用于结构损伤检测的OPFC超声相控线阵驱动理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于声/电转换的超声相控阵驱动器是超声相控阵检测系统的关键组成部分之一,通过延时控制,超声相控阵驱动器具有自动聚焦和偏转的能力,可以对被测结构进行多方位快速扫描。由于相控阵驱动器直接产生超声波,因此它的结构形式及性能直接影响超声相控阵检测的性能和成像质量。针对复杂工程结构损伤特性及现有超声相控阵检测技术中驱动器存在的不足,在压电正交异性机理研究基础上,通过理论分析、数值仿真与实验验证研究了伸缩型压电正交异性纤维复合材料(Orthotropic piezoelectric fibe composite, OPFC)元件及相应的用于金属结构和混凝土结构损伤检测的OPFC超声相控线阵换能器,拓展了复杂工程结构无损检测新技术,为超声相控检测技术提供了理论和实验指导。
     基于力-电耦合理论,构造了伸缩型振动的压电正交异性纤维复合材料(OPFC)元件,系统地分析了各相材料特性、结构尺寸对OPFC驱动元件性能的影响规律,并对其驱动性能进行了测试分析。针对现有的超声相控阵换能器应用中单一PZT阵元力/电参数可设计性不足等原因,设计相应的用于金属结构和混凝土结构损伤检测的OPFC超声相控线阵换能器,突显出其驱动电压低,有效地抵制了栅瓣对有效信号的干扰;结合声场指向性分析,采用有限元法对金属中聚焦声场分布分析,研究不同参数变化时聚焦点处总位移的变化,得出最佳相控阵阵元间距、阵元宽度、阵元数等参数。
     研究了用于金属结构和混凝土结构损伤检测的OPFC驱动器的制备方法,对自行研制的叉指式OPFC元件进行了性能测试,并与常规PZT元件性能进行了对比分析,得出用于金属结构检测的叉指型OPFC具有低声阻抗和高机电耦合系数,而用于混凝土结构检测的OPFC超声驱动器的得灵敏度和带宽比传统换能器分别提高了3.9dB和27.21%。
     为有效克服材料阻尼对超声波传播过程的衰减,基于现场可编程门阵列(FPGA)的高集成度、高运行速度和可编程的特性,研制了16通道的相控延时和可控强度聚焦偏转发射/接收装置,实现了任意波形信号的直接数字合成,对OPFC超声相控驱动技术进行了结构损伤检测实验验证,取得了预期的效果。
     实验结果表明与现有超声相控阵驱动技术相比,其驱动聚焦能量、检测灵敏度都能得到提高,检测范围进一步扩大,验证了将OPFC超声相控线阵驱动/传感器用于结构损伤检测的可行性。
Ultrasonic phased array actuator for acoustic-to-electronic transformation is the key part of ultrasonic phased array system. Ultrasonic phased array actuator has the capacity of auto-focus and deflection by time delay controlling and can be used for multi directional scanning of objects. As the phased array actuator is used for excitation of ultrasonic, the design and preparation of the phased array actuator determine the performance of array detection and imaging quality. Based on the piezoelectric orthotropic mechanism research, thickness expansion type orthotropic piezoelectric fiber composite (OPFC) element and related OPFC ultrasonic phased array transducer which applied in damage detection of metal and concrete structures are researched by theoretical analysis, numerical simulation and experimental verification methods. The newly develop NDT technology in complex engineering structure provides the theory and experiment guidance for ultrasonic phased array detection technology.
     Based on theory of electric-mechanical coupling relationship, the influence of the material characteristics and geometry parameter on actuating performance is studied while thickness expansion type orthotropic piezoelectric fiber composite (OPFC) elements are constructed. In view of insufficiencyin the mechanic-electronic parameter design of existing single PZT element for modern ultrasonic phased array transducer, the related OPFC ultrasonic phased array transducer which used in metal and concrete structural damage detection is designed, which havethe advantages such as low voltage and restrain the effects on grating lobe. The focusing acoustic field distribution is analyzed by finite element method combined with directivity analysis in metal material. The optimal array parameters such as phased array element interval, array element width and element numbers are obtained by studying the total displacement changes as different parameters changes at focus point.
     The preparation of OPFC actuator used in metal and concrete structural damage detection is studied. The performance of interdigital OPFC element is also obtained by testing and comparing with the traditional PZT element. The results show that OPFC has some lower acoustic impedance and higher mechanical coupling factor. The sensitivity and bandwidth of OPFC ultrasonic actuator used in concrete structure detection are improved by3.9dB and27.21%respectively.
     To overcome the attenuation of ultrasonic due to material damp, a16-channel time delay phased array actuating/receiving device along with a strength controlling focus and deflection actuating/receiving device are developed based on the features of Field-programmable gate array (FPGA) such as high integration, high speed and programmable features. The directly digital synthesis of arbitrary waveforms is also achieved.. The structural damage detection methods are validated by experiment with OPFC ultrasonic phased array transducer and the promising results are gotten.
     Comparing with traditional technology, the performances of the new type ultrasonic phased array actuator, such as actuating focus energy, sensitivity and testing scope are improved. The feasibility of OPFC ultrasonic phased array transducer for damage detection is validated.
引文
[1]Miller, D. Ultrasonic detection of resonant cavitation bubbles in a flow tube by their second-harmonic emissions [J]. Ultrasonics.1981,19(5):217-224.
    [2]Kundu, T., Ultrasonic nondestructive evaluation:engineering and biological material characterization [M]. CRC.2004.
    [3]施克仁,高炽扬,无损检测新技术[M].清华大学出版社.2008.
    [4]Irwin, K., Hilton, G., Wollman, D., et al. X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback [J]. Applied physics letters.1996,69:1945.
    [5]Clark, R., Dover, W., Bond, L. The effect of crack closure on the reliability of NDT predictions of crack size [J]. NDT international.1987,20(5):269-275.
    [6]Matsuda, H. Magnetic particle testing [J]. Metals and Technology(Japan)(Japan).1999,69(3): 13-20.
    [7]Hashimoto, M. Eddy current testing [J]. Metals and Technology.1999,69(3):21-27.
    [8]Yuyama, S., Ohtsu, M. Failure Detection of High-Strength Tendons in Prestressed Concrete Bridges by AE[J]. Concrete Research Letters.2011,2(3):295-299.
    [9]Ohno, K., Ohtsu, M. Crack classification in concrete based on acoustic emission [J]. Construction and Building Materials.2010,24(12):2339-2346.
    [10]Bostrom, A., UT Defect:A Computer Program Modelling Ultrasonic NDT of Cracks and Other Defects [M]. SKI.1995.
    [11]Geng, T., Meng, Q., Chen, Z., et al. Ultrasonic monitoring of lubricating conditions of hydrodynamic bearing[C].2011, IOP Publishing.
    [12]Ballani, J., Grasedyck, L. A projection method to solve linear systems in tensor format [J]. Numerical Linear Algebra with Applications.2010,10:1818.
    [13]Dutton, B., Clough, A., Rosli, M., et al. Non-contact ultrasonic detection of angled surface defects [J]. NDT & E International.2011,44:353-360.
    [14]Bao, X.K., Li, Y. Application of Stress Wave Reflection Method in Nondestructive Testing of Bolt [J]. Advanced Materials Research.2012,446:2229-2233.
    [15]Gaafar, M., Afifi, H., Mekawy, M. Structural studies of some phospho-borate glasses using ultrasonic pulse-echo technique, DSC and IR spectroscopy[J]. Physica B:Condensed Matter.2009, 404(12-13):1668-1673.
    [16]希拉德[英],陈积懋,余南廷译,超声检测新技术[M].科学出版社.1991.
    [17]蒋危平,王务同.超声探伤发展简史[J].无损检测.1997,19(001):24-25.
    [18]Gammell, P.M. Improved ultrasonic detection using the analytic signal magnitude [J]. Ultrasonics. 1981,19(2):73-76.
    [19]Lamarre, A., Moles, M. Ultrasound phased array inspection technology for the evaluation of friction stir welds [C].2000, Review of progress in quantitative Nondestructive Evaluation.
    [20]Kas, Y.O., Kaynak, C. Ultrasonic (C-scan) and microscopic evaluation of resin transfer molded epoxy composite plates [J]. Polymer testing.2005,24(1):114-120.
    [21]Liu, Q.L., Bai, S.W., Li, J., et al. Development of New Type Phased Array Ultrasonic Testing Equipment for Butt Joints of Pipeline [J]. Guandao Jishu yu Shcbci(Pipclinc Technique and Equipment).2010(5):30-32.
    [22]Bazulin, E., Kokolev, S., Golubev, A. Application of an ultrasonic antenna array for registering echo signals by the double-scanning method for obtaining flaw images [J]. Russian Journal of Nondestructive Testing.2009,45(2):86-97.
    [23]Payne, A., Vyas, U., Todd, N., et al. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating [J]. Medical Physics.2011,38:4971.
    [24]Lopata, R.G.P., Nillesen, M.M., Hanscn, H.H.G, et al. Performance of two dimensional displacement and strain estimation techniques using a phased array transducer [J]. Ultrasound in medicine & biology.2009,35(12):2031-2041.
    [25]梁宏宝,朱安庆,赵玲.超声检测技术的最新研究与应用[J].无损检测.2008,30(3):173-177.
    [26]刘镇清,刘骁.超声无损检测的若干新进展[J].无损检测.2000,22(9):403-405.
    [27]吴思源,周晓军,江健等.超声检测中曲面重构和路径规划方法研究[J].浙江大学学报:工学版.2006,40(5):763-767.
    [28]丁希仑,解玉文,战强.基于多传感器信息融介的物体位姿检测方法[J].航空学报.2002,23(5):483-486.
    [29]孙金立,肖兴明,袁英民等.基于虚拟仪器的综合式无损检测系统[J].无损检测.2006,27(11):580-582.
    [30]Xu, C.G., Xu, B.Q., Xu, G.D. Laser-induced thcrmoelastic Leaky Lamb waves at the fluid-solid interface[J]. Applied Physics a-Materials Science & Processing.2011,105(2):379-386.
    [31]Chen, X., Stratoudaki, T., Sharples, S., et al. Design and experimental study of microcantilever ultrasonic detection transducers [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.2009,56(12):2722-2732.
    [32]Hatficld, J., Scales, N., Armitage, A., et al. An integrated multi-element array transducer for ultrasound imaging [J]. Sensors and Actuators A:Physical.1994,41(1-3):167-173.
    [33]Salyarnarayan, L., Chandrasckaran, J., Maxfield, B., et al. Circumferential higher order guided wave modes for the detection and sizing of cracks and pinholes in pipe support regions [J|. NDT & E International.2008,41(1):32-43.
    [34]Erhard, A., Schenk, G., Hauser,T., et al. New applications using phased array techniques [J]. Nuclear engineering and design.2001,206(2):325-336.
    [35]Deutsch, W., Cheng, A., Achenbach, J. Delect detection with Rayleigh and Iximb waves generated by a self-focusing phased array[J].1998.
    [36]Butlram, J. Ultrasonic method for the accurate measurement of crack height in dissimilar metal welds using phased array[P].2005, America.
    [37]Batzinger, T.J., Li, W., Gilmore, R.S., et al. Phased array ultrasonic inspection method for industrial applications [P].2004, US.
    [38]Poguet, J., Ciorau, P., Fleury, G. Special linear phased array probes used for ultrasonic examination of complex turbine components [J]. Journal of Nondestructive Testing.2002,7(10):12.
    [39]Nonaka, Y., Kodaira, K., Odakura, M, et al. Activity of HGNE for the long-term stable driving of the nuclear power plant. Advancement of in-vessel inspection [J]. Karyoku Genshiryoku Hatsuden. 2009,60(1):54-58.
    [40]Freemantle, R., Hankinson, N., Brotherhood, C. Rapid phased array ultrasonic imaging of large area composite aerospace structures [J]. Insight-Non-Destructive Testing and Condition Monitoring. 2005,47(3):129-132.
    [41]Xinyu, Z., Tie, G., Bixing, Z. Calculation of radiation acoustical fields from phased arrays with nonparaxial multi-Gaussian beam model [J]声学学报(英文版).2009,28(2).
    [42]McLaskey, G.C., Glaser, S.D., Grosse, C.U. Beamforming array techniques for acoustic emission monitoring of large concrete structures [J]. Journal of Sound and Vibration.2010,329(12): 2384-2394.
    [43]Bartel, T., Gliech, V., Muller, S. Device closure of patent ductus arteriosus:optimal guidance by transaortic phased-array imaging [J]. European Journal of Echocardiography.2011,12(2):E9.
    [44]Telenkov, S., Alwi, R., Mandelis, A., et al. Frequency-domain photoacoustic phased array probe for biomedical imaging applications [J]. Optics letters.2011,36(23):4560-4562.
    [45]Moriya, S., Miki, Y., Yokobayashi, T., et al. Optimization of the number of selectable channels for spine phased array coils for transverse imaging [J]. Japanese Journal of Radiology.2011,29(3): 166-170.
    [46]薛振奎,白世武,詹华等.国内长输管道对接环焊缝相控阵全自动超声检测装置的研制[J].焊管.2006,29(4):44-48.
    [47]Rebeiz, G.M., Koh, K.J., Yu, T, et al. Highly dense microwave and millimeter-wave phased array T/R modules and Butler matrices using CMOS and SiGe RFICs [C].2010, IEEE.
    [48]Song, S.J., Shin, H.J., Jang, Y.H. Development of an ultra sonic phased array system for nondestructive tests of nuclear power plant components [J]. Nuclear engineering and design.2002, 214(1):151-161.
    [49]韩相勇.长输管线对接环焊缝自动相控阵超声波检测技术[J].无损检测.2006,28(5):237-241.
    [50]周琦,刘方军.超声相控阵成像技术与应用[J].兵器材料科学与工程.2002,25(003):34-37.
    [51]钟志民,梅德松.超声相控阵技术的发展及应用[J].无损检测.2002,24(2):69-71.
    [52]Bao, X., Shi, K., Chen, Y., et al. High-precision phased ultrasonic transmission in phased array ultrasonic systems [J]. Journal Tsinghua University.2004,44(2):153-156.
    [53]鲍晓宇,施克仁,陈以方等.超声相控阵系统中高精度相控发射的实现[J].清华大学学报(自然科学版).2004,44(2):153-156.
    [54]施克仁,阙开良,郭大勇Flexible Ultrasonic Phased-Array Probe [J]清华大学学报:自然科学英文版.2005,9(5):574-577.
    [55]杨平,郭景涛,施克仁等.超声相控阵二维面阵实现三维成像研究进展[J].无损检测.2007,29(4):177-180.
    [56]黄晶,阙沛文,金建华.线形超声相控阵换能器的阵列设计[J].传感器技术.2004,23(001):9-11.
    [57]黄晶,周社育,阙沛文.线形超声相控换能器阵列的参数优化[J].压电与声光.2010,32(1):51-54.
    [58]江帆.超声相控阵探伤系统关键技术的研究[D].2005.天津大学.
    [59]杨斌,王召巴,金永.基于CPLD的超声相控阵相控发射与同步系统的实现[J].微计算机信息.2007,23(7-2):182-183.
    [60]王文龙,师芳芳,张茉莉等.凹面线性相控阵聚焦与扫描成像[J].声学学报.2008,33(2):164-170.
    [61]Xu, L., Zhang, J., Wu, L.Y. Influence of phase delay profile on diffraction efficiency of liquid crystal optical phased array [J]. Optics & Laser Technology.2009,41(4):509-516.
    [62]Hu, C.H., Zhang, L., Cannata, J.M., et al. Development of a 64 channel ultrasonic high frequency linear array imaging system [J]. Ultrasonics.2011,51(8):953.
    [63]Harvey, G., Tweedie, A., Carpentier, C,. et al. Finite Element Analysis of Ultrasonic Phased Array Inspections on Anisotropic Welds[C].2011, AIP Conference Proceedings.
    [64]Cannata, J.M., Williams, J.A., Zhang, L., et al. A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite[J]. Ultrasonics, Ferroclectrics and Frequency Control, IEEE Transactions on.2011,58(10):2202-2212.
    [65]Abu-Al-Nadi, D., Ismail, T., Al-Tous, H., et al. Design of Linear Phased Array for Interference Suppression Using Array Polynomial Method and Particle Swarm Optimization[J]. Wireless Personal Communications.2012,63(2):501-513.
    [66]Kim, D., Philen, M. Guided Wave Beamsteering using MFC Phased Arrays for Structural Health Monitoring:Analysis and Experiment[J]. Journal of Intelligent Material Systems and Structures. 2010,21(10):1011-1024.
    [67]Yu, L.L., Shou, W.D., Hui, C. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation[J]. Communications in Theoretical Physics.2012, 57:285.
    [68]Mariappan, Y.K., Rossman, P.J., Glascr, K.J., et al. Magnetic resonance elastography with a phased-array acoustic driver system [J]. Magnetic Resonance in Medicine.2009,61(3):678-685.
    [69]Sun, X. PZT Sensors and their Application in Structural Health Monitoring [J], Applied Mechanics and Materials.2012,128:669-675.
    [70]Castillc, C., Dufour, I., Maglione, M., et al. Sensor application using longitudinal mode of screen-printed PZT cantilever[J]. Procedia Chemistry.2009,1(1):971-974.
    [71]Zhang, Q., Chen, R.B., Li, X.Y., et al. Sound Field Distribution Research of Polymer Materials Ultrasonic Probe Chip Polymer Materials[J]. Advanced Materials Research.2012,466:523-527.
    [72]Beach, K.W., Principles of Ultrasonic Imaging and Instrumentation [M]. Ultrasound and Carotid Bifurcation Atherosclerosis.2012.
    [73]Langton, C., Njeh, C., Hodgskinson, R., et al. Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation [J]. Bone.1996,18(6):495-503.
    [74]Cross, L.E. Ferroelectric materials for electromechanical transducer applications1[J]. Materials chemistry and physics.1996,43(2):108-115.
    [75]Huang, S., Li, X., Liu, F., et al. Effect of carbon black on properties of 0-3 piezoelectric ceramic/cement composites [J]. Current Applied Physics.2009,9(6):1191-1194.
    [76]Thi, M.P., Hladky-Hennion, A.C., Khanh, H.L., et al. Large area 0-3 and 1-3 piezoelectric composites based on single crystal PMN-PT for transducer applications [J]. Physics Procedia.2010, 3(1):897-904.
    [77]Newnham, R., Safari, A., Giniewicz, J., et al. Composite piezoelectric sensors [J]. Ferroelectrics. 1984,60(1):15-21.
    [78]Chan, H.L.W., Unsworth, J. Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.1989,36(4):434-441.
    [79]Safari, A., Janas, V., Jadidian, B., et al. Incorporation of piezoelectric Pb (Zr, Ti) O fibers into ceramic/polymer composites [C].1996.
    [80]Gachagan, A., Hayward, G., Wright, W., et al. Air coupled piezoelectric detection of laser generated ultrasound [C].1993, IEEE.
    [81]Boland, C.R., Thibodeau, S.N., Hamilton, S.R., et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition:development of international criteria for the determination of microsatellite instability in colorectal cancer [J]. Cancer research.1998,58(22):5248.
    [82]Bent, A.A., Hagood, N.W., Rodgers, J.P. Anisotropic actuation with piezoelectric fiber composites [J]. Journal of Intelligent Material Systems and Structures.1995,6(3):338-349.
    [83]Bent, A.A., Hagood, N.W. Piezoelectric fiber composites with interdigitated electrodes [J]. Journal of Intelligent Material Systems and Structures.1997,8(11):903-919.
    [84]Rossctti Jr, G.A., Pizzochero, A., Bent, A.A. Recent advances in active fiber composites technology [C].2000, IEEE.
    [85]Tan, P., Tong, L. Micro-electromechanics models for piezoeleclric-fiber-reinforced composite materials[J]. Composites science and technology.2001,61(5):759-769.
    [86]Ying, L., Baoqi, T. The OPCM strain gauges for strain and stress measurement of orthotropic material structures [J]. Acta mechanica solida sinica.2000,13(4):337-345.
    [87]Luo, Y., Wang, Z. The focus acoustic field simulation based on parameter optimization of OPCM ultrasonic phased array elements [C].2009, IEEE.
    [88]Benjeddou, A. Advances in piezoelectric finite element modeling of adaptive structural elements:a survey [J]. Computer s& Structures.2000,76(1):347-363.
    [89]Pettermann, H.E., Suresh, S. A comprehensive unit cell model:a study of coupled effects in piezoelectric 1-3 composites [J]. International journal of solids and structures.2000,37(39): 5447-5464.
    [90]Chen, C., Wang, A., Han, X., et al. Preparation and Piezoelectric Properties of PZT Nano Fibers and PZT Textured Ceramics[J]. Science of Advanced Materials.2012,4(7):749-752.
    [91]Hossack, J.A., Hayward, G. Finite-element analysis of 1-3 composite transducers[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on.1991,38(6):618-629.
    [92]Lous, G.M., Cornejo, I.A., McNulty, T.F., et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics[J]. Journal of the American Ceramic Society.2000,83(1):124-28.
    [93]Ray, M., Pradhan, A. On the use of vertically reinforced 1-3 piezoelectric composites for hybrid damping of laminated composite plates [J]. Mechanics of Advanced Materials and Structures.2007, 14(4):245-261.
    [94]刘琼华,骆英,朱步银等.基于OPCM声发射传感器的新的SHM技术[J].江苏大学学报:自然科学版.2006,27(2):172-175.
    [95]刘红光,骆英,李忠芳等.基于OAET和HHT的混凝土AE源损伤识别方法[J].实验力学.2007,22(1):38-42.
    [96]Luo, Y., Wang, Z.P. Fabrication and Performance Evaluation of OPCM Array Transducer [J]. Applied Mechanics and Materials.2011,83:109-115.
    [97]骆英.S型压电微位移放大机构[P].2007,中国
    [98]骆英.微型宽频带正交异性-声发射传感器[P].2008,中国.
    [99]罗斯,何存富,吴斌等.固体中的超声波[M].科学出版社.2004.
    [100]张福学,王丽坤,现代压电学(中册)[M].北京:科学出版社.2002.
    [101]骆英,徐佳,李伯全等.基于FPGA技术的新型相控阵驱动电路[J].仪表技术与传感器.2011,12:033.
    [102]Mailloux, R.J. Phased array theory and technology[J]. Proceedings of the IEEE.1982,70(3): 246-291.
    [103]冯若,超声手册[M].南京大学出版社.1999.
    [104]孙宝申,沈建中.合成孔径聚焦超声成像(一)[J].应用声学.1993,12(3):43-48.
    [105]刘长福,张彦新,李中伟等.超声波相控阵技术原理及特点[J].河北电力技术.2008,27(3):29-31.
    [106]Hagood, N.W., Kindel, R., Ghandi, K., et al. Improving transverse actuation of piezoceramics using interdigitated surface electrodes[C]. in 1993 North American Conference on Smart Structures and Materials.1993, International Society for Optics and Photonics.
    [107]Bowen, C., Nelson, L., Stevens, R., et al. Optimisation of interdigilated electrodes for piezoelectric actuators and active fibre composites [J]. Journal of electroceramics.2006,16(4):263-269.
    [108]Hindmarsh, A.C., Brown, P.N., Grant, K.E., et al. SUNDIALS:Suite of nonlinear and differential/algebraic equation solvers [J]. ACM Transactions on Mathematical Software (TOMS). 2005,31(3):363-396.
    [109]阎睿,虞鑫海,刘万章.导电胶性能的影响因素与表征[J].化学与粘合.2012,34(2):71-73.
    [110]Lewin, S., Displacement of water and its control of biochemical reactions [M]. Academic Press London.1974.
    [111]Naik, T.R., Malhotra, V.M., Popovics, J.S.The ultrasonic pulse velocity method [J]. Handbook on nondestructive testing of concrete.2004,107(24):189-207.
    [112]Trtnik, G., Kavcic, F., Turk, G. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks [J]. Ultrasonics.2009,49(1):53-60.
    [113]Abrar, A., Zhang, D., Su, B., et al.1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound [J]. Ultrasonics. 2004,42(1):479-484.
    [114]Newnham, R.E., Bowen, L., Klicker, K., et al. Composite piezoelectric transducers [J]. Materials & Design.1980,2(2):93-106.
    [115]Tiefensee, F., Becker-Willinger, C., Heppe, G., et al. Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl [J]. Ultrasonics. 2010,50(3):363-366.