硅团簇结构硅团簇结构、形变以及相应力学特性的分子动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇是由几个至上千个原子、分子或离子组成的相对稳定的聚集体,由于其独特的性质而备受重视。团簇结构的研究是团簇其它一切特性研究的基础。在块体研究中,人们已经制成了很多具有非基态结构的块体材料,这些材料往往具有较传统材料更为优异的性能。对于团簇研究而言,人们目前都是把目光集中在具有基态结构的团簇上,但事实上,团簇还有很多非基态结构,有些非基态结构也是非常稳定的。硅材料是电子产业的基石,所以对硅团簇稳态结构的研究具有重要的科学意义和应用价值。
     本文用分子动力学的方法,采用Stillinger-Weber势函数,采取不同的初始模型和不同温度条件,获取硅团簇Si n(n=4-35)的稳态结构。我们发现所形成的团簇稳态结构对初始结构和温度非常敏感,初始结构不同、温度不同,得到的硅团簇具有不同的几何构型。一般,原子数目少时所形成的团簇结构较规则,有较好的对称性,并且原子只分布在团簇表面。可以看出原子数大时的团簇,是由原子数目小的团簇拼凑而成的,并且出现了内部原子。形成硅团簇表面的原子多构成空间五边形结构。文章还采用Tersoff势函数,用硅原子替换富勒烯C6 0中碳原子的方法获取了Si 60的结构。
     另外,随着纳米机械的发明以及发展,对各个机械部件的力学行为的研究就变得非常迫切。团簇是纳米机械系统最重要的候选部件之一,本文以Si 13团簇为例,对其稳定结构进行了拉伸和压缩的分子动力学模拟,得出了硅团簇拉伸和压缩的力与应变的曲线图。研究表明,在拉伸和压缩的初始阶段力与应变呈线性关系。拉伸时温度越高受力越大,压缩时正好相反,温度越高受力越小,而且同等应变下拉伸时的力明显高于压缩时的力;当拉伸应变达到承载极限,继续拉伸,力突然变的很小,这是因为团簇发生了结构变化。随后接着拉伸,力与应变又呈现出与初始阶段相同的线性关系。
Cluster is the relatively stable aggregates composed by several to thousands of atoms, molecules or irons. It has caught much attention because of its unique properties. The study of structure is the base of the study of all the other characteristics of clusters. In the research of the bulk, people have made out a lot of of bulk materials with non-ground state structure. These materials are often more excellent than the traditional materials. For clusters, people are currently pay more attation on the ground state structures. However, in fact, there are many non-ground state structure,some of which are very stable. Silicon material is the cornerstone of the electronics industry, so the study of the state structures of silicon clusters has important scientific significance and application value.
     In this paper, we use the method of molecular dynamics and potential function of Stillinger-Weber for different models and different temperature conditions to obtain the steady-state structures of silicon clusters Sin (n = 4-35). We found the formed steady-state structures of clusters are very sensitive to the initial structure and temperature. The obtained silicon clusters have different geometries for different initial structures and temperature. In general, the formed clusters structure is more regular and better symmetry while the number of atoms is few, and only distributes in the cluster surface. The clusters with large number atoms are pieced by the clusters with small number atoms, and there is internal atoms in this large clusters. The atoms on the surface of silicon clusters often form space pentagon structure. The article also use Tersoff potential function and the method of silicon atoms replacing of carbon atom in the fullerene to obtain the Si6 0 structure..
     Furthermore , with the invention and development of nano-mechanics, the study of the mechanical behavior of various mechanical components becomes very urgent.Clusters are one of the most important part candidates of nano-mechanical systems.In this article, we also carry out the molecular dynamics simulation of tension and compression to the stable structure of Si1 3. The reslults show that strength and strain is linear in the initial stage of tension and compression. The force is greater when the temperature is higher in the tension. On the contrary, the force is smaller when the temperature is higher in the compression. The force of tension is significantly higher than the force of compression for the same strain. When the tensile strain reaches the limit load, the force of tension suddenly becomes very small, because clusters structures change. Followed by stretching, the force and strain have shown the same linear relationship in the initial stages.
引文
[1]张霞,李国良,曹亚丽,等. 14族非碳原子团簇的研究进展.科学通报,2002,47(19):1441-1450
    [2]王音,李鹏,宁西京. C36团簇自组装的分子动力学研究.物理学报,2005,54(6):2847-2852
    [3] W.H.Qi. Modeling the relaxed cohesive energy of metallic nanoclusters. Materials Letters, 2006, 60: 1678-1681
    [4] Wang Guanghou, Ni Guoquan, Li Yufen, et al. Some progresses in cluster research. Progress In Natural Science, 1995, 5(5): 513-522
    [5]任世伟,刘振永,王爱坤,等.非晶团簇Au19的熔化特征研究.石家庄学院学报,2006,8(6):14-19
    [6]王广厚,窦烈,庞锦忠,等.离子簇的奇异性质.物理学进展,1987,7(1):1-81
    [7]徐送宁,张林,张彩碚,等.纳米尺度铜团簇在升温过程中结构变化的分子动力学研究.金属学报,2007,43(4):379-384
    [8]杨全文,朱如曾.纳米铜团簇凝结规律的分子动力学研究.物理学报,2005,54(9):4245-4250
    [9]汪志刚,邱姝颖,文玉华.纳米团簇熔化过程的分子动力学模拟.原子与分子物理学报,2008,25(4):848-852
    [10]罗强,王新强,何焕典,等.铜、银及铂原子纳米团簇熔点随尺寸非单调变化的分子动力学模拟研究.人工晶体学报,2006,35(2):351-354
    [11]王锋,张丰收,朱志远,等.团簇分子(Nan)2的碰撞动力学研究.化学物理学报,1999,12(4):414-420
    [12]王广厚.团簇物理的新进展(I).物理学进展,1991,14(2):121-172
    [13]高虹,赵良举,曾丹苓,等.团簇在金属表面沉积过程的分子动力学模拟.重庆大学学报(自然科学版),2007,30(3):51-55
    [14]王广厚,韩民.原子团簇和原子核的相似性.核物理动态,1993,10(4):11-15
    [15] G.V.Kornich, G.Betz, V.Zaporojtchenko, et al. Molecular dynamics simulations of low energy ion sputtering of copper nano-dimensional clusters on graphite substrates. NIM B, 2005, 227: 261-270
    [16] Sheng-Rui Jian, Te-Hua Fang, Der-San Chuu. Effects of temperature on surface clusters by molecular dynamics simulation. Physica B, 2003, 334: 369-374
    [17] F.J.Palacios, M.P.Iniguez, M.J.Lopez, et al. Molecular dynamics study of cluster impact on the (001) and (110) surfaces of fcc metals. Comp Mat Sci, 2000, 17: 515-519
    [18] Sakir Erkoc, Tugrul Yilmaz. Molecular-dynamics simulations of silver clusters. Physica E, 1999,5: 1-6
    [19] Istok G.Nahtigal, Igor M.Svishchev. Molecular Dynamics study of ionic nano-clusters produced from supercritical solutions. J.of Supercritical Fluids, 2009, 50: 169-175
    [20] Suleyman Qzcelik, Ziya B.Guvenc, Perihan Durmus, et al. Reactivity of the Nin(T) (n=54,55,56) clusters with D2(υ,j)molecule: molecular dynamics simulations. Surface Science, 2004, 566-568: 377-382
    [21]阎逢旗,张为俊,程平,等.脉冲CO激光气相合成大尺寸硅团簇的研究.量子电子学报,1999,16(1):58-63
    [22]梁志军,黄臻成,王莉,等.碳团簇与硅单晶表面重激光的蒙特卡洛模拟探索.中山大学学报(自然科学版),2004,43(增刊):26-32
    [23]段沛.五重轴硅团簇的量子受限.原子与分子物理学报,2001,18(3):297-300
    [24]王素凡,封继康,孙家钟,等.硅-硫二元团簇[(SiS2 )n S]?(n=1~4)的结构和稳定性的量子化学研究.高等学校化学学报,2001,22(8):1355-1358
    [25]刘剑波,韩春英,曾嵘,等.硅、锗、锡、铅/磷二元原子团簇的形成、光解和结构.物理化学学报,1999,15(10):883-889
    [26]庾弘朗.碳硅锗四原子团簇结构和芳香性的理论研究.韩山师范学院学报,2005,26(3):65-70
    [27]罗有华,仇树田,赵纪军,等. (C60)N团簇的结构.原子与分子物理学报,1998,增刊:267-268
    [28] W.H.Qi. Molecular dynamics simulation of structure stability of silver nanoclusters. Engl.Lett, 2006, 19(3): 209-214
    [29]王广厚.离子簇的稳定结构和幻数.核技术,1989,12,(8-9):520-524
    [30]王广厚.团簇的结构和奇异性质.物理学进展,1993,13(1-2):266-279
    [31]周晓林,宗江琴,白玉林,等.小碳团簇结构的从头算分子动力学模拟.原子与分子物理学报,2004,21(3):457-460
    [32]王广厚.原子团簇的稳定结构和幻数.物理学进展,2000,20(1):52-92
    [33]马丽,赵纪军.中等尺寸SiN团簇结构和相对稳定性的研究(21≤N≤50,N=60).原子与分子物理学报,2007,24(4):653-661
    [34] Lin Zhang, Song-Ning Xu, Cai-Bei Zhang, et al. Molecular dynamics investigations of structural changes accompanying with freezing a molten Cu135 cluster on cooling. Comp Mat Sci, 2009, 47: 162-167
    [35] H.Zhang, Z.N.Xia. Molecular dynamics simulation of cluster beam Al deposition on Si(100) substrate. NIM B, 2000, 160: 372-376
    [36] Lin Zhang, Haixia Sun. Molecular dynamics study of structural changes in freezing CuN (N=5156) clusters. Solid State Comm, 2009, 149: 1722-1725
    [37] Suleyman Qzcelik, Ziya B.Guvenc. Structures and melting of Cun (n=13,14,19,55,56) clusters. Surface Science, 2003, 532-535: 312-316
    [38] Jinlan Wang, Guanghou Wang, Feng Ding et al. Structural transition of Si clusters and their thermodynamics. Chem.Phys.Lett, 2001, 341: 529-534
    [39]吴庆银,宿媛. Si60团簇及其衍生物的研究进展.渤海大学学报(自然科学版),2007,28(3):193-201
    [40] M.A.Belkhir, S.Mahtout, I.Belabbas, et al. Structure and electronic property of medium-size silicon clusters. Physca E, 2006, 31:86-92
    [41]甘利华,舒春英,王春儒.富勒烯结构Si60的从头算研究.高等学校化学学报,2007,27:1106-1108
    [42]法伟,罗成林.硅团簇结构和碎片行为的紧束缚理论方法.物理学报,2000,49(3):430-434
    [43]龚新高,郑庆祺,何怡贞.硅团簇集团结构的分子动力学研究.计算物理,1992,9(4):721-722
    [44]方云团,管荷兰.紧束缚分子动力学研究硅团簇(n=20)的稳定结构.淮阴师范学院学报(自然科学版),2002,1(3):27-29
    [45]李宝兴,诸巧燕,俞健.中等正离子硅团簇是稳定结构及结构演变.江西科学,2005,23(4):303-307
    [46] Tatiana E.Itina. Molecular dynamics study of the role of material properties on nanoperticles formed by rapid expansion of a herted target. Applied Surface Science, 2009, 255: 5107-5111
    [47] Yuhang Jing, Qingyuan Meng, Wei Zhao. Molecular dynamics simulations of the interaction between 60°dislocation and self-interstitial cluster in silicon. Physica B, 2009, 404: 2138-2141
    [48] Roger P.Webb, Maxim Ponomarev. Molecular dynamics simulation of low energy cluster impacts on carbon nanotubes. NIM B, 2007, 255: 229-232
    [49] Girija S.Dubey, Godfrey Gumbs. Molecular dynamics study of the effect of cooling and heating on the pattern formation and stability of silicon clusters. Solid State Comm, 1997, 102(10): 725-728
    [50] F.Voigt, R.Bruggemann, T.Unold, et al. Porous thin films grown from size-selected silicon nanocrestals. Mater.Sci.Engi. C, 2005, 25: 584-589
    [51]王坚,王绍青.硅团簇熔化行为的紧束缚分子动力学研究.物理学报,2003,52(11):2854-2858
    [52]刘玉真,罗成林.硅团簇的结构及生长模式——紧束缚分子动力学:Si11—Si32.物理学报,2004,53(2):592-595
    [53] Stillinger F H, Weber T A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, 31(8): 5262-5271
    [54] Shen Haijun. The compressive mechanical properties of C60 and endohedral M@C60(M=Si,Ge)fullerene molecules. Mater. Lett, 2006, 60: 2050-2054
    [55]付称心,陈云飞.硅纳米杆拉伸的分子动力学模拟.传感技术学报,2006,19(5):1697-1700