低压铸造液面加压控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国汽车工业的飞速发展,截止目前我国汽车的产销量已经跃居世界第一位,汽车的能耗越来越引起人们的高度重视。伴随着现代汽车轻量化、节能环保要求的不断提高,铝合金铸件在汽车工业中所占比重日益增大,同时也助推了铝合金的特种铸造成形工艺的快速发展。低压铸造作为铸造成型的工艺之一也得到了迅速的普及与推广。
     与传统重力铸造工艺相比,低压铸造工艺有着十分明显的优势,可以制造出比传统工艺质量更好的铸件。可以采用带有冷却系统的模具,通过对模具温度场的控制,可以实现铸件的顺序凝固,并且铸件直接从底部进行浇注和补缩,因此可以不用冒口,铸件的工艺出品率非常高(一般在90%以上);由于铸件是在大约3个大气压力作用下充填模具型腔,因此可得到更加致密的铸件组织,尺寸精度和表面光洁度很好,也可以采用砂芯来制造出结构复杂的缸体、缸盖类铸件。
     采用低压铸造工艺生产出的铸件,具有良好的力学性能,已经引起铸造工作者的广泛关注,汽车铝合金轮毂大多数都是采取低压铸造工艺。低压铸造工艺目前在日本应用十分广泛,近年来伴随着中国汽车工业的迅猛发展,国外低压设备制造商也非常关注中国这块“市场大蛋糕”,国际间技术合作与交流的更加紧密,因此,我国低压铸造技术也有了很大的提升。
     本文首先对低压铸造工艺存在的问题进行了系统的分析,从而确定了影响铸件成型工艺和铸件质量的关键参数,并且从控制的角度来诠释了铸件成型与凝固的过程。
     其次,设计了气体加压控制方案,并对低压加压系统进行分析,总结了影响液面加压曲线的因素,从而确定了模糊PID的控制方案。
     最后,根据本人所在公司的生产实践,不断地优化了设计。从而确认采用PLC为控制手段,结合模糊PID的控制理论对低压液面加压系统进行的研究,是具有一定的理论与实践的意义。
With the rapid development of China's automobile industry, Up to now China's auto output and sales volume has reached first in the world. Energy consumption of the car more and more aroused great attention. With the lightweight, energy-saving & environmental protection requirements continue to increase, Aluminum alloy castings in the automotive industry is increasing the proportion, but also boost the special aluminum alloy casting forming process of rapid development. Low-pressure casting process as forming of one casting has also been rapidly gaining popularity and promotion. Compared with the traditional gravity casting, low pressure casting process has a very special advantage. You can create a better quality than the traditional casting process. Cooling system can be used with the mold. The mold temperature through the control of casting solidification can be achieved. And casting and casting directly from the bottom feeding, the riser isn’t used, the casting process produced a very high rate (generally 90% or more). As the three KG pressure of casting is filling the mold cavity under pressure, so the available castings more compact structure, good dimensional accuracy and surface finish can also be used to create a sand core complex structure of the cylinder block, cylinder head type castings. Low-pressure casting process to produce castings with good mechanical properties, has attracted wide attention foundry workers, the majority of car alloy wheels are taking low-pressure casting process. Low-pressure casting process is widely used at present in Japan in recent years, along with the rapid development of China's automobile industry. The foreign manufacturer of low pressure equipment is also very concerned about China as "the market of big cake", the international technical cooperation and exchange more closely. Therefore, China's low-pressure casting technology has been greatly improved
     First, the paper with low-pressure casting process problems in a systematic analysis to determine the impact of the quality of casting molding and casting a critical parameter, from the control point of view to explain the casting molding and solidification process.
     Secondly, the design of the gas pressure control programs, and low pressure systems analysis, summarized the factors that affect the surface pressure curve to determine the fuzzy PID control scheme.
     Finally, the production company where I practice, continue to optimize the design. So, confirming the use of PLC as a means of control, combined with the theory of fuzzy PID control system for low liquid pressure studies, is a certain amount of theoretical and practical significance.
引文
[1] Morinoto S. Development of low-pressure Die Casting Process for Improve Soundness of Aluminum Casting [J]. AFS Transaction, 2002(1) 86-90.
    [2] Chandley, GD. Counter Gravity Casting of Aluminum in Investment and Sand Molds. Transactions of the American Foundrymen’s Society , Vol. 94, American Foundrymen’s Society , Inc., 209一215 , 1986.
    [3] Woon Y K ,Lee K S. Development of Die Design System for Die Casting [J] .Int J Adv Manuf Technol, 2004 ( 23 ) : 399一411.
    [4]Goodwin G C, Graede S F, Salgdo M E. Control System Design. Prentice Hall,2001.
    [5]Wu S H , Lee K S. Fuh JY Feature一based Parametric Design, of a Gating System for a Die-casting Die[J]. Int J Adv Manuf Technol, 2002(19):821-830.
    [6] RUAN D A. Implementation of Adaptive Puzzy Control for a Real-Time Control Demo-Mode1 [J] . KluwerAcademic , Netherlands , 2001 ( 20 ): 219-239.
    [7] Ripkin,F; Lipson, S. Counter-Gravity Casting of Aluminum Alloys in Green Sand Molds. Frankford Arsenal Philadelphia Pa Pitman-Dunn Research Labs . Feb 1967.
    [8] Westengen H. Low Pressure Permanent Mould Casting of Magnesium-Rwcent Developments . Foundry Trade Journal, 1989(10): 737-741.
    [9]Kamat, GR. Low Pressure Counter Gravity Casting of Aluminum Alloys ,Transactions of the Indian Institute of Metals ( India ) , vol. 45 , no , 3 , PP . 177-180, June 1992.
    [10]Wang C M. Computer Simulation of Fluid Flow during the Filling of Casting Molds [D] . University of Pitts– burgh, 2003.
    [11] Pickin J E J. Method in a 3D CAD Environment, Foundry management & technology.1992 (10): 26一28.
    [12]Ameden A A, Harlow F H. The SMAC method, a numerical technique for calculating incompressible flows(R), Los Alamos Scientific Laboratory, La- 4370, 1970.
    [13]Stoehr R A. Fluid Flow Modeling Aids Mold Design,Filling Control, Modem Casting, 1989(3): 30-33.
    [14]Kreziak G. Low Pressure Permanent Mold Process Simulation of a Thin wall Aluminum Casting. Material Science and Engineering, 1993 (10): 255-259.
    [15]XU Z A. Experimental and numerical study on mold filling coupled with heat transfer (J). AFS Trans, 1994, 102: 181-190.
    [16] Campelbell J. Thin Wall Casting. Material science and Technology 1988, 4 (3): 194-204.
    [17]Nichols B D, Hirt C W, Hotchkiss R S. SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries, Los Alamos Scientific Laboratory.
    [18]Liu Jim, Spalding D B. Numerical simulation of flows with moving interface (J).Physicochemical Hydrodynamics, 1988, 102(5/6):625-637.
    [19]XU Z A, Mampaey F A. study of Mould Filling for Casting. 6oth world Foundry Congress, The Hague, 1993.
    [20] Hirt C W. SOLA - a numerical solution algorithm for transient fluid flows (R). Los Alamos scientific laboratory , La-5852, 1975-4.
    [21]Jer-Haur Kuo, Feng-Lin Hsu and Weng-sing Hwang, Development of an interactive simulation system for the determination of the Pressure-time relationship during the filling in a low pressure casting process. Science and technology of Advanced Materials, Volume 2, Issue 1, March 2001, Pages 131-145.
    [22] Li , M-E; Wang , Y– X; Lu, Y -L ; Yang, G-C , Influence of filling patterns on solidification process of thin wall plate castings produced by low Pressure casting. Foundry ( China ), 49 , ( 7 ) , 418一421 , July 2000.
    [23]HETU J F, GAO D M, HABANEMI K K,et al. Numerical Modeling of Casting Process [J]. Advanced Performance Materials, 1998(5):65-82.
    [24]LIU BAICHENG. Progress in Numerical Simulation of Solidification Process of Shaped Casting[J]. J mater Science Technology, 1995(11): 313-322.
    [25] Kazemian, H.B. (London Metropolitan University)Developments of fuzzy PID controllers Expert Systems, v 22, n 5, November, 2005, p 254-264.
    [26] Levi,E Vukosavic, S.N.; Jones, M. Vector control schemes for series-connected six-phase two-motor drive systems,IEE Proceedings: Electric Power Applications, v 152, n 2, March, 2005, p 226-238.
    [27] Soukkou, A.; Khellaf, A.,Genetic training of a fuzzy PID ,Decision and Simulation in Engineering and Management Science - International Conference on Modeling and Simulation, ICMS'04, Decision and Simulation in Engineering and Management Science - InternationalConference on Modeling and Simulation, ICMS'04, 2004, p 185-186.
    [28] Quan Z Y, Frank C T, Russell E P, et al. Hardware in the Loop for Dynamic Chassis Control Algorithms Test Validation [J], 2004, 1.
    [29] Sang Bum Kim and Chung Bang Yun, Sliding mode fuzzy control: Theory and verification on a benchmark structure [J], Department of Civil Engineering , Korea Advanced Institute of Science and Technology, Taejon, Korea.
    [30] Wu Zhi-hong, Gu Yun-feng, Gong Jiang-hai, Mao Ming-ping, Automotive Light Control System Design Based on Microcontroller C167CS and Smart Power Devices Auto Electric Parts, 2005, 6.
    [31]张国良,曾静等.模糊控制及其MATLAB应用[M],西安交通大学.
    [32]段庆文,董秀琦,刘海军.CLP-5型低压铸造液面加压控制系统的研制及应用,铸造,1995 (11): 13-17.
    [33]姚锡凡,陈统坚,章伟等.低压铸造液面加压系统的自适应模糊与积分控制,特种铸造及有色合金,1998 (增刊:33-35).
    [34]盖玉先,刘会英.低压铸造的模糊控制,航天工艺,2000 ( 3 ):5 -7.
    [35]罗庚生,张志忠,吕有纲.低压铸造,国防工业出版社,1989,1.
    [36]侯华,徐宏,程军.低压铸造加压规范计算机辅助设计,铸造,2003(8):626-628.
    [37]李芳.前馈-模糊控制在低压铸造总的应用,信阳师范学院学报(自然科学版),2005(4):234-237.
    [38]朱建光,董秀奇.组合阀门低压铸造自动控制系统,沈阳工业大学学报,2005(6):299-328.
    [39]王宏伟,邹鹑鸣,曾松岩.低压铸造中液面上升延迟时间的水模拟研究,特种铸造及有色合金, 2005(3):141-143.
    [40]彭有根,许小忠,侯击波. T482型低压铸造系统得研制,华北工学院学报,2002(4):278-281.
    [41]朱丽娟,周源,董秀琦.液面加压控制系统在低压及差压铸造中的应用,铸造技术,2003(5):208-209.
    [42]杨波,曾昭军,陈峥嵘等.低压铸造液面加压过程的计算机控制,铸造,2003 ( 8 ) : 591一593.
    [43]唐多光. 21世纪低压铸造技术的展望,特种铸造及有色合金,1998 ( 4 ) : 28 -31.
    [44]诸静等.模糊控制原理与应用,机械工业出版社,1995 . 7.
    [45]刘金琨.先进PID控制及其仿真,北京,电子工业出版社, 2003.
    [46]徐宏,褚忠等.低压铸造工艺充型模拟优化技术,汽车工艺与材料,2002(10):12-18.
    [47]富士重工业株式会社第3生产技术部.新低压铸造法,素形材,2004,45(1):10.
    [48]李芳,基于PLC的数字滤波器设计及其在低压铸造中的应用,计算机信息, 2005第21卷第9-1期.
    [49]程万里,熊守美,柳百成.低压铸造过程充型模拟简化模型的研究,铸造, 2003(8):609-612.
    [50]赵忠兴等,低压铸造充型过程水模拟速度场可视化技术,特种铸造及有色合金,2005(7):413-415.
    [51]曾昭昭.特种铸造,浙江大学出版社,1990 . 5.
    [52]董秀琦.低压及差压铸造理论与实践,机械工业出版社,2003.