基于压电传感与作动的锥壳振动特性及主动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞行器上恶劣的动力学环境会导致精密设备的精度损失,甚至失效。为了保护飞行器上精密设备,需要改善动力学环境。采用隔振技术,即在精密设备与安装基础之间加装具有振动抑制功能的隔振器,可能有效地降低设备的振动强度。其中,基于压电智能结构的主动隔振系统,由于具有控制效果好、重量轻、响应快、能源需求小、结构简单可靠等特点,对于要求苛刻的飞行器而言最为理想。因此本文以圆锥壳为基本结构,采用压电材料作为传感器及作动器,对精密设备主动隔振问题进行研究。
     锥壳的振动特性是进行主动控制的基础,但锥壳隔振器有其特殊性。边界条件为大端固支、小端自由;与横向振动相比,隔振器的轴向振动、扭转振动及侧倾振动对隔振而言更为重要。为描述固支-自由的边界条件,构造了基于多项式及三角函数的模态函数。然后基于薄壳基本假定,给出了锥壳结构的几何方程和物理方程,并进一步给出了自由振动时应变能、动能的表达式。应用瑞利-里茨法推导了固有频率、模态函数的求解公式。在分析过程中,考虑了前述四种振动形式,并针对每一种振动形式,给出了适用的公式。
     对于扭转振动,由于普通的压电传感器对面内剪切应变不敏感,因此提出了剪切式压电传感器。推导出了剪切式压电传感器的一般信号方程;然后根据振动分析的结果,代入锥壳的本构方程,得出了圆锥壳作扭转振动时的传感信号方程;并最终给出了固支-自由边界条件下的扭振传感信号。为分析轴向、侧倾及横向振动,提出了对角式压电传感器,给出了其通用表达式。对角式传感器的传感信号可分成四个部分,分别对应于四个应变分量。结合数值方法对传感信号进行了仿真分析,给出了模态信号、传感器贴片的传感信号的分布规律。并考虑了小端装有附加质量时各信号的分布特性。传感器输出信号的幅值取决于锥壳的模态应变,且与传感器位置、几何形状、压电材料特性等参数有关。由于传感器贴片的平均效应,其输出信号的幅值小于模态信号,但差别微小。因此可以用贴片的输出信号代替模态信号以测试结构的振动特性。此外,对输出信号的分析结果为确定传感器的最优位置提供了依据。
     基于逆压电效应,提出了对角式压电作动器以控制锥壳结构的轴向、侧倾及横向振动。根据模态叠加法,使用各阶模态的模态参与系数及振型函数合成锥壳上任意点的响应。将锥壳和压电作动器的振动方程转换到模态空间,得出模态振动方程。然后根据逆压电效应推导了作动器的数学模型,给出了对角式压电作动器的模态控制力表达式。对角式压电作动器的模态控制力包含四个分量,分别对应于径向及环向作动器单位长度上的力和力矩。采用开环控制,对作动器贴片的控制行为进行了分析。在单位控制电压的作用下,对角作动器产生的模态控制力及各分量的相对大小随贴片的位置及模态变化。对角式作动器对锥壳隔振器的轴向、侧倾及横向振动均有模态控制力输出。在有附加质量的情况下,对角式压电作动器各贴片均输出模态控制力,且幅值差别较小。分析结果为随后的主动控制提供了依据。
     将模态振动方程转换到状态空间,以对角式压电传感器的模态输出信号为系统输出,以对角式作动器在单位控制电压下的模态控制力为系统控制输入向量,建立主动控制系统的系统状态空间方程。采用线性二次型(LQR)最优控制,通过使性能准则函数最小求得最优控制。使用数值方法对控制系统进行仿真,分析了不同作动器的控制力及控制电压。
     设计并制作了智能锥壳缩比模型,并搭建了实验平台,对提出的位移函数、分布式压电传感器与作动器理论进行了原理性验证。
Severe dynamic loads in the flighting vechiles may cause accuracy loss or even damage to the precision equipment inside. Therefore better dynamic environment is requied to protect the precision equipments, and vibration isolation system (VIS) can be employeed to achieve this, which mianly consists of a vibration isolator installed between the equipment and the base. Active VIS based on piezoelectric smart structure are more promising VIS, because of its better performance, light weight, rapid response and less energy cost. Therefore, based on a conical shell model and the piezoelectric sensor/actuator, the active vibration isolation of precision equipment in flighting vechiles are investigated.
     The vibration characteristics of the conical shell are foundations of vibration control. Generally, the conical isolator is fixed to the base at the major end, and is free to vibrate at the minor end. The bending, axial and torsional vibrations are much more important for VIS than the transverse vibration. To analyze these vibrations, a set of modal functions are presented based polynomial and sine function. Based on the thin shell assumptions, the geometric and physical equations are given, the energy equations for clamped-free conical shell are derived. Then the natural frequencies and modal functions are solved by using a Rayleigh-Ritz method. During the derivation, the axial, torsional, bending and transverse vibrations are investigated and detailed equations for each vibration type are specified.
     Traditional piezoelectric sensor used for thin shells are assumed not sensitive to in-plane shear strain, is not applicable for torsional vibration of conical isolator. Therefore a shear-type piezoelectric sensor is presented, the mathematical model is developed based the direct piezoelectric effect. The shear type sensor is applied to the conical shell based on the modal analysis. Then the boundary conditions are specified and the sensing signal equations are derived. For the axial, bending and transverse modes, a diagonal sensor is presented. The signal equations of diagonal sensor are derived, the total signal consists of four components related to the four strain components respectively. By using a numerical method, the distribution of sensing signal and modal signal is evaluated. Furthermore, the distributed sensing of conical shell with payload at the minor end is investigated. The sensing signals depend on the modal deformation, sensor location, sensor geometry, the piezoelectric material and so on. The amplitudes of sensing signal are usually less than the modal one because of the average effect, but the difference is very small. Therefore, the sensing signal can be used to investigate the structural vibration characteristics. The optimal locations for sensor patches can be determined according to the results.
     In order to actively control the axial, bending and transverse vibrations of conical shell, a diagonal piezoelectric actuator is proposed. By using the mode superposition method, the total dynamic response can be represented by the summation of all participating natural modes and their respective modal participation factors. Therefore, the vibration equations are transformed into the mode space, and a modal vibration equation is obtained. Based on the inverse effect, the mathematical model of the diagonal actuator is derived and the equation of modal control force is achieved. The modal control force consists of four component related to the active force and moment per unit length in longitudinal and circumferential direction respectively. By using an open-loop control method, the modal control characteristics of diagonal actuator segments at different locations are investigated and compared with unit control voltage. The results prove that the diagonal actuator is applicable of active control of axial, lateral and transverse vibrations of conical shell. When rigid mass is fixed to the minor end, every actuator patch generates a similar modal control force. The optimal locations of actuator segments for the control of different natural modes are also investigated.
     The modal vibration equation is transformed into the state space, the sensing signal of diagonal sensor is chosen as the system output vector, the modal control force of diagonal actuator is chosen as the system input vector, and the state space equation of the active vibration control equation is established. The optimal controller is obtained by minimizing the performance function. Then the optimal control force and corresponding control voltage are investigated using a numerical method.
     A scaled conical shell model is build, and the experimental platform is established. Principle experiments on the modal functions, the diagonal piezoelectric sensor and actuator are performed to verify proposed theory.
引文
1 P.S. Wilke ,C.D. Johnson, E.R. Fosness .Whole-spacecraft passive launch isolation.Journal of Spacecraft and Rockets.1998,35(5):690-694
    2 C.D. Johnson,P.S. Wilke.Whole-spacecraft shock isolation system,San Diego, CA, United States,2002:1-8
    3张军,谌勇,骆剑,et al.整星隔振技术的研究现状和发展.航空学报.2005(02):179-183
    4 A.R. Timmins.A Study of First Day Spacecraft Malfunctions.NASA .1974,TN-D -7750:1-18
    5胡寿松,王执铨,胡维礼.最优控制理论与系统.北京,科学出版社,2005:162-180
    6 M.F. Winthrop,R.G. Cobb.Survey of State-of-the-Art Vibration Isolation Research and Technology for Space Applications.PROCEEDINGS OF SPIE SPIE - The International Society for Optical Engineering: Smart Structures and Materials 2003 Damping and Isolation, March 3, 2003 - March 5, 2003,San Diego, CA, United states,2003:13-26
    7张阿舟.实用振动工程振动控制与设计.北京,航空工业出版社,1997:1-10
    8 Sciulli.Dynamics and Control for Vibration Isolation Design.Dissertation of Virginia Polytechnic Institute.1997:1-8
    9 D. Sciulli,D.J. Inman.Isolation design for a flexible system.Journal of Sound and Vibration.1998,216:251-267
    10 B. Ravindra,A.K. Mallik.Performance of non-linear vibration isolators under harmonic excitation.Journal of Sound and Vibration.1994,170:325-337
    11 C.L. Kirk.Design Principles for Vibration Isolation and Damping with Elastomers including Nonlinearity.Rubber Chemistry and Technology.1989,62:515-528
    12 C.L. Kirk.NON-LINEAR RANDOM VIBRATION ISOLATORS.Journal of Sound and Vibration.1988,124:157-182
    13王毅,朱礼文,王明宇.大型运载火箭动力学关键技术及其进展综述.导弹与航天运载技术.2000,243(1):29-37
    14 W.M. Haddad,A. Razavi,D.C. Hyland.Active vibration isolation of multi-degree of freedom systems.Proceedings of the 1997 American Control Conference. Part 3(of 6), June 4, 1997 - June 6, 1997,Albuquerque, NM, USA,1997:3537-3541
    15 J. Spanos , Z. Rahman , G. Blackwood . Soft 6-axis active vibration isolator.Proceedings of the 1995 American Control Conference. Part 1 (of 6), June 21, 1995 - June 23, 1995,Seattle, WA, USA,1995:412-416
    16 T. Fujita,T. Homma,H. Kondo,et al.Active 6 DOF microvibration control system using giant magnetostrictive actuator . Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C.1996,62:55-61
    17 Z.J. Geng,L.S. Haynes.Six degree-of-freedom active vibration control using the Stewart platforms.IEEE Transactions on Control Systems Technology.1994,2:45-53
    18 C.H.汉森,S.D.斯奈德.噪声和振动的主动控制.北京,科学出版社,2002:759-833
    19丁文镜.减振理论.北京,清华大学出版社,1988:286-310
    20徐庆善.隔振技术的进展与动态.机械强度.1994,16:37-41
    21费红姿,杨庆俊,郑钢铁,et al.主动隔振中气动压力跟踪的预测控制研究.应用力学学报.2005,22(1):12-16
    22费红姿.基于预测控制的主动隔振研究.哈尔滨工业大学.2004
    23 G.W. Bohannan,V.H. Schmidt,R.J. Conant,et al.Piezoelectric polymer actuators in a vibration isolation application.Proceedings of SPIE - The International Society for Optical Engineering.2000,3987:331-342
    24 H.S. Tzou,M. Gadre.Active vibration isolation and excitation by piezoelectric slab with constant feedback gains.Journal of Sound and Vibration.1990,136:477-490
    25 M. Malowicki,D.J. Leo.Piezoelectric isolation system for lightweight automotive seats.Smart Structures and Materials 2001-Damping and Isolation-, March 5, 2001 - March 7, 2001,Newport Beach, CA, United states,2001:141-152
    26 S. Saadat,J. Salichs,M. Noori,et al.An overview of vibration and seismic applications of NiTi shape memory alloy.Smart Materials and Structures.2002,11:218-229
    27 Y.C. Yiu , M.E. Regelbrugge . Shape-memory alloy isolators for vibration suppression in space applications . Proceedings of the 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and AIAA/ASME Adaptive Structures Forum. Part 1 (of 5), April 10,1995 - April 13, 1995,New Orleans, LA, USA,1995:3390-3398
    28 M.E. Regelbrugge , B.J. Hurlbut . Design of shape-memory alloy vibration isolators.Proceedings of the 4th International Conference on Adaptive Structures, Nov 2 - 4 1993,Cologne, Germany,1993:559-559
    29 K. Nagaya.Analysis of a high TC superconducting levitation system with vibration isolation control.IEEE Transactions on Magnetics.1996,32:445-452
    30 K. Watanabe,S. Hara,Y. Kanemitsu,et al.Combination of H and PI control for an electromagnetically levitated vibration isolation system.Proceedings of the 35th IEEE Conference on Decision and Control. Part 4 (of 4), December 11, 1996 - December 13, 1996,Kobe, Jpn,1996:1223-1228
    31 P. Davis,D. Cunningham,J. Harrell.Advanced 1.5 Hz passive viscous isolation system . Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Part 1 (of 5), April 18, 1994 - April 20, 1994,Hilton Head, SC, USA,1994:2655-2665
    32 E.H. Anderson,J.P. How.Active vibration isolation using adaptive feedforward control.Proceedings of the 1997 American Control Conference. Part 3 (of 6), June 4, 1997 - June 6, 1997,Albuquerque, NM, USA,1997:1783-1788
    33 M. Yasuda,T. Osaka,M. Ikeda.Feedforward control of a vibration isolation system for disturbance suppression.Proceedings of the 35th IEEE Conference on Decision and Control. Part 4 (of 4), December 11, 1996 - December 13, 1996,Kobe, Jpn,1996:1229-1233
    34 C.W. Bert,J.D. Ray.Vibrations of orthotropic sandwich conical shells with free edges.International Journal of Mechanical Sciences.1969,11:767-779
    35 C.D. Johnson,P.S. Wilke.Protecting Satellites from the Dynamics of the Launch Environment,United States,2003:1-11
    36 C. Johnson,K. Denoyer.Recent Achievements in Vibration Isolation Systems for Space Launch and On-orbit Application.52nd International Astronautical Congress,2001:IAF-01-I.02.01
    37 C. Johnson,P. Wilke,S.C. Pendleton. SoftRride vibration and shock isolation systems that protect spacecraft from launch dynamic environments.Proceedings of the 38th Aerospace Mechanisms Symposium,Langley Research Center,2006:1-15
    38 G.T. Zheng.Parametric studies of the whole spacecraft vibration isolation.Aiaa Journal.2003,41(9):1839-1841
    39杜华军,黄文虎,邹振祝.航天支架结构的被动振动控制.应用力学学报.2002(03)
    40 L. Likun,Z. Gangtie,H. Wenhu.Study of liquid viscosity dampers in octo-strut platform for whole-spacecraft vibration isolation.Acta Astronautica.2006,58(10):515-522
    41 C.D. Johnson,P.S. Wilke,P.J. Grosserode.Whole-spacecraft vibration isolation system for the GFO/Taurus mission.Proceedings of SPIE - The International Society for Optical Engineering.1999,3672:175-185
    42 D.L. Kern,C.A. Gerace.Implementation of a whole spacecraft isolation system for the OSTM/Jason 2 mission.2008 IEEE Aerospace Conference,Big Sky, MT, United states,2008
    43 R.S. Johal,P.S. Wilke,C.D. Johnson.Satellite Component Load Reduction using SoftRide.6th Responsive Space Conference,Los Angeles, CA,2008
    44 C.D. Johnson,P.S. Wilke,K.R. Darling.Multi-axis whole-spacecraft vibration isolation for small launch vehicles,Newport Beach, CA,2001:153-161
    45 D. Sciulli,S.F. Griffin.Hybrid launch isolation system.Proceedings of SPIE - The International Society for Optical Engineering.1999,3674:352-359
    46 D. Sciulli,S.F. Griffin. Whole-spacecraft hybrid isolation system for launch vehicles. United States patent application: 6135390,2000
    47 D.L. EDBERG,C.D. JOHNSON,L.P. DAVIS,et al.On the development of a launch vibration isolation system.Bellingham, WA, INTERNATIONAL,Society of Photo-Optical Instrumentation Engineers,1997
    48 D.L. Edberg,B. Bartos,J. Goodding,et al.Passive and active launch vibration studies in the LVIS program,San Diego, CA, United States,1998:411-422
    49 M.E. Evert,P.C. Janzen,E.H. Anderson,et al.Active vibration isolation system for launch load alleviation,San Diego, CA, United States,2004:62-77
    50 C.D. Johnson,P.S. Wilke.Protecting Satellites from the Dynamics of the Launch Environment,United States,2003:11p
    51 D.L. Edberg,C.D. Johnson,L.P. Davis,et al.Development of a launch vibration isolation system,San Diego, CA, USA,1997:31-37
    52 G.G. Karahalis,G.S. Agnes.Preliminary analysis of hybrid launch isolation for spacecraft . Proceedings of SPIE - The International Society for Optical Engineering.1999,3674:360-370
    53 G.T. Zheng,Z.C. Shen,D.Y. Yuan.A practical approach to improving the payload dynamic environment during launching,Bremen, Germany,2003:1673-1682
    54刘丽坤,郑钢铁,黄文虎.整星被动多杆隔振平台研究.应用力学学报.2005(03):329-334
    55 H.Z. Fei,G.T. Zheng,Z.G. Liu.An investigation into active vibration isolation based on predictive control - Part I: Energy source control.Journal of Sound and Vibration.2006,296(1-2):195-208
    56 G.T. Zheng,Y.Q. Tu.Analytical Study of Vibration Isolation Between a Pair of Flexible Structures . Journal of Vibration and Acoustics-Transactions of the Asme.2009,131(2)
    57涂奉臣,陈照波,李华,et al.新型整星隔振平台的被动隔振性能及星箭耦合特性分析.航空学报.2010(03): 538-545
    58 L.K. Liu,G.T. Zheng.Parameter analysis of PAF for whole-spacecraft vibration isolation.Aerospace Science and Technology.2007,11(6):464-472
    59刘丽坤,郑钢铁.采用多作动器并联隔振平台的整星半主动隔振研究.上海航天.2008(06): 39-42
    60 Y. Shen,M.F. Golnaraghi,G.R. Heppler.Semi-active vibration control schemes for suspension systems using magnetorheological dampers.Journal of Vibration and Control.2006,12(1):3-24
    61 K. Makihara,J. Onoda,K. Minesugi.New approach to semi-active vibration isolation to improve the pointing performance of observation satellites.Smart Materials and Structures.2006,15(2):342-350
    62 N. Jalili.A Comparative Study and Analysis of Semi-Active Vibration-Control Systems.Journal of Vibration and Acoustics.2002,124(4):593-605
    63 P. Jean,R. Ohayon,D.L. Bihan.Semi-active control using magneto-rheological dampers for payload launch vibration isolation,San Diego, CA, United States,2006:61690
    64涂奉臣,陈照波,李华,et al.一种改进型磁流变阻尼器用于宽频隔振研究.振动工程学报.2007(05):484-488
    65涂奉臣,陈照波,刘望中,et al.新型半主动整星隔振平台及其模糊最优控制研究.振动工程学报.2010(02): 133-139
    66何玲,杨庆俊,郑钢铁.流体阻尼器粘性发热对整星隔振的影响.机械工程学报.2007(09): 61-64
    67王威远,王聪,魏英杰,et al.复合材料蜂窝结构锥形壳振动传递特性试验研究.工程力学.2007(07): 1-5
    68王威远,王聪,邹振祝.蜂窝锥壳结构动力学特性试验研究.振动与冲击.2007(07): 165-168
    69杜华军,于百胜,郑钢铁,et al.蜂窝锥壳卫星适配器约束阻尼层振动抑制分析.应用力学学报.2003(03):5-9
    70 G.R. Thomas,C.M. Fadick,B.J. Fram.Launch vehicle payload adapter design with vibration isolation features,San Diego, CA, United States,2005:35-45
    71陈阳,方勃,曲秀全,et al.新型整星隔振器隔振性能分析.宇航学报.2007(04): 986-990
    72 Y. Chen,B. Fang,T.Z. Yang,et al.Study of Whole-spacecraft Vibration Isolators Based on Reliability Method.Chin. J. Aeronaut..2009,22(2):153-159
    73陈阳,方勃,张业伟,et al.整星隔振器性能及阻尼可靠性实验分析.哈尔滨工业大学学报.2010(01): 13-19
    74刘芳,雷霆,方勃.整星隔振器的无源控制设计.力学季刊.2009(01): 77-81
    75张军,梁启明,谌勇,et al.整星隔振防摇装置的研究.噪声与振动控制.2005(02): 29-32
    76梁启明,张军,华宏星,et al.整星隔振器动态特性的测试.噪声与振动控制.2006(02): 83-84
    77 W.C.L. Hu.A survey of the literature on the vibrations of thin shells.1964:35
    78 U.S. Lindholm,W.C.L. Hu.Nonsymmetric transverse vibrations of truncated conical shells .1965
    79 D.H. Platus.conical shell vibrations.1965
    80 W.C.L. Hu,J.F. Gormley,U.S. Lindholm.Flexural vibrations of conical shells with free edges.1966
    81 D.D. Kana,W.C.L. Hu.Transmission characteristics of conical shells under lateral excitations .1968
    82 W.C.L. Hu.Free vibrations of conical shells.NASA TN D 2666.1965
    83 X.X. Hu,T. Sakiyama,H. Matsuda,et al.Fundamental vibration of rotating cantilever blades with pre-twist . Journal of Sound and Vibration . 2004 ,271(1-2):47-66
    84 M. Caresta,N.J. Kessissoglou.Free vibrational characteristics of isotropic coupled cylindrical-conical shells.Journal of Sound and Vibration.2010,329(6):733-751
    85 X. Zhao,Q. Li,K.M. Liew,et al.The element-free kp-Ritz method for free vibration analysis of conical shell panels.Journal of Sound and Vibration.2006,295(3-5):906-922
    86 A.H. Nayfeh,H.N. Arafat.Axisymmetric vibrations of closed spherical shells: Equations of motion and bifurcation analysis.Structural Control and Health Monitoring.2006,13(1):388-416
    87 Y. Zhang.Torsional buckling of spherical shells under circumferential shear loads.Applied Mathematics and Mechanics.1999,20(4):426-432
    88曹树谦,高健.压电层合圆板的非线性动力学模型与主共振响应.天津大学学报.2007(02): 139-143
    89 O. Civalek.A parametric study of the free vibration analysis of rotating laminated cylindrical shells using the method of discrete singular convolution.Thin-Walled Structures.2007,45(7-8):692-698
    90 X.X. Hu,T. Sakiyama,H. Matsuda,et al.Vibration analysis of rotating twisted and open conical shells.International Journal of Solids and Structures .2002,39(25):6121-6134
    91 M.S. Qatu.Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells.Applied Mechanics Reviews.2002,55(5):415-434
    92 W.T. Holmes.Axisymmetric Vibrations of a Conical Shell Supporting a Mass.The Journal of the Acoustical Society of America.1962,34(4):458-461
    93唐乾刚,孙世贤.带有大质量刚体圆锥壳的自由振动分析.国防科技大学学报.1993(02)
    94 C.W. Lim,K.M. Liew.Vibratory behaviour of shallow conical shells by a global Ritz formulation.Engineering Structures.1995,17(1):63
    95 K.M. Liew,C.W. Lim,L.S. Ong.Vibration of pretwisted cantilever shallow conical shells.International Journal of Solids and Structures.1994,31(18):2463-2476
    96 C.W. Lim,S. Kitipornchai.Effects of subtended and vertex angles on the free vibration of open conical shell panels: A conical co-ordinate approach.Journal of Sound and Vibration.1999,219(5):813-835
    97 K.M. Liew,T.Y. Ng,X. Zhao.Free vibration analysis of conical shells via the element-free kp-Ritz method . Journal of Sound and Vibration . 2005 ,281(3-5):627-645
    98 F.-M. Li,K. Kishimoto,W.-H. Huang.The calculations of natural frequencies andforced vibration responses of conical shell using the Rayleigh-Ritz method.Mechanics Research Communications.2009,36(5):595-602
    99 J.H. Kang,A.W. Leissa.Free vibrations of thick, complete conical shells of revolution from a three-dimensional theory.J. Appl. Mech.-Trans. ASME.2005,72(5):797-800
    100 A.W. Leissa,J.-H. Kang.Three-dimensional vibration analysis of thick shells of revolution.Journal of Engineering Mechanics.1999,125(12):1365-1371
    101 D. Thakkar,R. Ganguli.Induced shear actuation of helicopter rotor blade for active twist control.Thin-Walled Structures.2007,45(1):111-121
    102 A. Benjeddou,De,J. F..Piezoelectric transverse shear actuation and sensing of plates, Part 2: Application and analysis.Journal of Intelligent Material Systems and Structures.2001,12(7):451-467
    103 H.H. Yue,Z.Q. Deng,H.S. Tzou.Optimal actuator locations and precision micro-control actions on free paraboloidal membrane shells.Communications in Nonlinear Science and Numerical Simulation.2008,13(10):2298-2307
    104赵豫,赵国伟,黄海,et al.基于压电材料的智能天线结构控制实验研究.压电与声光.2007(03): 295-301
    105邱志成.基于自适应滤波的压电智能挠性悬臂板振动控制研究.系统仿真学报.2006(05): 1311-1318
    106 R.L. Forward.Electronic damping of orthogonal bending modes in a cylindrical mast-experiment.Journal of Spacecraft and Rockets.1981,18(1):11-17
    107 H.S.Tzou . Piezoelectric shell--Distributed Sensing and Control of Continua.Boston/Dordrecht,Kluwer Academic Publishers,1993
    108 V. Birman,A. Simonyan.Theory and applications of cylindrical sandwich shells with piezoelectric sensors and actuators.Smart Materials and Structures.1994,3(4):391-396
    109 J. Callahan,H. Baruh.Modal sensing of circular cylindrical shells using segmented piezoelectric elements.Smart Mater. Struct..1999,8(1):125-135
    110 H.S. Tzou,Y. Bao,V.B. Venkayya.Parametric study of segmented transducers laminated on cylindrical shells, Part 1: Sensor patches.Journal of Sound and Vibration.1996,197(2):207-224
    111 S.K. Ghaedi,A.K. Misra.Active control of shallow spherical shells using piezoceramic sheets.Proceedings of SPIE - The International Society for OpticalEngineering.1999,3668(II):890-912
    112 F. Lalande,Z. Chaudhry,C.A. Rogers.Modeling considerations for in-phase actuation of actuators bonded to shell structures . Aiaa Journal . 1995 ,33(7):1300-1304
    113 C.-T. Sun,X.R. Zhang.Use of thickness-shear mode in constructing adaptive sandwich structures.Smart Structures and Materials 1995: Smart Structures and Integrated Systems,San Diego, CA, USA,1995:470-480
    114 S.S. Vel,B.P. Baillargeon.Analysis of static deformation, vibration and active damping of cylindrical composite shells with piezoelectric shear actuators.Journal of Vibration and Acoustics, Transactions of the ASME.2005,127(4):395-407
    115 A.E. Glazounov,Q.M. Zhang,C. Kim.Torsional actuator based on mechanically amplified shear piezoelectric response.Sensors and Actuators A: Physical.2000,79(1):22-30
    116 A. Benjeddou.Shear-mode piezoceramic advanced materials and structures: A state of the art.Mechanics of Advanced Materials and Structures.2007,14(4):263-275
    117党长久,杨玉瑞,李明轩.面切变压电复合材料及其换能器.应用声学.1998(01): 7-10
    118陈勇,陶宝祺.压电复合材料薄壳结构振动主动控制.压电与声光.1998,20(004):228-232
    119李俊宝,应怀樵.压电主动构件在桁架结构振动控制中的应用.压电与声光.1999(06): 196-200
    120严天宏,牟全臣,王建宇.并置压电传感/作动器的最优配置及反馈增益研究.振动工程学报.1999(04): 570-576
    121张希农,谢石林,李俊宝,et al.书本式分布作动器及可控约束阻尼层结构控制的实验研究.西安交通大学学报.1999(10): 77-81
    122张俊华,张方,朱德懋,et al.压电结构的控制-结构一体化设计.南京航空航天大学学报.1999(04): 1-6
    123丁皓江,陈伟球.压电板壳自由振动的三维精确分析.力学季刊.2001,22(001):1-9
    124黄海,孙文俊.考虑平整性要求的板壳自适应结构静变形控制.宇航学报.2001,22(004):71-75
    125 H.H. Yue,Z.Q. Deng,H.S. Tzou.Distributed signal analysis of free-floating paraboloidal membrane shells . Journal of Sound and Vibration . 2007 ,304(3-5):625-639
    126张希农,陈灵,李智明,et al.可控约束阻尼层板的杂交控制.应用力学学报.1999(03): 15-21
    127 H.S. Tzou,W.K. Chai,D.W. Wang.Modal voltages and micro-signal analysis of conical shells of revolution.Journal of Sound and Vibration.2003,260(4):589-609
    128 W.K. Chai,P. Smithmaitrie,H.S. Tzou.Neural potentials and micro-signals of non-linear deep and shallow conical shells.Mechanical Systems and Signal Processing.2004,18(4):959-975
    129 H.S. Tzou,J.H. Ding.Optimal control of precision paraboloidal shell structronic systems.Journal of Sound and Vibration.2004,276(1-2):273-291
    130王威远,魏英杰,王聪,et al.压电智能结构传感器/作动器位置优化研究.宇航学报.2007(04): 1025-1029
    131 R. Clark,W. Saunders,G. Gibbs,et al.Adaptive structures: dynamics and control.The Journal of the Acoustical Society of America.2001,109:443
    132莫凡芒,孙庆鸿,陈南,et al.遗传算法在结构振动主动控制中的应用研究.噪声与振动控制.2003(02): 11-12
    133陈文英,阎绍泽,褚福磊.免疫遗传算法在智能桁架结构振动主动控制系统优化设计中的应用.机械工程学报.2008(02): 196-200
    134鲁民月,顾仲权,杨铁军.简化的结构振动自适应前馈控制方法研究.振动与冲击.2005(01): 89-93
    135杨拥民,张华,胡政.正位置反馈的多模态振动主动控制实验.振动工程学报.2005(03): 355-359
    136沈少萍.特征模型自适应控制方法在悬臂梁振动主动控制中的应用.振动与冲击.2007(11): 115-122
    137董兴建,刘龙,孟光,et al.基于有限元和系统辨识的智能结构主动控制.振动工程学报.2005(03): 329-334
    138邱志成.基于加速度反馈的挠性智能结构振动主动控制.机械工程学报.2008(03): 143-151
    139胡庆雷,马广富.改进型正位置反馈/变结构卫星姿态主动控制.振动工程学报.2007(04): 324-329
    140岳洪浩.精密柔性抛物壳智能结构系统及其主动控制研究.哈尔滨工业大学.2009: 17-19
    141徐芝纶.弹性力学下册.4th.北京,高等教育出版社,2006: 171-173
    142 W. Soedel.Vibrations of Shells and Plates.3rd.New York,Marcel Dekker Inc.,2004:77~100
    143 Z. Mecitoglu.Vibration characteristics of a stiffened conical shell.Journal of Sound and Vibration.1996,197(2):191-206
    144 A.W. Leissa,J.H. Kang.Three-dimensional vibration analysis of paraboloidal shells.JSME Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf..2002,45(1):2-7
    145 J.H.金斯伯格.机械与结构振动--理论与应用.北京,中国宇航出版社,2005:260-262
    146 J.S. Yang,H.Y. Fang,Q. Jiang.A vibrating piezoelectric ceramic shell as a rotation sensor.Smart Mater. Struct..2000,9(4):445-451
    147 H.S. Tzou,H.Q. Fu.A Study of Segmentation of Distributed Piezoelectric Sensors and Actuators, Part I: Theoretical Analysis.Journal of Sound and Vibration.1994,172(2):247-259
    148 H.S. Tzou,J.H. Ding,I. Hagiwara.Micro-control actions of segmented actuator patches laminated on deep paraboloidal shells.JSME Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf..2002,45(1):8-15
    149 H.S. Tzou,D.W. Wang,W.K. Chai.Dynamics and distributed control of conical shells laminated with full and diagonal actuators . Journal of Sound and Vibration.2002,256(1):65-79
    150王锋.压电结构建模、优化与振动控制.国防科学技术大学.2006:15-18
    151 C.W.S. To,T. Chen.Optimal control of random vibration in plate and shell structures with distributed piezoelectric components.International Journal of Mechanical Sciences.2007,49(12):1389-1398
    152 V. Sethi,G. Song.Optimal vibration control of a model frame structure using piezoceramic sensors and actuators.Journal of Vibration and Control.2005,11(5):671-684