零重力环境模拟气动悬挂系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了模拟低频空间结构在地面进行动力学测试时的零重力环境,研制出一种高精度的气动悬挂系统,解决了系统设计中所涉及的气动关键技术问题。首先,设计了基于内部供压节流孔支撑的气悬浮无摩擦气缸,提出了基于非支配排序遗传算法的气缸结构多目标优化方法。然后,采用两级阀芯的活塞式结构,研制了一种高精度的气动比例压力阀,其稳态压力控制精度高达0.25KPa。建立了气动悬挂系统的非线性数学模型,分析了各系统参数对系统静/动态特性、控制性能和垂直悬挂频率的影响,并提出基于高精度压力传感器和比例阀的恒压鲁棒控制方法。实验结果表明,气动悬挂系统的总摩擦力小于0.0098N,稳态压力波动小于25Pa,实现了无摩擦、高精度的设计要求,证明了系统方案的可行性和有效性。
     论文的主要内容如下:
     第一章,介绍了地面零重力环境模拟系统的结构形式、主要特点和使用范围,总结了悬挂系统的国内外研究状况,阐述了气动悬挂系统开发中所涉及的气动关键技术及其相关的研究进展,最后概述了本课题的研究意义和研究内容。
     第二章,基于气体润滑的基本原理设计了基于内部供压节流孔支撑的气悬浮式无摩擦气缸;建立了活塞和缸壁间隙内的气体压力分布、气体泄漏流量和活塞径向承载能力的数学模型,仿真分析了气缸压力、缸筒与活塞间隙以及活塞结构参数变化对气缸性能的影响;提出了一种基于非支配排序遗传算法的气缸结构多目标优化设计方法,实现了气缸结构参数的匹配优化。最后,通过实验验证了所建模型的正确性和优化方法的有效性。
     第三章,设计了一种高精度气动比例压力阀,采用两级阀芯的活塞式结构,以比例电磁铁为控制元件,电反馈闭环控制,该阀输出压力为0~0.5MPa,稳态精度高达0.25KPa。建立了比例阀的非线性动态模型,分析了主要物理和几何参数对系统动态特性和控制性能的影响;构建输出因子调整的模糊自适应比例加积分控制器,并利用ATmega16单片机实现了压力设定范围内的快速高精度控制。最后,对比例压力阀的性能进行了实验测试。
     第四章,建立了比例压力阀控制的气动悬挂系统的完整数学模型,仿真分析了气源压力和温度、储气罐容积、连接管路长度和直径等关键物理参数对系统动态特性和控制性能的影响,推导了气动悬挂系统垂直悬挂频率的理论模型,分析了系统参数对于垂直悬挂频率的影响。
     第五章,提出了气动悬挂系统的高精度压力控制方法,采用高楠度比例阀作为气动控制元件,使用高精度压力传感器检测气缸压力进行闭环反馈控制,并提出了两种高性能的鲁棒控制策略,实现了系统在模型参数变化和外部扰动时的高精度恒压控制,最终稳态压力波动小于26Pa。第一种控制方案将智能控制技术引入到控制器设计中,提出了基于比例压力阀的智能复合控制算法,并采用实数编码遗传算法对控制器的参数进行整定优化。第二种方案则采用比例流量阀控制,采用输入输出线性化方法导出了系统的二阶标称模型,设计了基于观测器和等效控制的模糊滑模变结构控制器。最后,通过仿真实验对两种控制器的动、静态特性和鲁棒性进行了分析和验证。
     第六章,研制了基于双无摩擦气缸驱动的气动悬挂系统试验台,详细设计了悬挂装置、控制系统硬件和软件平台。采用智能复合控制器和模糊滑模控制器分别进行了压力阶跃响应、突变干扰、气源压力变化、活塞往复运动等多种恒压控制实验,分析了控制器的性能和控制参数对系统的影响。最后,对系统的摩擦力进行了测试。
     第七章对本论文的主要工作、研究结论和创新点进行了总结,展望了未来的研究工作。
To simulate the zero-gravity environment for dynamic testing of low frequency space structures,a high precision pneumatic suspension system(PSS) is developed and some pneumatic key technological problems in design of the suspension system are solved.First of all, a type of air-suspending frictionless cylinders is designed based on inner gas pressure supporting by orifice restrictors,and a multi-objective optimization design method of the cylinders using nondominated sorting genetic algorithm is proposed to optimize the structural parameters.Then a high precision pneumatic proportional pressure valve is developed by adopting plunger-type structure with two-stage poppet,and the steady-state precision of pressure control is no less than 0.25KPa.A nonlinear mathematical modle of the PSS is built,and the effects of main system parameters on static/dynamic characteristics,control performance and plunge suspension frequency of the PSS are analyzed.After that a constant pressure robust control method based on a high precision pressure sensor and proportional valves is proposed to achieve high precision of pressure control.Experimental results show that the total friction force of the PSS is less than 0.0098N,and the steady-state pressure flunctuation is less than 25Pa,which meet the demand of no friction and high precision,and verify the feasibility and validity of the system scheme.
     The main contents of this dissertation are as follows:
     In chapter 1,structural style,main charateristics and range of application of the zero-gravity environment simulation system on the ground are introduced.The current stage in domestic and foreign research of suspension system is summarized.Some pneumatic key technologies in development of the PSS and related research progress are explained.Finally,necessity and main contents of this project are illustrated briefly.
     In chapter 2,using the theory of aerostatic lubrication,a type of air-suspending frictionless cylinders is designed based on inner gas pressure supporting by orifice restrictors.The mathematical models of gas pressure distribution in the clearance between the cylinder and the piston,gas leakage and radial load capacity are established and the influences of gas pressure, clearance and structural parameters on cylinder performances are analyzed by simulation.A multi-objective optimization design method of the cylinders using nondominated sorting genetic algorithm is proposed to achieve structural parameters matching optimization.At last correctness of the modles and validity of the optimization method are verified by experiments.
     In chapter 3,a high precision pneumatic proportional pressure valve is designed.The valve adopts plunger-type structure with two-stage poppet.A proportional electromagnetic actuator is used as control component and the control strategy is electric closed-loop feedback.The output pressure ranges from 0 to 0.5MPa and the steady-state precision is no less than 0.25KPa.A nonlinear dynamic model is developed to analyze the effects of main physical and geometrical parameters on the valve's dynamic behavior and control.A self-adaptive fuzzy proportional plus integral controller with adjusting output scale factor is designed for high precision and quickly control of different pressure target values,and carried out based on single chip-microcomputer ATmega16.Finally,some performance tests of the propotional valve are carried out.
     In chapter 4,a completely mathematical model of the PSS controlled by proportional pressure valve is established,and the influences of key physical parameters on dynamic behavior and control performance of the system are analyzed by simulation method.The key parameters include the pressure and the temperature of air source,the volume of air tank,the length and the diameter of connecting tubes and so on.Finally,theoretical modle of vertical plunge frequency is deduced and the effects of system parameters on the vertical plunge frequency are analyzed.
     In chapter 5,a high precision pressure control method of the PSS is proposed.High precision proportional valves are used as control component;meanwhile a high precision pressure sensor is adopted to detect the cylinder pressure for close-loop feedback control.Then two high performance robust control strategies are proposed and the steady-state pressure fluctuation is less than 26Pa which realizes high precision constant pressure control while the system has the parametric changes of the model and external disturbances.In the first control scheme,intelligent control techniques are introduced to controller design.An intelligent hybrid control algorithm using proportional pressure valve is put forward and the tuning parameters of the controller are optimized based on real code genetic algorithm.In the following control scheme a proportional flow valve is utilized.The second-order norm form model is achieved by using input-output linearization approach and a fuzzy sliding mode controller is developed combined with equivalent control and observer of the valve orifice area.At last,dynamic,static characteristics and robustness of the two controllers are analyzed and verified by simulation.
     In chapter 6,a pneumatic suspension system test platform is developed based on the two frictionless pneumatic cylinder actuators.Pneumatic suspension device,hardware and software of the control system are designed in detail.Various constant pressure control experiments including pressure step response,sudden disturbances,air source change and alternate motion of the piston,are made using the intelligent hybrid controller and the fuzzy sliding mode controller respectively.The performance of the controllers and the effects of control parameters on system are analyzed.Finally,the total friction force of the PSS is measured.
     In chapter 7,main research work,conclusions and innovation points of the dissertation are summarized and the future research proposals are suggested.
引文
[1]岳继光,傅周东,谢英俊等.微重力环境与微重力落塔的液压上抛发射系统.中国机械工程,2000,11(6):660.
    [2]朱毅麟.正确认识微重力.国际太空,2002,2:24-26.
    [3]李德葆,陆秋海.实验模态分析及其应用.北京:科学出版社,2001.
    [4]Kienholz,D.Defying gravity with active test article suspension systems.Journal of Sound and Vibration,1994,14:14-21.
    [5]Fischer,A.Pellegrino,S.Interaction between gravity compensation suspension system and deployable structure.Journal of Spacecraft and Rockets,2000,37(1):93-99.
    [6]Fischer,A.Gravity compensation of deployable space structures.Ph.D.Thesis,Pembroke College,The University of Cambridge,Cambridge,U.K.,Nov.,2000.
    [7]杨桂春.卫星密封舱内流动的地面模拟实验及数值计算:[硕士学位论文].北京:北京工业大学,2002.
    [8]谭莉.NASA的微重力模拟实验设备简介.载人航天信息.1997,(12):34-36.
    [9]Emily S.Trying out zero gravity.IEEE Potentials,August/September,1998,17(3):38-41.
    [10]张孝谦,袁龙根,吴文东等.国家微重力实验室百米落塔实验设施的几项关键技术.中国科学E辑:工程科学,2005,35(5):524-525.
    [11]田兰桥.国家微重力实验室介绍.-物理,1998,27(3):179-184.
    [12]冯庆义,李俊峰,王天舒.气动壳体结构中性浮力模拟失重动力学分析研究.航天医学与医学工程.2005,18(3):182-185.
    [13]周国兴.微重力模拟的比较研究.载人航天信息.1995,(6):4-7.
    [14]Jagannathan S.,Fenn R.C.,Johnson B.G..Low-cost active anti-gravity suspension system.Proceedings of the 14th American Control Conference,Seattle.1995.
    [15]李季苏,牟小刚,孙维德等.大型卫星三轴气浮台全物理仿真系统.控制工程(北京),2001,(3):22-26.
    [16]李德葆,陆秋海.工程振动试验分析.北京:清华大学出版社,2004.
    [17]Ikegami R.,Eckblad M.Z.,Blackman J.E.,et.al.Zero-g ground test simulation methods.Proceedings of the 11th Aerospace Testing Seminar,October 11-13,Manhattan Beach,CA 1988:215-226.
    [18]Woodard S.E.,Cooley V.M.NASA CSI suspension methods overview.NASA/DOD Controls-Structures Interaction Technology,1989:317-333.
    [19]Hensley D.,Smith K.,Doane B.,et al.Implementation of an airbag suspension system for the global hawk ground vibration test.Proceedings of SPIE—The International Society for Optical Engineering,1997,3089:838-844.
    [20]David C.C,George W.W.Zero gravity simulation for dynamic testing of pointing mounts.AIAA,1983:865-873.
    [21]Farhad A.A robotic testbed for zero-g emulation of spacecraft.1EEE/RSJ International Conference on Intelligent Robots and Systems,Edmonton,Canada,2005:1034-1040.
    [22]Herr R.W.Some cable suspension systems and their effects on the flexural frequencies of slender aerospace structures.NASATN D-7693,September 1974.
    [23]Chew M.-S.,Juang J.-N.,Yang L.-F.Suspension device for low frequency structures.U.S.Patent,No.5,207,110,May,1993.
    [24]Michael W.K.,Lawrence C.F.Aircraft ground vibration testing at the NASA Dryden Flight Research Facility,NASA Technical Memorandum 104275,1993.
    [25]Brillhart R.,Hunt D.Lessons learned in modal testing PART 1:the pitfalls,pratfalls,and downfalls of fixturing.Expenrimental Techniques.November/December,2005.
    [26]Hasselman T.K.A suspension system for large amplitude dynamic testing in a simulated weightless environment.Proceedings of SPIE-Smart Structures and Materials,Albuquerque.1993,1917:1063-1077.
    [27]Timothy K.H.,Mark C.A.Development of a large amplitude 3D microgravity suspension system.AIAA,1997:1566.
    [28]Gregory C.W.,Xu Y.S.An active vertical-direction gravity compensation system.IEEE transactions on Instrumentation and Measurement,1994,43 (6):786-792.
    [29]Greschik G,Belviny W.K.High-fidelity gravity offloading system for free-free vibration testing.Journal of Spacecraft and Rockets,2007,44(1):132-142.
    [30]Greschik G,Belviny W.K.The ultimate in passive gravity compensation for vibration testing and some more.The 46th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Austin,Texas,2005.
    [31]CooIey V.M.,Giunta A.A.Laboratory evaluation of two advanced suspension devices for ground vibration testing of large space structures.AIAA,1992:1700-1710.
    [32]Woodard S.E.,Housner J.M.Nonlinear behavior of a passive zero-spring-rate suspension system.Journal of Guidance,Control,and Dynamics,1991,14(1):84-89.
    [33]John E.Teter,Jr.A discussion of zero spring rate mechanisms used for the active isolation mount experiment.NASA/TM-1999-209723.
    [34]Harvey T.J.Adjustment of zero spring rate suspensions.U.S.Patent,No.5,024,111,June 1991.
    [35]Yang L.F.,Chew M.S.,Juang J.N.Ground-based testing of the dynamics of flexible space structures using band mechanisms.Progress Report of Old Dominion University Research Foundation,1991.
    [36]Yang L.F.,Chew M.S.,Juang J.N.Band-drive suspension mechanism design for ground-based testing of flexible space structures.Journal of Mechanical Design,March 1995,117:134-142.
    [37]Yang L.F.,Tzeng R.C.,Kuo C.P.Adaptive control of a zero-stiffness suspension system,Journal of Guidance,Control,and Dynamics,1996,19(4):794-800.
    [38]Kienholz D.A.Simulation of the zero-gravity environment for dynamic testing of structures.Proceedings of the 19th Space Simulation Conference.Baltimore:[s.n.],1996.
    [39]Woodard S.E.,Housner J.M.Nonlinear behavior of a passive zero-spring-rate suspension system.Journal of Guidance,Control,and Dynamics,1991,14(1).
    [40]韦娟芳.卫星天线展开过程的零重力环境模拟设备.空间电子技术,2006(2):29-32.
    [41]韦娟芳.空间4-10米可展开天线的动力耦合分析及实验技术研究:[博士学位论文].杭州:浙江大学,2002.
    [42]裘华徕.气动技术的近期发展及其影响因素.液压气动与密封.2002,(3):1-3.
    [43]汪林昊.低摩擦气缸,http://www.iacchina.com.
    [44]王雄耀.低速气缸与高速气缸.机械工程师,2000,(1):34-35.
    [45]FESTO气动产品样本(第28版).
    [46]Belforte G.,Romiti A.,Raparelli T.No friction cylinders for pneumatic positioners.International Symposium on Fluid Control and Measurement,Volumel,Tokyo,1985.
    [47]www.kortis-electric.com
    [48]Corteville B.,Van B.H.,Al-Bender F.,et.al.The development of a frictionless pneumatic actuator:A mechatronic step towards safe human-robot interaction.Proceedings of the 2005IEEE International Conference on Mechatronics,Taipei,Taiwan,2005.
    [49]苏雅玲.气静压轴承式气压缸及定位平台设计与控制之研究:[硕士学位论文].中国台湾:台湾成功大学,2005.
    [50]Introducing the new force in air beating technology...,www.airpot.com.
    [51]陶国良.电-气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究:[博士学位论文].杭州:浙江大学,2000.
    [52]路甬祥主编.液压气动技术手册,北京:机械工业出版社,2005.
    [53]韩建海,张河新.气动比例/伺服控制技术及应用.机床与液压,2001,(1):3-6.
    [54]高平波,魏燕定.一种基于压电堆驱动器的喷嘴挡板式气体控制阀的研究.机床与液压,2007,35(3):77-79.
    [55]Cho M.S.,Yoo.J.K.,Choi S.B.et al.Pressure control of a piezoactuator-driven valve system.Proceedings of SPIE,2001,4327:324-330.
    [56]Spanner K.Breakthrough in piezo actuator applications.Proceedings of the 7th Conference on New Actuators,Germany,2000:236-241.
    [57]H.Murrenhoff,(吴根茂译).液压控制技术发展趋势.工程设计,1997,(3):20-29.
    [58]李少军,李艳,夏毅敏等.压电执行器及其在高响应控制阀上的应用.液压与气动,1999,(3):20-21.
    [59]Shih M.C.,Hwang C.G.Fuzzy PWM control position of a pneumatic robot cylinder using high speed solenoid valves.International Journal of JSME,Series C,1997,40(3):469-476.
    [60]李宝仁.数字式电-气压力控制阀及电气位置伺服系统的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,1995.
    [61]SMC气动元件产品样本,2006.
    [62]Parker Lucifer SA.Electropneumatic pressure regulator EPP4 Series.Parker Catalogue 8684/UK,2008.
    [63]唐中一,倪文波,袁晓渝.气动脉宽调制数字比例阀的最新发展.机床与液压,1995,(3):125-128.
    [64]王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板阀的控制压力特性.机械工程学报,2005,41(5):127-131.
    [65]Yoshio H.E.,Jun S.Application of magnetostrictive materials to positioning actuator.IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM),Atlanta,USA.,1999:215-220.
    [66]Pemble C.M.,Towe B.C.A miniature shape memory alloy pinch valve.Sensors and Actuators A:Physical.1999,77(2):145-148.
    [67]Choi S.B.,Park D.W.,Cho M.S.Position control of a parallel link manipulator using electro-rheological valve actuators.Mechatronics,2001.
    [68]Rogge T.,Rummler Z.,Schomburg W.K.Piezo-driven polymer microvalve manufactured by the AMANDA Process.The 16th European Conference on Solid-State Transducers,Prague,Czech Republic,2002.
    [69]彭太江,杨志刚,阚君武等.电-气比例/伺服技术现状及其发展.农业机械学报,2005,36(6):126-129.
    [70]Lindler J.E.,Anderson E.H.Piezoelectric direct drive servovalve.In:SPIE.Industrial and Commercial Applications of Smart Structures Technologies,San Diego,California:The International Society for Optical Engineering,2002:488-496.
    [71]http://www.hoerbiger.com
    [72]王传礼,基于GMM转换器喷嘴挡板伺服阀的研究:[博士学位论文].杭州:浙江大学,2005.
    [73]夏春林,丁凡,陶国良.GMM电.机械转换器驱动的气动压力阀.液压气动与密封,1999(3):21-22.
    [74]田中裕久.(阳正锡等译)液压与气动的数字控制及应用.重庆大学出版社,1992.
    [75]李宝仁,张庆先,杜经民.高精度压力伺服控制系统研究.液压气动与密封,2000,(2):10-11.
    [76]Ham V.R.,Verrelst B.,Daerden F.Pressure control with on-off valves of pleated pneumatic artificial muscles in a modular one-dimensional rotational joint.International Conference on Humanoid Robots,Karlsruhe,2003.
    [77]Tehrani J.M.Pressure control of a pneumatic actuator using on/of solenoid valves.[Mater thesis].Stockholm:KTH Royal Institute of Technology,2008.
    [78]王永昌,潘先耀.气动伺服控制系统及阀的应用形式.燕山大学学报,2002,26(3):206-208.
    [79]赵弘.气动非线性系统的控制策略及其应用研究:[博士学位论文].西安:西安交通大学,2003.
    [80]Sorli M.,Vigliani A.Design analysis of a pneumatic force control servosystem with pressure proportional valve.Journal of Robotics and Mechatronics,1998,10(4):370-376.
    [81]Kazerooni H.Design and analysis of pneumatic force generators for mobile robotic systems.IEEE/ASME Transactions on Mechatronics,2005,10(4):411-418.
    [82]Chen Y.et.al.Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve.Mechatronics,2007,(17):325-335.
    [83]Zhang J.F.,Yang C.J.,Chen Y.,et.al.Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton.Mechatronics,2008,(18):448-457.
    [84]Parker J.K.,Paul F.W.Controlling impact forces in pneumatic robot hands designs.Journal of Dynamic Systems Measurement and Control,1987,109:328-334.
    [85]Noritsugu T.,Takaiwa M.Sensor-less force detection by pneumatic parallel link manipulator and its application for contact task.Proceedings of the Fifth Triennial International Symposium on Fluid Control,Measurement and Visualization,Hayama,Japan,1997:469-474.
    [86]Ephanov A.,Stoianovici D.Effect of a pneumatically driven haptic interface on the perceptional capabilities of human operators.Teleoperators and Virtual Environments,1998,7(3):290-307.
    [87]Araki K.,Chen J.,Chen X.,Ischino Y.Structural optimization of a motion and force control cylinder.Proceedings of the Third JHPS International Symposium,Yokohama,Japan,1996: 337-342.
    [88]Priyandoko G,Mailah M.,Jamaluddin H.Vehicle active suspension system using skyhook adaptive neuro active force control.Mechanical Systems and Signal Processing,2009,23(3): 855-868.
    [89]Sorli M.,Franco W.,Mauro S.,Quaglia G,et al.Features of lateral active pneumatic suspensions in the high speed train ETR470.Proceedings of the Sixth UK Mechatronics Forum International Conference,Skovde,Sweden,1998:621-626.
    [90]Miyata K.,Hanafusa H.Compensation and velocity control for high speed positioning of pneumatic cylinder.Proc.Of Intl.Symp.On Fluid Control and Measurement,1988.
    [91]Kawamura S.,Miyata K.,et al,Proposal of a hirerarchical feedback control scheme for pneumatic robot systems.Proc.Of USA-Japan Symp.On Flexible Automation,1988.
    [92]Miyata K.,Hanafusa H.Pneumatic servo control system by using adaptive gain pressure control.JHPS.International Symposium on Fluid Power,Tokyo,1989:161-168.
    [93]Araki K.,Tanahashi T.,Ehana M.Frequency response of pressure control with an electro-pneumatic proportional valve.International symposium on Fluid Control and Measurement,Tokyo,Japan,1985,1:9-14.
    [94]GUVENC L.,SRINIVASAN K.Modeling and parameter identification of a pneumatic constant force device.Turk.J.Engin.Environ.Sci,2000:383-399.
    [95]Bigras P.,Wong T.,Botez R.,Pressure tracking control'of a double restriction pneumatic system.IASTED International Conference on Control and Applications,2001:273-278.
    [96]Bigras P.,Khayati K.Nonlinear observer for pneumatic system with non negligible connection port restriction.Proceedings of the American control Conference Anchorage,AK, 2002:3191-3195.
    [97]Khayati K.,Bigras P.,Dessaint L.A.A robust feedback linearization force control of a pneumatic actuator.Proceedings of 2004 IEEE International Conference on Systems,Man and Cybernetics,2004,1:6113-6119.
    [98]Ben-Dov D.,Salcudean S.E.,A force-controlled pneumatic actuator.IEEE Transactions on Robotics and Automation,1995,11(6):906-911.
    [99]Richard E.,and Scavarda S.Comparison between linear and nonlinear control of an electropneumatic servodrive.Journal of Dynamic Systems,Measurement,and Control,1996, 118:245-118.
    [100]Richer E.,and Hurmuzlu Y.,A high performance pneumatic force actuator system part 1-nonlinear mathematical model.ASME Journal of Dynamic Systems Measurement and Control,2000,122(3):416-425.
    [101]Richer E.,Hurmuzlu Y.A high performance pneumatic force actuator system part 2-nonlinear controller design.ASME Journal of Dynamic Systems Measurement and Control,2000,122(3):426-434.
    [102]Virvalo T.,Pressure and positon control with electropneumatic on/off-valves.Proceedings of the 3rd International Conference on Fluid Power Transmission and Control,Hangzhou,1993.
    [103]吕红兵.PWM气动力控制系统特性研究.机械科学与技术,1998,27(1):54-56.
    [104]李宝仁,刘浩,傅晓云.密闭容腔压力伺服控制系统理论与实验研究.液压与气动,2004,(7):1-3.
    [105]Liu H.,Li B.R.,Lee J.C.High precision pressure control of a pneumatic chamber using a hybrid fuzzy PID controller.International Journal of Precision Engineering and Manufacturing,2007,8(3):8-13.
    [106]费红资,杨庆俊,郑钢铁等.主动隔振中气动压力跟踪的预测控制研究.应用力学学报,2005,22(1):12-16.
    [107]Fei H.Z.,Zheng G.T.,Liu Z.G.An investigation into active vibration isolation based on predictive control Part Ⅰ:Energy source control.Journal of Sound and Vibration,2006,296:195-208.
    [108]Li X.L.,Hao Q.T.,Jie W.Q.Development of pressure control system in counter gravity casting for large thin-walled A357 aluminum alloy components.Transactions of Nonferrous Metals Society of China,2008,18:847-851.
    [109]Burrows C.R.,Webb C.R.Use of root loci in design of pneumatic servo motors control.1966,(8):423-427.
    [110]Lai J.Y.,Ou F.C.Application of time delay control to a pneumatic servo system.Proceedings of the American Control Conference,1992,(1):233-234.
    [111]Yin Y.,Araki K.Modelling and analysis of an asymmetric valve controlled single-acting cylinder of a pneumatic force control system.Proceedings of the SICE Annual Conference,1998:1099-1104.
    [112]Noritsugu T.,Tsuji Y.,Ito K.Improvement of control performance of pneumatic rubber artificial muscle manipulator by using delectrorheological fluid damper.IEEE Transactions on Systems,Man and Cybernetics,1999,(4):788-793.
    [113]Shih M.,Tseng S.Pneumatic servo-cylinder position control by PID sell-tuning controller.JSME International Journal,Series C,1994,37(3).
    [114]Nakamura N.,Sekiguchi M.,Kawashima K.,Fujita T.,Kagawa T.Developing a robot arm using pneumatic artificial rubber muscles.In Bath International Workshop on Power Transmission and Motion Control(PTMC2002),2002:365-375.
    [115]#12
    [116]#12
    [117]周洪.电-气比例/伺服系统及其控制策略研究:[博士学位论文].杭州:浙江大学,1988.
    [118]Yamada Y.Adaptive pole-allocation control with multi-rate neural network for pneumatic Servo system.Transactions of the Japan Society of Mechanical Engineers,Part C,2003,69(3):639-645.
    [119]Giovanni T.,Antonio B.Adaptive simultaneous position and stiffness control for a soft robot arm.International Conference on Intelligent Robots and Systems,2002,(2):1992-1997.
    [120]Naoki U.,Shoji E.Takagi Shoji.A design of discrete-time adaptive servo system and its application to a pneumatic servo system.Transactions of the Japan Society of Mechanical Engineers,Part C,2003,69(1):55-62.
    [121]许宏.气液联控位置伺服系统理论分析及其控制策略的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [122]Wikander J.Ad(?)ptive control of pneumatic cylinders.Dept.of Machine Elements,Royal Institute of Technology,Dissertation,1988.
    [123]Chen C.K.,Hwang J.Iterative learning control for position tracking of a pneumatic actuated X-Y table.Control Engineering Practice,2005,13(12):1455-1461.
    [124]Bobrow J.E.,et al.Adaptive pneumatic force actuation and position control.ASME Journal of Dynamic Systems,Measurement,and Control,1991,113(7):267-272.
    [125]Lai J.Y.Pneumatic pressure and position control using learning law.The Journal of Fluid Control.1988,18(3):4551.
    [126]王祖温,杨庆俊.气压位置控制系统研究现状及展望.机械工程学报,2003,39(12):10-14.
    [127]Tuan H.D.,Ono E.,Apkarian P.,et al.Nonlinear hinfinity control for an integrated suspension system via parameterized linear matrix inequality characterizations.IEEE Transactions on Control Systems Technology,2001,9(1):175-185.
    [128]杨庆俊.高性能气压位置伺服系统控制策略研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2002.
    [129]Su W.C.,Kuo C.Y.Variable structure control of rodless pneumatic servo-actuator with discontinuous sliding surfaces.Proceedings of the American Control Conference,2000: 1617-1621.
    [130]Tao G L.,Zhu X.C,Cao J.Modeling and controlling of parallel manipulator joint driven by pneumatic muscles.Chinese Journal of Mechanical Engineering,2005,18(4): 537-541.
    [131]Djouadi S.M.,Repperger D.W.,Berlin J.E.Gain-scheduling H∞ control of a pneumatic muscle using wireless MEMS sensor.IEEE Midwest Symposium on Circuits and Systems, 2001:734-737.
    [132]Gulati N.,Barth E.J.Pressure observer based servo control of pneumatic actuators.Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),Monterey,California,2005.
    [133]Nguyen T.,Leavitt J.,Jabbari F.,Bobrow J.E.Accurate sliding-mode control of pneumatic systems using low-cost solenoid valves.IEEE/ASME Transactions on Mechatronics,2007,12(2):216-219.
    [134]Zhu X.C.,Tao G L.,Yao B.,Cao.J.Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles.Automatic,2008,(44):2248-2257.
    [135]Gao X.,Feng Z.J.Design study of an adaptive fuzzy-PD controller for pneumatic servo system.Control Engineering Practice,2005,13(1):55-65.
    [136]Parnichkun M.,Ngaecharoenkul C." Kinematics control of a pneumatic system by hybrid fuzzy PID.Mechatronics,2001,11(8):1001-1023.
    [137]Balasubramanian K.,Rattan K.S.Trajectory tracking control of a pneumatic muscle system using fuzzy logic.Annual Meeting of the North American Fuzzy Information Processing Society,2005:472-477.
    [138]则次俊郎.神经网络控制在气动控制系统中的应用.测量与控制,1996,35(2).
    [139]Yasuo K.,Hiroyuki I.Nonlinear optimal predictive adaptive control of pneumatic actuator.Transactions of the Japan Society of Mechanical Engineers,Part C,1997,63(606):438-443.
    [140]Hong M.W.,Lin C.L.,Shiu B.M.Stabilizing network control for pneumatic systems with time-delays.Mechatronics,In Press,2008.
    [141]Thanh TU.D.C,Ahn K.K.Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network.Mechatronics,2006, 16(9):577-587.
    [142]Kaitwanidvilai S.,Parnichkun M.Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control.Mechatroincs,2005,(15):23-41.
    [143]McDonell B.W.,Bobrow J.E.Adaptive tracking control of an air powered robot actuator.Journal of Dynamic Systems,Measurement,and Control,1993,115(3):427-433.
    [144]Bigras P.,Wong T.,Botez R Pressure tracking control of a double restriction pneumatic system.IASTED International Conference on Control and Applications,Banff,Alberta,Canada:IASTED,2001:273-278.
    [145]钱坤,谢寿生,胡金海等.基于反馈线性化控制的航空气动伺服系统.控制理论与应用,2005,22(3):465-467.
    [146]Kimura T.,Ham S.,Fujita T.,et al.,Feedback linearization for pneumatic actuator systems with static friction.Control Engineering Practice,1997,5(10):1385-1394.
    [147]Kienholz D.A.,Crawley E.F.,Harvey T.J.Very low frequency suspension systems for dynamic testing.Proceedings of the 30th Structures,Structural Dynamics and Materials,1989.
    [148]左鹤声,彭玉莹主编.振动试验模态分析,北京:中国铁道出版社,1995.
    [149]Gabermann M.Near frictionless air cylinders provide precision pneumatic motion control system.Power Conversion Intell.Motion,1995,21(11):48-51.
    [150]十合晋一.(韩焕臣译).气体轴承设计、制作与应用,北京:宇航出版社,1988.
    [151]Hamrock B J.Fundamentals of fluid film lubrication.New York:McGraw-Hill,Inc.,1993.
    [152]Powell J W.Design ofaerostatic bearings.London:the Machinery Publishing Co.Ltd.,1970.
    [153]刘暾,刘育华,陈世杰.静压气体润滑,哈尔滨:哈尔滨工业大学出版社,1990.
    [154]李中凯,谭建荣,冯毅雄,魏喆.基于多目标遗传算法的可调节变量产品族优化.浙江大学学报工学版,2008,42(6):1015-1020.
    [155]薛定宇,控制系统计算机辅助设计-MATLAB语言与应用(第二版),北京:清华大学出版社,2006.
    [156]Srinivas N.,Deb K.Multi-objective function optimization using nondominated sorting genetic algorithms.Evolutionary Computations.1995,2(3):221-248.
    [157]Deb K.,Pratap A.,Agarwal S.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ.IEEE Transactions on Evolutionary Computation.2002,6(2):182-197.
    [158]Milosevic B.Nondominated sorting genetic algorithm for optimal phasor measurement placement.IEEE Transactions on Power Systems.2003,18(1):69-75.
    [159]Mitra K,Gopinath R.Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm.Chemical Engineering Science.2004, 59(2):385-396.
    [160]Sarkar D,Modak J M.Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm.Chemical Engineering Science,2005,60(2):481-492.
    [161]周洪.气动比例控制技术及其应用.液压与气动,1999,(3).
    [162]Trumper D.L.,Lang J.H.An electronically controlled pressure regulator.ASME Journal of Dynamic systems,Measurement and Control,1989,111:75-82.
    [163]Araki K.,Chen N.,Pressure versus characteristics of a diaphragm type pneumatic pressure control proportional valve.Proceedings of the 4th JHPS Int.Syrup.,Tokyo,Japan,1999,413-418.
    [164]Nabi A.,Wacholder E.Dynamic model for a dome-loaded pressure regulator.ASME Journal of Dynamic systems,Measurement and Control,2000,122:290-297.
    [165]Sorli M.,Figliolini G,Pastorelli S.Dynamic model and experimental investigation of a pneumatic proportional pressure valve.IEEE/ASME Transactions on Mechatronics,2004,9(1):78-86.
    [166]符欲梅,唐中一,汪永超.PWM气动减压阀数学模型的建立、仿真及实验研究.液压气动与密封,1998,61(1):22-24.
    [167]王宣银,陈奕泽,刘荣等.超高压气动比例减压阀的设计与仿真研究.浙江大学学报(工学版),2005,39(5):614-617.
    [168]李宝仁,杨钢,杜经民.高压随动压力控制阀动态性能的仿真研究.华中理工大学学报,1998,26(7):24-26.
    [169]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术.杭州:浙江大学出版社,2006.
    [170]Lu B.,Tao G.L.,Xiang Z.,Zhong W.Modeling and control of the pneumatic constant pressure system for zero gravity simulation.IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM),xi'an,China,2008:688-693.
    [171]刘新良.减压阀阀芯密封设计火箭推进.2003,29(5):18-22.
    [172]Mudi R.K.,Palb N.R.A note on fuzzy PI-type controllers with resetting action.Fuzzy Sets and Systems,2001,121(1):149-159.
    [173]Al-Ibrahim,A.M.,and Otis,D.R.,Transient air temperature and pressure measurements during the charging and discharging processes of an actuating pneumatic cylinder.Proceedings of the 45th National Conference on Fluid Power,McCormick Place North,Chicago,Illinois,1992.
    [174]Schuder C.B.,Binder R.C.,The response of pneumatic transmission lines to step inputs.Journal of Basic Engineering,1959,81:578-584.
    [175]Hougen J.O.,Martin,O.R.,Walsh R.A.Dynamics of pneumatic transmission lines.Control Engineering,1963,10:114-117.
    [176]Andersen B.The analysis and design of pneumatic systems.New York,John Willey &Sons,Inc.,1967.
    [177]Elmadbouly E.E.,Abduisadek N.M.Modeling,simulation and sensitivity analysis of a straight pneumatic pipeline.Energy Conservation and Management,1994,35(1):61-77.
    [178]易继锴,侯媛彬.智能控制技术.北京:北京工业大学出版社,1999.
    [179]Li W.Design of a hybrid fuzzy logic proportional plus conventional integral-derivative controller.IEEE Transactions on Fuzzy Systems,1998,6(4):449-463.
    [180]鲁守荣.参数在线自调整模糊控制器.湖北汽车工业学院学报,1998,(2):40-44.
    [181]杨智民,王旭,庄显义.遗传算法在自动控制领域中的应用综述.信息与控制,2000,29(4):329-337.
    [182]彭天好.变频泵控马达调速及补偿特性的研究:[博士学位论文].杭州:浙江大学,2003.
    [183]高为炳.变结构控制理论基础.北京:中国科学技术出版社,1990.
    [184]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [185]Chen J.Y.Expert SMC-based fuzzy control with genetic algorithms.Journal of the Franklin Institute,1999,336(4):589-610.