带张力冷轧铌、钛短板的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国有色金属加工工业中,冷轧生产铌、钛短板时普遍不施加张力轧制,在实际生产中,轧制效率低,生产节奏慢,消耗能源多,生产效率低下。本文针对以上问题深入的分析了铌、钛材本身的金属学性质,提出在张力作用下冷轧铌、钛短板。由于铌、钛金属变形时与本身的晶体结构有关,尤其是钛在变形时滑移系少,塑性变形原动力的滑移被限制在特定的方向上,显示出很强的各向异性。同时钛的屈服极限与抗拉极限接近,增加了冷变形过程的难度。经过在铌、钛短板两端施加张力进行冷轧实验,在张力作用下,有效地改善了铌、钛短板塑性变形条件和应力状态,可以实现大压下量变形,显著提高了轧制效率。采用本方法灵活简单,便于应用到实际生产中。
     由于铌、钛材力学性能各向异性的特点,本文以Hill的异性屈服准则为基础,推导出Hill平面变形塑性力学方程,从而在理论上验证了张力对冷轧铌、钛短板的塑性变形条件和应力状态具有改善作用。
     由于张力对冷轧变形具有诸多的作用,可以改善铌、钛短板的轧制条件。针对以上的分析在东北大学轧制技术及连轧自动化国家重点实验室的直拉式四辊可逆冷轧实验机上对铌、钛短板进行了张力冷轧实验研究。经过反复的实验摸索,施加一定的张力,冷轧铌可以明显的提高轧制效率;钛板经过3个道次的轧制,变形率达到62.5%,而且板形良好,极大的提高了轧制效率。施加张力后还可大幅的降低轧制力,从而可有效的减小轧辊压扁,更有利于铌、钛短板的轧薄。
     实验结果表明,张力冷轧铌、钛短板的最大优点是能够有效地提高轧制效率,保证良好板形的前提下实现单道次的大压下变形,提高生产效率,降低能耗。张力的加载灵活简单,易于调整。是实用有效的新型生产方式,值得进行推广和应用。
In the nonferrous metal rolling processing, tension will not be usually applied during cold rolling niobium or titanium short slab in China, which result in lower rolling efficency, production, but higher energy consumption. Based on the analysis of metallic characters of niobium and titanium, cold rolling niobium and titanium slab under tension condition was brought forward. The deformation of niobium and titanium slab correlates with their crystal structures, espescially titanium has fewer slip systems, so that slippings are restricted to given directions when it deforms and shows strong aeolotropy. The yield limit and tensile limit of titanium are adjacent, which increase the difficulty of cold deformation. Applying tension to both sides of niobium or titanium short slab when rolling, the plastic deformation and stress conditions are improved, which permits larger pressure and improves efficency. It is also easy to be adopted in practical processing.
     Based on the Hill isomerism yield principle, the planar deformation plastic mechanical equation was educed, which also validated the effects of tension to cold rolling niobium or titanium short slab.
     Tension also improves the rolling conditions of niobium or titanium short slabs as verified. A four-high reversing rolling mill from the State Key Laboratory of Rolling and Automation was used to go on the experiment so that the optimizing process was put forward. Under certain tension, the cold rolling efficiency of niobium was improved obviously. After three passes,the deformation rate of titanium slab reachs 62.5 percent and the shape of the strip is perfect. Rolling under tension can also reduce the draught pressure with decreased roller flattening,which is favorable to reduce the thickness of cold rolling niobium or titanium short slabs.
     The experiment and the theoretical analysis show that tension improves rolling and producing efficiency, reduces the cost of energy, And make it possible to roll with maximum press and perfect strip shape in a single pass. The loading of tension is flexible and simple.So it is a new effective mode of production which should be applied and extended in practical producing.
引文
1.杨刚.金属铌的性能及其应用[J],稀有金属快报,2006,25(11):43-44
    2.费子文,徐大铨.中国冶金百科全书[M],北京:冶金工业出版社,2001,616
    3.孙鸿儒,王道隆.稀有金属手册[M],北京:冶金工业出版社,1992,107
    4.Mosheim C E. Niobium and Tantalum[J],Review of Industry Statistics,2001,108(3):3-10
    5.傅俊岩,王伟哲.铌·科学与技术[M],北京:冶金工业出版社,2003,699-702
    6. E.C.Bain, R.H. Aborn, B.Rutherfoed, Trans.Am. Soc for Steel[J], Metallurgist 1933,21(6): 481-485
    7.M.Tsuda, Soft, Stainless. Steel Fcrritic Stainless Steel NAS430DS, NAS436[J], Nippon Yakin Technical,1993,15(2):41-47
    8.Barker J F, TheIntial. Years of Alloy 718AGE Perspective[J],TMS Warrendal PA,1989, 56(3):269-277
    9.Polyakov V, PolyakovaL P. Current Trendsinthe Production of Tantalum and Niobium[J], Metallurgist,2003,47(1-2):33-38
    10.刘宁平.钽铌工业生产及其展望[J],稀有金属快报,2005,24(5):1-5
    11.余方新,谢佑卿,李小波,邓永平,陶辉锦.金属钒,铌,钽的电子结构和物理性质[J],稀有金属,2004,28(5):921-925
    12.孟凡成,欧阳南.钽铌新材料与高科技发展[J],江西冶金,2003,23(6):29-32
    13.郭青蔚.世界铌工业经济概况[J],稀有金属快报,2005,24(20):13-15
    14.何季麟,张宗国.中国钽铌工业的现状与发展[J],中国金属通报,2004,48(26):37-41
    15.余洪.金属钛及其合金[J],汽车工艺与材料,2004,12(12):65-68
    16.C.莱茵斯,M.皮特尔斯.钛与钛合金[M],北京:化学工业出版社,2005,218-231,2-5
    17. H.M. Ftower. Microstructural development in relation to hot working of titanium alloys[J], Materials Science and Technology,1990,32(6):1082-1092
    18.G.Marci.Comparison of Fatigue Crack Propagation Threshold of two Ti-Turbine[J],Disk Materials Int Journal of Fatigue,1994,56(16):409-412
    19.M. Peters, G.Litryfring, G. Zrecler. Control of Microstrures of α+β Titanium Alloys[J], Zeitschrift fur Metallkunde,1983,39(8):274-282
    20. M. Peters, J.Winkler. Leichtmetalle in der Luft-und Raumfahrt[J],Stand der Werks to fentwic klung METALL,1992,46(7):1226-1234
    21.S.R.Seagle, G.S.Hall. High Temperature Properties of Ti-6Al-2Sn-4Zr-2Mo-0.09Si[J], Metals Engineering Quarterly,1975,23(15):48-54
    22.逮福生.世界钛工业现状及今后发展趋势[J],钛工业进展,2001,20(5):1-5
    23.张喜燕,赵永庆,白晨光.钛合金及应用[M],北京,化学工业出版社,2005,287-302
    24.罗国珍,周廉,邓炬.中国钛的研究和发展[J],稀有金属材料与,1997,26(5):15-18
    25.Y.B.Chun, S.H.Yu, S.L.Semiatin, S.K.Hwang. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium[J],Materials Science and Engineering,2005,389(50):209-219
    26.张小明.纯钛板的塑性变形与冲压成形性[J],稀有金属快报,2006,25(9):43-44
    27.娄贯涛.钛合金的研究应用现状及其发展方向[J],钛工业进展进展,2003,35(2):9-13
    28.D.R.Thornburg, H.R.Piehler,Titanium Sci[J], Technol,1973,23(2):1187-1197
    29. M.J.Philippe, C.Esling, B.Hocheid, Textures and Microstructures[J], Materials Science and Engineering,1988,56(7):265-301
    30.Fray DJ, Farthing TW, Chen GZ. Removal of oxygen from metal metal oxides and solid solution selectrolysis in a fused salt[J],International Patent,1999,99(12):638-641
    31.Michael F. Titanium extracted directly from TiO2[J], Chemical & Engineering News,2001, 15(39):12-13
    32.张小明.工业纯钛冲压成形性与孪晶变形的关系[J],钛工业进展,1998,46(1):19-22
    33.周维贤.钛板的屈服应力与r值之间的定量关系[J],金属学报,1991,27(6):438-442
    34.陈健.钛板双向强化效应研究[J],现代机械,2004,24(2):35-36
    35.R.希尔著,王仁等译.塑性数学理论[M],北京:科学出版社,1966,25-30
    36.Hill R, Theoretical plasticity of textured aggregates[J], Mathematical Proceeding of the Cambridge Philosophical Society,1979,85(5):179
    37.Hill R. Constitutive modeling of orthotropic plasticity in sheet metal[J],Journal of the Mechanics Physics of Solids,1990,38(3):405-417
    38.Hill R. A use-friendly theory of orthotropic plasticity in sheet metal[J], International Journal of Mechanical Sciences,1993,35(1):19-25
    39.Logan R W, Hosford W F. Upper-bound anisotropic yield locus calculations assuming <111>-pencilgilde[J], International Journal of Mechanical Sciences,1980,22(7):419-430
    40.Bralat F, Lian J. Plastic behaviour and stretchability of sheet metals Lian J·Plastic behaviour and stretchability of sheet metals Part Ⅰ A yield function for orthotropic sheet under plane stress conditions[J],International Journal of Plasticity,1989,5(1):51-66
    41.Barlat F, Lege D J, Brem J C.A six-component yield function for anisotropic materials[J], International Journal of Plasticity,1991,7(7):693-712
    42. Barlat F, Becker R C.Yielding description for solution strengthened aluminum alloys sheets[J],International Journal of Plasticity,1997,13(4):385-401
    43.Barlat F, Maeda Y, Chung K. Yield function development for aluminum alloy sheets[J], Journal of the Mechanics Physics of Solids,1997,45(6):1727-1763
    44.Banabic D, A new criterion for anisotropic sheet metals(D), Gliwice:Proc 8th Int Conf Achievements in the Mechanical and Materials Engineering,1999
    45.Banabic D, Balan T, Comsa S D. Comments on a new anisotropic yield criterion-MED-Vol.11,Proc ASME[J], Manufacturing in Engineering Division,2000,25(9): 655-659
    46.Banabic D, Kuwabara T, Balan T, et al. An anisotropic yield criterion for sheet metals[J], Journal of Materials Processing Technology,2004,63(18):157-158,462-465
    47.Banabic D, Aretz H, Comsa D S, et al. An improved analytical description of orthotropy in metallic sheets[J], In-ternational Journal of Plasticity,2005,21(3):493-512
    48.朱知寿,顾家林,陈南平.钛的织构控制方法与力学性能各向异性的研究[J],机械工程材料,1944,18(6):8-10
    49.赵德文.材料成形力学[M],沈阳:东北大学出版社,2002,74-76
    50.张进之.论常用连轧张力变形微分方程的适用范围[J],钢铁研究学报,2002,14(5):73-75
    51.张灵杰,程晓茹,任勇.冷轧张力公式的数值研究及张力值的选定[J],南方金属,2006,149(4):28-30
    52.赵志业.金属塑性变形与轧制理论[M],北京:冶金工业出版社,1980,415-418
    53.秦瑞卿.稀有金属材料加工工艺学[M],长沙:中南大学出版社,2003,422-425
    54.王廷溥,齐克敏.轧制理论与工艺[M],北京:冶金工业出版社,2004,7-8
    55.杨节.轧制过程数学模型[M],北京:冶金工业出版社,1993,12-19
    56.彭志辉.稀有金属材料加工工艺学[M],长沙:中南大学出版社,2003,420-430