鲁棒重复控制及其在机油冷却器脉冲疲劳试验台中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机油冷却器是汽车内燃机中润滑系统的重要部件之一,是一种加速润滑机油的散热而使其保持较低温度的装置,其质量的好坏对发动机的运行效果有着重要的影响。
     通常机油冷却器处在恶劣的工作环境下,因此对其进行疲劳试验对于保证其正常工作有着非常重要的意义。目前广泛使用的一种对机油冷却器进行疲劳试验的方法是通过采用电液比例技术来对其进行疲劳脉冲实验,该方法主要通过调整比例溢流阀的阀口开度来控制试件容腔内液体的压力来模拟各种周期压力信号(如正弦波,三角波,梯形波),从而对试件进行多次压力冲击来检验其疲劳性能。为了更好的提高控制系统的压力跟踪精度和适应性,本文设计了一种基于鲁棒重复控制的机油冷却器脉冲疲劳试验台控制系统。
     本论文的主要工作内容如下:
     (1)分析了机油冷却器的主要功能,疲劳试验台的工作原理以及对机油冷却器进行疲劳试验的必要性。介绍了电液比例技术的发展状况以及电液比例技术中采用的控制策略。
     (2)介绍了重复控制、鲁棒重复控制的基本原理以及鲁棒重复控制器的设计方法和步骤,明确了鲁棒重复控制器设计中的关键问题和设计策略。
     (3)确定了系统的设计方案以及技术路线,按照DCS的思想设计了机油冷却器脉冲疲劳试验台的硬件环境并说明了系统的工作原理。分析了系统硬件执行元件的放置方式。搭建了系统的软件环境,说明了软件的工作流程。
     (4)根据液压的相关知识建立了比例溢流阀的数学模型,并根据所提出的数学模型设计了鲁棒重复控制器。
     (5)在Matlab/Simulink中建立了鲁棒重复控制器、重复控制器以及PID控制器的仿真模型。将PID控制器与重复控制器,重复控制器与鲁棒重复控制器进行比较,验证了所设计的鲁棒重复控制器对于压力跟踪的精确性;修改了系统的参数,验证了鲁棒重复控制器对于系统参数变化的鲁棒性;改变了输入信号的周期,并对比了鲁棒重复控制器和重复控制器对于改变了周期的输入信号的跟踪情况,说明了鲁棒重复控制器对于周期信号变化的适应性。
     (6)根据重复控制器和鲁棒重复控制器的对比结果,总结了重复控制和鲁棒重复控制对于跟踪周期信号的共同点和不同点,进一步说明了所设计的鲁棒重复控制器的优越性。
     (7)将所设计的鲁棒重复控制器进行离散化,并在计算机上编程实现了该控制算法,验证了鲁棒重复控制的控制效果。
Oil cooler is one of the most important components in Automobile Internal Combustion Engine's lubrication system. It is a device which is used to accelerate the radiation of the lubricant to keep it at low temperature. The operational effect of I.C. Engine is largely depended on the quality of oil cooler.
     More often than not, oil cooler is working under severe conditions. Therefore it is essential to implement some fatigue tests before oil cooler is used on the real system to ensure that it can work properly. Currently, one of the most widely-used methods is to use electro-hydraulic technology to put such experiments into practice, which simulates various kinds of periodical pressure signals by adjusting the opening of the pressure relief valve. By repeating different types of periodical pressure shocks (sine wave, triangular wave, trapezium wave, etc) on the specimen, the fatigue property of oil cooler could be tested. With the purpose to improve the pressure tracking accuracy and the adaption of the control system, this paper designed an oil cooler's fatigue pulsation test-bed system based on robust repetitive control theory.
     The main content of this paper is as follows:
     1. Analyze the main function of oil cooler, the working principle of fatigue pulsation test-bed and the necessity to execute fatigue experiments. Give a brief introduction to the development of electro-hydraulic technology and control strategies adopted in it.
     2. Introduce the basic principle of repetitive control and robust repetitive control and the methods to design them, clarify the key problems and design strategies of robust repetitive control.
     3. Determine the design scheme and technical route of the whole system, design the hardware and software environment of the oil cooler's pulsation test-bed according to the concept of DCS, illustrate the working principle of the hardware system and the working process of software system. Analyze the layout of the hardware execution components.
     4. Propose the mathematical model of the pressure relief valve according to the knowledge of hydraulic and design robust repetitive controller of test-bed based on the proposed model.
     5. Build up simulation models of PID controller, repetitive controller and robust repetitive controller in Matlab/Simulink environment. Prove the accuracy of pressure tracking of the designed robust repetitive controller by comparing tracking effects of PID controller, repetitive controller and robust repetitive controller. Testify the robustness of the designed robust repetitive controller to parameter variations by modifying the parameter of the pressure relief valve. Confirm the adaption of the designed robust repetitive controller to periodical signal variations by altering the period of input signal and comparing the effects of repetitive controller and robust repetitive controller.
     6. Summarize the similarity and difference of repetitive control and robust repetitive control in tracking periodical signals according to the comparing results and verify the priority of the designed robust repetitive controller.
     7. Discrete the designed robust repetitive controller and then fulfill it on the real system by writing program on the computer. Prove the effectiveness of robust repetitive controller.
引文
[1]钱叶剑,左承基.汽车构造(上)[M].合肥:合肥工业大学出版社,2011.3.
    [2]蔡兴旺主编.汽车构造与原理(上)[M].北京:机械工业出版社,2009.8.
    [3]江雪峰.内燃机机油冷却器传热性能试验系统的研制[D].杭州:浙江大学,2003.
    [4]朱仙鼎.中国内燃机工程师手册[M].上海:上海科学出版社,2000.
    [5][美]W.M.凯斯,AL伦敦著.紧凑式热交换器[M].北京:科学出版社,1997.
    [6]陈家瑞主编.汽车构造(上)[M].北京:机械工业出版社,2000.10.
    [7]王龙洲.康明斯柴油机机油冷却器的检修[J].汽车与配件,2002(17):16.
    [8]夏丰年.基于DCS机理的内燃机机油冷却器疲劳性能试验SCADA系统研究与实现[D],杭州:浙江大学.2005.
    [9]曾春华著.奇妙的疲劳现象[M].北京:科学出版社,1986.
    [10]S.R.斯旺森编.疲劳试验[M].上海:上海科学技术出版社,1982.
    [11]李杰.重复控制在散热器脉冲疲劳试验压力控制中的应用研究[D].杭州:浙江大学,2010.
    [12]聂绍龙,王宣银,陶国良.多功能压力试验机控制器设计[J].机床与液压,2003(2):227
    [13]江灏,王庆丰.液压综合试验平台的PLC实时测控系统[J].机床与液压,2007(1):182-184.
    [14]刘玉虎,邢科礼,王祖林,蒋志军.高压气瓶疲劳试验系统的开发[J].机床与液压,2007(6):88-90.
    [15]周辉,罗飞.基于PLC的液压脉冲试验机控制系统设计[J]. PLC&FA,2008(9): 106-108.
    [16]王元.重复控制在散热器脉冲疲劳试验压力控制中的应用研究[D].杭州:浙江大学,2010.
    [17]高金源主编.计算机控制系统[M].北京:高等教育出版社,2004.11.
    [18]王常力,罗安主编.集散型控制系统选型与应用[M].北京:清华大学出版社,1996.6.
    [19]杨俭.电液比例位置系统复合控制及相关研究[D].杭州:浙江大学2005.
    [20]路甬祥,胡大纮.电液比例控制技术[M].北京:机械工业出版社,1988.11.
    [21]Ian. M. Whiting.. Tools for the implementation of enhanced PID controllers and their use in electro-hydraulic servo applications [J]. Proceedings of IEE Colloquium on Machine Control, London, UK,1996, pp.1-4.
    [22]G.P. Liu, S. Daley. Optimal-turning PID control for industrial systems [J]. Control Engineering Practice,2001, pp.1185-1194.
    [23]Ming-Chang Shih, Chung-Pin Tsai. Servohydraulic cylinder position control using a neuro-fuzzy controller [J]. Mechatronics, vol 5, No.5,1995, pp.497-512.
    [24]P. J. Costa Branco and J. A. Dente. On using fuzzy logic to integrate learning mechanisms in an electro-hydraulic system-part Ⅰ:Actuator's fuzzy modeling [J]. IEEE Transactions on Systems, Man, and Cybernetics-part C:Applications and Reviews, vol.30, No.3, August 2000, pp.305-316.
    [25]P. J. Costa Branco and J. A. Dente. On using fuzzy logic to integrate learning mechanisms in an electro-hydraulic system-part Ⅱ:Actuator's position control [J]. IEEE Transactions on Systems, Man, and Cybernetics-part C:Applications and Reviews, vol.30, No.3, August 2000, pp.317-328.
    [26]Young Jun Park, Sang Yeal Lee, Hyung Suck Cho. A genetic algorithm-based fuzzy control of an electro-hydraulic fin position servo system [J].1999 IEEE International Fuzzy Systems Conference Proceedings, August 22-25, Seoul, Korea, 1999, pp.1361-1366.
    [27]Edvard Deticek. An intelligent position control of electro-hydraulic drive using hybrid fuzzy control structure, ISIE'99-Proceedings of the IEEE International Symposium on Industrial Electronics, Bled, Slovenia,12-16 July,1999,Vol.3, pp.1008-1013.
    [28]Unbehauen H., Du P., Keuchel U. Application of a digital adaptive controller to a hydraulic system [J], International Conference on Control,1988, pp.177-182.
    [29]Wen-Shyong Yu, Te-Son Kuo. Continuous-time indirect adaptive control of the electrohydraulic servo systems [J]. IEEE Transactions on Control Systems Technology, vol.5, No.2, March 1997, pp.163-177.
    [30]Yun, J.S., Cho, H.S. Adaptive model following control of electrohydraulic velocity control systems subjected to unknown disturbances, IEE Proceedings-Control Theory and Applications,135(2),1988,149-156.
    [31]M Tochizawa, K A Edge. A comparison of some control strategies for a hydraulic manipulator [J]. Proceedings of the American Control Conference, San Diego, California June 1999, pp.744-748.
    [32]Heather Havlicsek, Andrew Alleyne. Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning [J]. IEEE/ASME Transactions on Mechatronics, vol.4, No.3, Sep.1999, pp.312-323.
    [33]T. Knohl, H. Unbehauen. Adaptive position control of electrohydraulic servo systems using ANN. Mechatronics, vol10,2000,127-143.
    [34]Bin Yao, Fanping Bu, John Reedy, George T.-C. Chiu. Adaptive robust motion control of single-rod hydraulic actuators:Theory and Experiments [J]. IEEE/ASME Transactions on Mechatronics, vol.5, No.1, March 2000, pp.79-91.
    [35]FanpingBu, Bin Yao. Nonlinear adaptive robust control of hydraulic actuators regulated by proportional directional control valves with deadband and nonlinear flow gains [J]. Proceedings of the American Control Conference, Chicago, Illinois June 2000, pp.4129-4133.
    [36]Bu F. P. and Yao B. Desired compensation adaptive robust control of single-rod electro-hydraulic actuator [J]. Proceedings of the 2001 American Control Conference, Arlington, VA, USA, June 25-27,2001, vol.5, pp.3926-3931.
    [37]S H Cho, K A Edge. Adaptive sliding mode tracking control of hydraulic servosystems with unknown non-linear friction and modeling error [J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ:Journal of Systems and Control Engineering, Jun 1,2000, pp.247-257.
    [38]陶永华,尹怡欣,葛芦生编著.新型PID控制及其应用[M].北京:机械工业出版社,1998.9.
    [39]James Carvajal, Guanrong Chen, Haluk Ogmen. Fuzzy PID controller:Design, performance evaluation, and stability analysis [J]. Information Sciences 123 (2000) 249-270.
    [40]董宁.自适应控制[M].北京:北京理工大学出版社,2009.3.
    [41]吴敏,何勇,佘锦华.鲁棒控制理论[M].北京:高等教育出版社,2010,9.
    [42]彭勇刚,韦巍.重复控制在机械手位置伺服系统中的应用[J].机床与液压.2006.(10):147-149.
    [43]Jianhui Wang, Xing Li, Xiaoke Fang, Liang Dong. Single-joint Repetitive Control of Upper-limb Rehabilitation Robot [J]. Chinese Control and Decision conference,2010:1330-1333.
    [44]Ning Chen, Yun Zhang. Sine Waveform Inverter Based on S-Domain Repetitive Control [J]. Chinese Control and Decision Conference,2010:3584-3588.
    [45]Shang-Liang Chen, Tsung-Hsien Hsieh. Repetitive control design and implementation for linear motor machine tool [J]. International Journal of Machine Tools & Manufacture 47 (2007) 1807-1816.
    [46]Sung-Won Park, Jun Jeong, Hyun Seok Yang, Young-Pil Park, No-Cheol Park. Repetitive controller design for minimum track misregistration in hard disk drives[J]. IEEE Transactions on Magnetic, vol.41, no.9, September 2005:2522-2528.
    [47]Thomas J. Manayathara, Tsu-Chin Tsao, Joseph Bentsman, Douglas Ross. Reje-ction of unknown periodic load disturbances in continuous steel casting process using learning repetitive control approach [J]. IEEE Transactions on Control Systems tech-nology, vol.4, no.3, May 1996:259-265.
    [48]Josep M. Olm, German A. Ramos, Ramon Costa-Castello. Adaptive compensation stragegy for the tracking/rejection of signals with time-varying frequency in digital repetive control systems [J]. Journal of Process Control 20 (2010) 551-558.
    [49]中野道雄,山本裕等著,吴敏译.重复控制[M].长沙:中南工业大学出版社,1994.
    [50]Maarten Steinbuch. Repetitive control for systems with uncertain period-time [J]. Automatica,38 (2002) 2103-2109.
    [51]Manish Gupta, Jay H. Lee. Period-robust repetitive model predictive control [J]. Journal of Process Control,16 (2006) 545-555.
    [52]浙江大学机械与能源工程学院动力机械与车辆工程研究所.基于DCS机理的机油冷却器疲劳性能试验系研究与实现项目技术报告[R],2007,6.
    [53]8000 Series User's Manual台湾:泓格科技(ICP DAS),2003.
    [54]马群,王萍.电液比例溢流阀控制系统动态特性仿真分析[J].机床与液压,2007,1.35(1):215-216.
    [55]黎启柏.电液比例控制与数字控制系统.北京:机械工业出版社.1997,6.
    [56]吴根茂,邱敏秀,王庆丰等编著.实用电液比例技术[M].杭州:浙江大学出版社,1993,9.
    [57]袁锐波.电液比例施力控制系统的设计及动态特性研究[D].昆明:昆明理工大学.2000.
    [58]方水良编著.现代控制理论及其MATLAB实践[M].杭州:浙江大学出版社.2005.6.
    [59]薛定宇,陈阳泉著.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2011.2.
    [60]刘志俭等编著. MATLAB应用程序接口用户指南[M].北京:科学出版社,2000.8.
    [61]何克忠,李伟编著.计算机控制系统[M].北京:清华大学出版社,1998.
    [62]韩璞,罗毅,周黎辉,刘长良,董泽编著.控制系统数字仿真技术[M].北京:中国电力出版社,2007.