基于PCC的智能控制水轮机调节系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据水轮机调节领域存在的问题和发展趋势,对水轮机调速器的液压控制系统、频率测量环节、离散调节系统稳定性与调节参数最优整定以及适应式参数自调整PID控制策略进行了研究,得到以下主要成果和结论:
     首次提出了采用步进电机驱动的步进式电液引导阀,从根本上解决了水轮机调速器电液随动系统中存在的电液转换元件发卡、堵塞问题,使电液随动系统的可靠性大大提高。在此基础上,提出一种全新的步进式电液随动系统,使调速器整机简单可靠;同时在建立该随动系统数学模型的基础上,得出了其稳定性控制方程。
     首次提出了一种由整形电路和可编程计算机控制器配以适当软件完成频率测量的方法,有效地解决了PLC调速器测频环节存在的可靠性差及响应速度慢的问题,提高了频率测量的可靠性及动态品质。在此基础上,研究和开发了基于可编程计算机控制器(PCC)的步进式水轮机调速器工业样机并在电站运行中取得了圆满成功。
     在建立水轮机调节系统离散数学模型的基础上,通过分析,给出离散调节系统的稳定域边界控制方程,通过稳定域绘制,比较离散与连续系统的差异,找出离散调节系统稳定域的变化规律和特点,从而为研究水轮机离散调节系统的控制策略及调节参数整定提供理论依据。
     提出了一种可变交叉概率和变异概率的改进遗传算法进行调节参数优化的方法,仿真结果表明,该方法有效地消除了对参数初值的依赖性,使得寻优效率大大提高,同时具有很强的鲁棒性,是一种较好的PID参数寻优方法。
     结合智能控制理论,提出了基于模糊规则的适应式参数自调整PID控制策略。它将模糊推理与传统PID控制相结合,使调速器进一步适应调节系统工况的变化。首次利用遗传算法对模糊推理中较难确定的模糊规则进行寻优,以确保得到适合水轮机调节系统的模糊规则。仿真结果表明基于模糊规则的适应式参数自调整PID控制策略是行之有效的。
According to the present problems and developing tendency of hydraulic turbine governor, four main issues of this field are studied in this paper. The content include hydraulic control system, frequency measurement unit, stability of the discrete control system, optimization of control parameters and self-adjusting PID control strategy based on fuzzy logic. Several main achievement and results are obtained and shown as follows:
    The electric-hydraulic pilot valve driven by step-motor is firstly proposed, which solves the problem that the electric-hydraulic converter of hydraulic turbine governor hydraulic servo is prone to be stuck and blocked and improves the systemic stability greatly. Based on it, a new-style step-type electric-hydraulic servo is developed which simplifies the structure and improves the reliability of the governor, and the mathematical model and its stability control equation are obtained.
    A new method, which uses shaping circuit and programmable computer controller with appropriate software to measure frequency, is initially applied which overcomes the problems of low reliability and slow responding process of traditional frequency measurement unit, improves the reliability and dynamic quality of frequency measurement and expedites the responding speed effectively. The sample industrial controller of PCC step-type hydraulic governor using this method is proved to be successful by practical operation in hydropower stations.
    Based on modeling and analyzing the discrete mathematic model of hydraulic turbine governor system, the edge equation of stable domain of the discrete control system is obtained. According to this equation, the stable domain is specified. Compared with continuous system, the changing rules and characters of the discrete system are found, which provide the theoretic foundation for researching the control strategy and the parameter adjustment of discrete
    
    
    control system of the hydraulic turbine governor.
    In addition, a new improving genetic algorithm with the alterable intercross probability and mutation probability to optimize the parameters of hydro turbine governor is presented. The simulation result doesn' t suggest that it depend on the initial parameter value of the system and the searching efficiency can be ameliorated. At the same time, it has strong robustness and is an excellent PID optimization method.
    Finally, referring the intelligent control theory, the self-adjusting parameter PID control strategy based on the fuzzy logic rules is introduced. Combining the fuzzy logic and traditional PID control, it makes governor more adaptive to the real operation conditions. Since the fuzzy reasoning rules are difficult to make, the improving genetic algorithms is applied to optimize the fuzzy reasoning rules and thus the excellent fuzzy reasoning rules can be obtained. The simulation result shows that the self-adjusting PID control strategy based on fuzzy reasoning rules is more available.
引文
【1】沈祖诒.水轮机调节.北京:中国水利水电出版社, 1997.
    【2】陈仲华.大型水轮机调速器的状况及技术发展.水电站自动化,(3),1990:14—24.
    【3】蔡维由等. 基于可编程序控制器的水轮机微机调速器.武汉水利电力大学学报,28(1),1995:66—72.
    【4】郑玉森. 一种新型的水轮机调速器—单片机调速器.水力发电学报,(2),1995:56—62.
    【5】王柏林.水轮发电机组的模型参考自适应控制. 自动化学报,13(6),1987:410—415.
    【6】陈启卷等.自校正PID水轮机调节器. 武汉水利电力大学学报,27(5),1994:531—536.
    【7】O. P. Malik. Design of a robust adaptive controller for a water turbine governing system. IEEE Trans on EC, Vol: 10, Iss: 2, 1995: 354—359.
    【8】王永骥等.水轮机水压转速联合预测控制器研究.水电能源科学,9(3),199:240—247.
    【9】王永骥等.大电网运行水轮发电机组功率预测控制研究.水电能源科学,10(3),1992:176—182.
    【10】金和平等.水电站多机组的分散预测控制器研究.水电能源科学,11(3),1993:171—175.
    【11】Li We. Adaptable DMC algorithm and its application in Hydroturbine regulations.水电能源科学, 12 (2), 1994: 71—76.
    【12】刘育骐,王柏林. 水轮机调速系统的状态反馈控制.华中工学院学报,(5),1986:66—73.
    
    
    【13】J.Herron and L.Wozniak. A state-space pressure and speed sensing governor for hydrogenerators. IEEE Trans on EC, V0l:6, Iss:3,1991: 414—418.
    【14】杨富文,涂健.H优化设计应用于水轮机调速系统的试验研究.水电能源科学,10(3),1992:169—175.
    【15】Jin Jiang. Design of an optimal robust governor for hydraulic turbine generating units. IEEE Trans on EC,V0l: 10,Iss: 1, 1995: 188—194.
    【16】Philip Schniter. Efficiency based optimal control of Kaplan hydrogenerators. IEEE Trans on EC, VOl: 10, Iss: 2, 1995: 348—353.
    【17】郑载满等.水轮机的鲁棒调速器2自由度控制设计.电气自动化,(2),1996:12—15.
    【18】陈启卷等.水轮发电机组空载模型辨识及调节器PID参数整定.水力发电学报,(3),1995:64—71.
    【19】申新卫等.面向对象的水电厂智能故障诊断系统.电力系统自动化,22(2),1998:32—34.
    【20】李植鑫等.水轮机调节系统Fuzzy控制的研究.武汉水力电力学院学报,22(5),1989:66—73.
    【21】徐枋同等.水轮机采用模糊控制的非线性问题. 武汉水利电力大学学报,26(3),1993:245—249.
    【22】蔡维由等.水轮机调节系统的FUZZY-PID复合控制.电气自动化,(4),1996:10—12.
    【23】张建明.模糊控制器在水轮机调节中的应用.大电机技术,(4),1993:46—50.
    【24】王宁等.水轮机调速系统的神经元智能智能控制实验研究.电气自动化,(1),1993:21—24.
    
    
    【25】景雷,叶鲁卿等.水轮发电机组的神经网络可辨识性研究.水电能源科学,(2),1997:17—23.
    【26】陈启卷,徐枋同.水轮发电机神经网络非线性建模研究.水利学报,(10),1997:62—65.
    【27】赵闻飚,郭尚来等.基于人工神经网络的水轮发电机组调速系统. 电气自动化,(5),1996:8—9.
    【28】曾杰等.水轮发电机组神经元预测调速器.测控技术,(2),1997:34—36.
    【29】景雷,叶鲁卿等.一种新型水轮发电机组智能模糊控制系统.中国电机工程学报,12(2),1994:28—30.
    【30】J.E.Lansberry and L.Wozniak. Optimal hydrogenerator governor tuning with a genetic algorithm. IEEE Trans on EC, Vol: 7, Iss: 4, 1992: 623—630.
    【31】C.A.Wrate and L.Wozniak. Hydrogenerator System Identification Using a Simple Genetic Algorithm. IEEE Transactions on Energy Conversion, Vol: 12, Iss: 1, 1997: 60—65.
    【32】张涛,叶鲁卿,李朝晖.水电机组智能化控制的知识处理.水电能源科学,12(2),1994:77—83.
    【33】王玲花等.水轮机调速器研究综述.人民黄河,(2),2001:28—29.
    【34】赵坤耀.水轮机调速器发展综述.水力发电学报,(1),1996:78.83.
    【35】陈仲华,赵坤耀.国产电液调速器性能浅析.第13次 中国水电设备学术讨论会论文集.1997:509—514.
    【36】商国才,王印松.水轮发电机组调速自动控制系统存在的问题及其对策.电力情报,(1),1997:53—56.
    
    
    【37】沈祖诒.我国水轮机及调速器发展40年.河海大学科技情报 9(3),1989:44—49.
    【38】贾宝良.水轮机调速器电液随动装置发展综述.华东电力.(2),1995:18—22.
    【39】常兆堂.PID调速器真实水轮机的新稳定域.水利学报,(2),1985:30—37.
    【40】孙增圻等.智能控制理论与技术.北京:清华大学出版社,1997.
    【41】康玲.基于遗传算法的水轮机调速器参数优化方法.水电能源科学,17(1),1999:32—34.
    【42】于海生等.微型计算机控制技术.北京:清华大学出版社,1999.
    【43】李忠杰,宁守信.步进电机应用技术.北京:机械工业出版社,1988.
    【44】王春行.液压控制系统.北京:机械工业出版社,2000.
    【45】罗南华等.水轮机调节系统的控制技术与发展.基础自动化,(4),1998:4—8.
    【46】齐容.新一代可编程计算机控制器技术.西安:西北工业大学出版社,2000.
    【47】B&R SYSTEM 2000, B&R 2003 User's Manual.Version:3.0 1998: 55—147.
    【48】刘昌玉,魏守平.智能测频测相模块的研究.大电机技术,(6),1994:57—61.
    【49】陈启卷,王学武.水轮机PLC调速器数字测频的研究.大电机技术,(4),1994:49—52.
    【50】杨征瑞,等.全数字式电液调速器中的电液比例随动系统的研究与设计.液压与气动,(4),1997:8-9.
    
    
    【51】Hiroshi Sugisaka et al. "A Digital Control System for Recent Pumped-Storage Power Plants" .Hitachi Review, Vol..37,Iss: 2, 1988: 77—82.
    【52】NEYRPIC, "Digital Speed Governor for Water Turbines:DIGPID 02", Descriptive Note No. 1637A, Grenoble, July, 1986.
    【53】Woodward, "Digital Electronic Cabinet Actuator for Hydraulic Turbines", Manual 07086, Wisconsin, U. S. A, Aug.,1989.
    【54】ABB, "Hydro Power Control: HPC610 Water Turbine Governor", OH 01-0022E, HMD, 1985.
    【55】ACEC, "A New Generation Speed Regulator ACEC-remorhy for Water Turbines ", Description NDA 557-00.30.
    【56】刘昌玉,魏守平.水轮机调速器的多调节模式及相互切换.水电能源科学,12(4),1994:224—258.
    【57】贺允东.数字控制系统.北京:人民邮电出版社,1986.
    【58】何飞跃等.基于PLC—5可编程控制器的水轮机调速器.水电能源科学,15(1),1997:35—39.
    【59】刘昌玉,魏守平等.一种高可靠PLC水轮机调速器.水电能源科学,13(2),1995:83—88.
    【60】袁由光,陈以农.容错与避错技术及其应用.北京:科学出版社,1992.
    【61】李维东等.微机控制系统的容错方法研究及其应用.水电能源科学,11(4),1993:225—233.
    【62】叶鲁卿等.双微处理机水轮机调速器容错模式及其可靠性分析.大电机技术,(3),1988:52—61.
    
    
    【63】李朝晖.容错式双微机水轮机调速器鬲可靠输出组件的研究.大电机技术,(6),1989:60—63。
    【64】李维东等.MCS-96多微机调速器及其可靠性研究.华中理工大学研究生学报,11(2),1991:59—64.
    【65】蒋传文等.并联PID型水轮机调节器控制规律分析.水电能源科学,13(2),1995:89—93.
    【66】陈仲华.现代水轮调速器的系统设计和配置的探讨.电力系统自动化,14(5),1990:3—11.
    【67】沈宓飞,严亚芳等.水轮机动态模型试验中的步进电机的微机控制.河海大学学报,23(3),1995:117—123.
    【68】沈宗树等.水电站机组稳定与控制.武汉:华中理工大学出版社,1989.
    【69】Wozniak,L. Determining hydro generating system stability and performance. International Water&Dam Construction. V01:43, Iss:8, 1991.
    【70】沈祖诒.水轮机调节系统分析.北京:水利电力出版社,1991:99—103.
    【71】南海鹏,等.水轮机微机调速器PID调节器的实现及其稳定性分析.大电机技术,(4),1990:52—56.
    【72】孙小林,阎晓霞.基于遗传算法的PID优化技术.电力系统及其自动化,9(2),1997:21—26.
    【73】王士同.神经模糊系统及其应用.北京:北京航空航天大学出版社,1998.
    【74】陈嘉谋.水轮机调节系统计算机仿真.北京:水利电力出版社,1993:25—46.
    【75】张平安等译.神经-模糊和软计算,西安:西安交通大学出版社,2000.
    
    
    【76】陶永华等.新型PID控制及其应用.北京:机械工业出版社,1998.
    【77】K.J.Astrom and T.Hugglund. Automatic tuning of PID controllers.Instrum. Soc.Am., 1988.
    【78】John J.Grefenstette. Optimization of control parameters for genetic algorithms. IEEE trans. Systems Man Cybern, Iss: 1, 1986: 122—128.
    【79】罗南华等.智能PID方法在水轮机调速器中的应用研究 吉林电力技术,(4),1998:39—41.
    【80】郑力新等.基于分层遗传算法的模型结构与参数的同步辨识.自动化仪表,(5),2001:5—8.
    【81】A.Varsek.T.Urbancic and B.Philipic. Genetic algorithm in controller design and tuning. IEEE trans. Systems Man Cybern, Iss: 5, 1993: 1330—1339.
    【82】D.Park, A.Kandel and G.langholz. Genetic-based new fuzzy reasoning models with application to fuzzy control. IEEE trans.Systems Man Cybern, Iss:1,1994: 24—38.
    【83】魏守平.现代水轮机调节技术.武汉:华中科技大学出版社,2002.
    【84】薛定宇著.控制系统计算机辅助设计-MATLAB语言及应用.北京:清华大学出版社,1996.
    【85】王小平,曹立明.遗传算法.西安:西安交通大学出版社,2002:51—63.
    【86】汤萌蕾.基于遗传算法的PID参数整定.中国仪器仪表,(6),1998.26—28.
    【87】王亮,王占林.改进的Gas在PID控制器优化中算法性能的方法.机床与液压,(1),2000:24—26.
    
    
    【88】张卫国等著.模糊控制理论与应用.西安:西北工业大学出版社,1999:78—85.
    【89】诸静等著.模糊控制原理与应用.北京:机械工业出版社,1995:240—298.
    【90】罗南华等.基于遗传算法的水轮发电机组模糊调速器的研究.长春工程学院学报(自然科学版),2(2),2001:4—7.
    【91】林富华等.模糊PID控制技术在水轮机调速器中的应用.动力工程,16(2),1996:51—54.
    【92】刘伯春.智能自整定调节器的进展.21(1),1993:46—50.
    【93】John E.Lansberry and L.Wozniak. Adaptive Hydrogenerator Governor Tuning With A Genetic Algorithm. IEEE Transactions on Energy Conversion, Vol: 9, Iss: 1, 1994: 179—185.
    【94】D.A.Linkens and H.O.Nyongesa. Genetic Algorithms For Fuzzy Control—Part l:Offline System Development And Application. IEE Proc, ControlAppl, Vol: 143, Iss: 3, 1995: 161—176.
    【95】D.A.Linkens and H.O.Nyongesa. Genetic Algorithms For Fuzzy Control—Part 2.'Offline System Development And Application. IEE Proc. Control Appl, Vol:143, Iss: 4, 1995: 177—185.
    【96】Leonid Reznik, Omar Ghanayem and Anna Bourmistrov. PID plus fuzzy controller structures as a design base for industrial applications. Engineering Applications of Artificial Intelligence, 13 (2000)419—430.
    
    
    【97】Hyun-Joon Cho,Kwang-Bo Cho and Bo-Hyeun Wang. Fuzzy-PID hybrid control:Automatic rule generation using genetic algorithms. Fuzzy sets and systems 92(1997) 305—316.
    【98】F.Herrera, M.Lozano and J.L.Verdegay. Alearning process for fuzzy control rules using genetic algorithms. Fuzzy sets and systems, 100(1998) 143—158.
    【99】Li RenHou and Zhang Yi. Fuzzy logic controller based on genetic algrithms, Fuzzy Sets and Systems 83 (1996) 1—10.
    【100】Tzuu-Hseng S. Li and Ming-Yuan Shieh.Design of a GAbased fuzzy PID controller for non-minimum phase systems, Fuzzy Sets and Systems 111 (2000) 183—197.
    【101】郑莉嫒等.水轮机调节.北京:机械工业出版社,1988.