactant oil recovery process usable in high temperature formation [P]. US 4018278, 1977.
    [19] Rusell.D.Shupe. surfactant oil recovery process usable in high temperature formation,high salinity formations [P]. US 4077471, 1978.
    [20] V.K.Bansal, D.O.Shah. The effect of ethoxylated sulfonates on salt tolerance and optimical salinity of surfactant formulations for tertiary oil recovery [Z].SPE 6696, 1978.
    [21] Walter W.Gale, Maura C.Puerto, Thomas L.Ashcraft, et al. Propoxylatedethoxylated surfactants and method of recovering oil there with [P]. US 4293428, 1981.
    [22] Rusell.D.Shupe. process for secondary oil recovery utilizing propoxylated ethoxylated surfactants in seawater [P].US 4886120, 1989.
    [23] Scott L.Wellington, Edwin A.Richardson. Low surfactant concentration enhanced waterflooding [Z]. SPE 30748, 1997.
    [24] A.M.Michel, R.S.Djojosoeparto, Henk Haas, et al. Enhanced waterflooding design with dilute surfactant concentrations for north sea conditions [Z]. SPE 35372, 1996
    [25] J.M.Maerker, W.W.Gale. Surfactant flood process design for Loudon [Z]. SPE 20218, 1992.
    [26] Shekhar Jayanti, Larry N.Britto,Varadarajan Dwarakanath. Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones [J]. Environ.Sci. Technol, 2002, 36: 5491-5497.
    [27] Y.Wu, P.Shuler, M.Blanco, et al. A study of branched alcohol propoxylated surfactants for improved oil recovery [Z]. SPE 95404, 2005.
    [28] D.B.Levitt, A.C.Jackson, L.N.Britton, et al. Identification and evaluation of high- performance EOR surfactant [Z]. SPE 100089, 2006
    [29] Kishore K. Mohanty. Dilute surfactant methods for carbonate formations [R]. DE-FC 26- 02 NT 15322, 2005.
    [30]王业飞,焦翠,赵福麟.羧甲基化的非离子型表面活性剂与石油磺酸盐的复配试验[J].石油大学学报,1996,20(4):52-55.
    [31]靳志强,王涵慧,俞稼镛.Guerbet十四醇聚氧乙烯醚硫酸钠的合成与表面活性[J].精细化工,2002,19(8):435-439.
    [32] A.Skauge, O.Palmgren. Phase behavior and solution properties of ethoxylated anionic surfactants [Z], SPE 18499, 1989.
    [33] L.D.Talley. Hydrolytic stability of ethoxylated sulfonates [Z].SPE 18492, 1989.
    [34] L.D.Talley. Hydrolytic stability of alkylethoxy sulfates [Z]. SPE 14912, 1988.
    [35]马文辉,梁梦兰,袁红,等.稠油低温乳化降粘剂BL-1的研制及反应[J].油田化学,2002,19(2):134-135.
    [36]李明忠,赵国景,张乔良,等.耐盐稠油降粘剂的研制[J].精细化工,2004,21(5):380-384.
    [37]葛际江,张贵才,李德胜.OPS和OPC系列稠油乳化降粘剂的研制[J].油田化学,2007,24(1):30-33,74.
    [38] Qiang Liu, Mingzhe Dong, Shanzhou Ma, et al. Surfactant enhanced alkaline flooding for westen Canadian heavy oil recovery [J]. Colloids and Surface A: physicochem. Eng.A spects, 2006, 273:219-228.
    [39]赵福麟.采油用化学剂的研究进展[J].中国石油大学学报,2007,31(1):163-172.
    [40] T.F.More, Junior Member, R.L.Slobod et al. Displacement of oil by water-effect of wettability,rate,and viscosity on recovery[Z]. SPE502,1955
    [41] Necmettin Mungan. Role of wettability and interfacial tension in water flooding [Z]. SPE 705, 1963.
    [42] O.R.Wagner, R.O.Leach. Effect of interfacial tension on displacement efficiency [Z]. SPE1564, 1966.
    [43] J.J.Taber. Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water [Z]. SPE 2098, 1968.
    [44] W.R.Foster. A low-tension waterflooding process. SPE 3803, 1973.
    [45]陈中华,李华斌,曹宝格,等.复合驱中界面张力数量级与提高采收率的关系研究[J].海洋石油,2005,25(3):53-57.
    [46]朱怀江,杨普华.化学驱中动态界面张力现象对气体效率的影响[J].石油勘探开发,1994,21(2):74-80.
    [47]贾忠伟,杨清彦,侯战捷.油水界面张力对三元复合驱驱油效果的影响研究[J].大庆石油地质与开发,2005,24(5):79-81.
    [48] Ramesh Varadaraj, Jan Bock, Paul Valint. Foundamental interfacial properties of alkyl-branched sulfate and ethoxy sulfate surfactants derived from guerbet alcohols. 1.surface and instantaneous interfacial tensions [J]. J.Phys.Chem., 1991, 95:1671-1676.
    [49] William A.GoddradⅢ, Yongchun Tang. Lower cost methods for improved oil recovery via surfactant flooding [R]. DE-FC 26- 01 BC 15362, 2004.
    [50] Richard F.Tabor, Sarah Gold. Electron density matching as a guide to surfactant design[J]. Langmuir, 2006, 22:963-968.
    [51] A.Skauge, O.Palmgren. Phase behavior and solution properties of ethoxylated anionic surfactants[Z], SPE 18499, 1989.
    [52] Milton J. Rosen, Hongzhuang Wang, Pingping Shen,et al. Ultralow Interfacial Tension for Enhanced Oil Recovery at Very Low Surfactant Concentrations [P]. Langmuir 2005, 21, 3749-3756.
    [53] I.Lakatos. Effect of IOR/EOR chemicals on interfacial rheological properties of crude oil/ water systems [Z]. SPE65391, 2001.
    [54] D.T.Wasan, S.M.Shah, N.Aderangi, et al. Observation on the coalescence behavior of oil droplets and emulsion stability in enhanced oil recovery [Z]. SPE 6846, 1077.
    [55] L.W.莱克.提高石油采收率的科学基础[M].李宗田,侯高文,赵炜译.北京:石油工业出版社,1992:264-285.
    [56] Douglas Arnell, Malcolm. Jie Qi. Poison Spider field chemical fllod project [R]. DE-FG 26 -03 NT 15439, 2004.
    [57]牟建海,李干佐.三元复合驱低浓度体系相行为及中间混合层结构分析[J].中国科学(B辑),2002,32(1):1-6.