InSAR技术及其在大地测量与空间地球动力学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达干涉测量(InSAR)是一种将合成孔径雷达(SAP)复型雷达数据中的相位信息提取出来,进行干涉处理以精确确定地球表面三维信息的技术。
     本文首先介绍了InSAR技术的发展历史及研究现状和发展方向。对SAR的基本成像原理、信号的基本模型及成像处理方法进行了分析。列出了SAR定位误差源并对定位精度进行了分析。通过对重复轨道的星载InSAR系统的研究,阐述了InSAR测量的基本原理及数据处理方法,总结以往多种数据处理方法,给出了一个实用的算法处理器。针对InSAR数据处理算法的主要环节相位解缠、干涉基线的估算、DEM的重建等方法展开了详细讨论。研究了InSAR系统特有的参数一基线的特性,从系统失相关的角度研究了基线姿态与InSAR测量之间的约束关系。分析了InSAR系统的主要误差源,并对地球自转、大气效应等因素对InSAR测量的影响展开了详细讨论。
     深入探讨了差分雷达干涉技术(D-InSAR)用于监测地表形变的潜力和优势。研究了D-InSAR技术提取地表形变的理论和方法,指出D-InSAR用于实际的地震形变、地面沉降等形变监测,精度可达到cm级。着重探讨了InSAR技术在大地测量与空间地球动力学中的应用,分析了InSAR技术与其它空间大地测量技术之间的联系,并从理论和应用的角度说明了InSAR是可用于空间地球动力学研究的一种新手段。提出了GPS/VLBI/SLR/InSAR组合应用的新设想,探讨了其在现代地壳运动和地球体积、形状变化中的应用可能,并针对地壳不同形变特征给出了三种不同的数学模型。结合我国自行研制的双星定位导航系统,指出InSAR技术可能是提高双星定位导航精度的新手段。
Synthetic Aperture Radar interferometry (InSAR) is the technology which uses the phase information derived from complex Synthetic Aperture Radar (SAR) data to get precise three-dimensional information of the earth surface.
    In this paper, the development history and present study status of InSAR are firstly introduced. The basic imaging theory, signal model and its proceeding method of SAR are then analyzed. The resource of SAR positioning are listed, and its precision of positioning are' analyzed. Through the study of spaceborne repeat pass InSAR system, the basic theory and data processing method of InSAR are expatiated. By summing up many other methods, a utility data processor are put forward. According to the mostly tache of InSAR algorithm, Phase unwrapping, Baseline evaluation and DEM reconstruction are discussed in detail. In the view of system decorrelation, the restrict relation of InSAR and its baseline attitudes are studied. The main error resources of InSAR and its influence on InSAR are also studied. The influence of earth rotation and atmosphere domino effect on InSAR are discussed in detail.
    The potentiality and advantage of crust deformation measurement by using Differential-InSAR are studied deeply. The theory and method which we obtain ground deformations by D-InSAR technology are brought forward in this paper. Its precision can reach centimeter level when we use this method to measure the earthquake deformation and ground subsiding. The applications of InSAR to geodesy and space - geodymanics are highlighted discussed. The mutual relation between InSAR and other spacial geodesy technologiesaer are also analyzed. In view of theoretics and applications, it is illuminated that InSAR can be a very useful tool when used to space geodymanics study. The new assume of GPS/VLBI/SLR/InSAR combination technology are brought forward, its application to studying the plate motion and its changes of cubage and figure of the earth are discussed, and three different mathematics models of crust deformation are founded according to their characteristics of crust deformation. The application to the geostationary satellite positioning system with two satellites are analyzed in this paper. It is indicated that InSAR will be a new means to improve the precision of geostationary satellite positioning system with two satellites.
引文
[1] 丁晓利,陈永奇,李志林等,合成孔径雷达干涉技术及其在地表形变监测中的应用,紫金山天文台台刊,2000,19(2):158~167
    [2] 王超.利用航天飞机成象雷运干涉数据提取戮字高僵模型,遥感学报,1997,1(1):6~49
    [3] 孙付平,赵铭,现代板块运动的测量与研究—空间大地测量方法。天文学进展,1995,13(2):132~142
    [4] 孙付平,地球参考系的实现。测绘学院学报,1995,12(4):243~249
    [5] 孙付平,赵铭,组合VLBI和SLR数据估计的全球板块运动参数。测绘学报,1997,26(1):20~25
    [6] 孙付平,赵铭,现代板块运动的测量与研究—地球物理方法。地球物理学进展,1998,13(1):1~16。
    [7] 孙付平等,基于VLBI、SLR和GPS实测数据的现时板块运动模型。解放军测绘学院学报,1998,15(4):250~255。
    [8] 孙付平,易维勇,乔书波等,GPS、VLBI和SLR测定地壳运动的相互比较研究,《3测绘技术与数字地球》论文集,哈尔滨地图出版社,2002年8月
    [9] 乔书波,李金岭,孙付平,边少锋,InSAR技术现状与应用,天文学进展,2003,21(1):11~25
    [10] 乔书波,孙付平,李迎春,易维勇,差分雷达干涉测量原理及其测地应用综述,解放军测绘研究所学报,2003,23(1):46~52
    [11] 陈元藻,合成孔径雷达卫星定位误差源分析,上海航天,1998,3:16~20
    [12] 陈尔学,李增元,车学俭.SAR干涉测量数字高程模型提取与高程误差校正.高技术通讯,2000,7:57~63
    [13] 刘国祥,刘文熙,黄丁发,InSAR技术及其应用中的若干问题,测绘通报,2001,8:10~12
    [14] 刘国祥,丁晓利,李志林等,InSAR DEM质量评价,遥感信息,2000,4:7~10
    [15] 刘国祥,丁晓利,陈永奇等.极具潜力的空间对地观测新技术——合成孔径雷达干涉.地球科学进展,2000,15(6):734~740
    [16] 周月琴,郑肇穗,李德仁等,SAR图像立体定位原理与精度分析,遥感学报,1998,2(4):245~250
    [17] 黄岩,徐华平,陈杰等,干涉合成孔径雷达数据处理实现方法,电子科学学刊,2000,22(3):373~378
    [18] 张红,D-InSAR与POLinSAR的方法及应用研究,博士论文,中国科学院遥感应用研究所,2002
    [19] 张景发,邵芸,干涉成像雷达(InSAR)技术及其应用现状,地震地质,1998,20(3):277~287
    [20] 穆冬,朱兆达,张焕春,干沙合成孔径雷达成像技术研究。遥感技术与应用,2000,15(4):256~260
    [21] 胡庆东 毛士艺.干涉合成孔径雷达基线的估计.航空学报,1998,19(7):19~23
    
    
    [22] 杨清友,王超,干涉雷达复图像配准与干涉纹图的增强,遥感学报,1999,3(2):122~126
    [23] 游新兆,乔学军,王琪等,合成孔径雷达干涉测量原理与应用,大地测量与地球动力学,2002,22(3):109~116
    [24] 袁孝康,干涉式合成孔径雷达的理论与设计约束,上海航天,1999,5:7~12
    [25] 魏钟铨等.合成孔径雷达卫星.科学出版社,北京,2001
    [26] Achache J, Fruneau B, Delacourt C, Applicability of SAR interferometry for operational monitoring of landslides. In: Proceedings of the Second ERS Applications Workshop. London, 1995, 165~168
    [27] Afraimovich E. L, Terekhov A I, Udodov M Y, et al. Refraction distortions of transionospheric radio signals caused by changes in a regular ionosphere and by travelling ionospheric disturbances, J. Atm. andTerr. Phys., 1992, 54:1013~1020
    [28] Aydin A, and Du Y, Surface Rupture at a Fault Bend: the 28 June 1992 Landers, California, Earthquake. Bull. Seism. Soc. Am., 1995, 85:111~128
    [29] Askne J, Dammert P B, Ulander L M, et al. C-band repeat-pass interferometric SAR observations of the forest. IEEE Trans. on Geosci. and Remote Sens., 1997.35(1): 25~35
    [30] Baer G, Sandwell D, Williams S et al. Coseismic deformation associated with the November 1995, M_W=7.1 Nuweiba earthquake, Gulf of Elat (Aqaba), detected by synthetic aperture radar interferometry. Journal of Geophysical Research, 1999, 104(BI1): 25221~25232
    [31] Bamler R, A comparison of Range/Doppler and Wave-number domain SAR focusing. IEEE Transaction on Geoscience and Remote Sensing, 1992,30(4): 706~713
    [32] Blewitt G, Heflin M B, Hurst K J, et al. Absolute far-field displacements from the 28 June 1992 Landers earthquake sequence, Nature, 1993, 361:340~342
    [33] Book Y, Agnew D C, Feng P, et al. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements, Nature, 1993, 361 : 337~340
    [34] Crossed orbit interferometry: theory and experimental results from SIR-B, Int. J. Remote Sensing, 1988, 9:857~872
    [35] Curlander J C, Synthetic aperture radar systems and sinai processing, 1991, New York, John Wiley & Sons, Inc.
    [36] Delacourt C, Briole P and Achache J, Tropospheric corrections of SAR interferograms with strong topography. Application to Etna. Geophys. Res. Lett, 1998.25(15): 2 849~2852
    [37] Feigl K L, Sergent A and Jacq D, Estimation of an earthquake focal machanism from a satellite intefferogram: Application to the December 4, 1992 Landers aftershock. Geophys. Res. Lett, 1995. 22(9): 1037~1040
    [38] Ferretti A, Prati C and Rocca F, Permanent scatters in SAR intefferometry. IEEE Trans. Geosci. Remote Sens., 2001.39(1).. 8~20
    [39] Fialko Y, Simons M, Evidence for on-going inflation of the Socorro magma body, New Mexico, from Interferometric Synthetic Aperture Radar imaging. Geophysical Research Letters ,2001, 28(18).3549~3552
    [40] Fornaro G, Franeeschetti G, Lanari R, A new efficient solution for DEM generation in interferomtric SAR processing. European Conference on Synthetic Aperture Radar (EUSAR'96), Germany, 1996:195~198
    
    
    [41] Fransceschetti G, Migliaccio M, Riccio D, et al. SARAS: A synthetic aperture radar (SAR) raw signal simulator. IEEE Trans. Geosci. Remote Sens., 1992., 30(1): 110~122
    [42] Gabriel A K, Goldstein R M, Zebker H A, Mapping Small Elevation Changes Over Large Areas: Differential Radar Interferometry, Journal of Geophysical Research, 1989, 94 (B7): 9183~9191
    [43] Gatelli F, Guarnieri A M, Parizzi F, et al. The Wavenumber Shift in SAR Interferometry, IEEE Trans. Geoscience and Rein. Sensing, 1994, 32:855~865
    [44] Gens R and Genderen J L, SAR interferometry-lssues, techniques, applications .Int. J. Remote Sens., 1996. 17: 1803~1835
    [45] Goldstein R M. and Zebker H A, Interferometric radar measurement of ocean surface currents, Nature, 1987, 328:707~709
    [46] Goldstein R M, Zebker H A and Wemer C L. Satellite Radar inerferomtry : Two-dimensional Phase Unwrapping. Radio Science, 1988, 23:713~720
    [47] Goldstein R M, Atmospheric Iimiations to repeat-track radar interferometry.Geophys. Res. Left, 1995.22(18): 2517~2520
    [48] Gonzalez F I ,Beal R C et al. Seasat Synthetic Aperture Radar: Ocean Wave Detection Capabilities. Science, 1979
    [49] Granham L C, Synthetic Interferometer Radar for Topographic Mapping. Proceedings of the IEEE, 1974, 62: 763~768
    [50] Guarnieri A M and Prati C, SAR interferometry: A "quick and dirty"coherence for data browsing. IEEE Trans. on Geosci. and Remote Sens., 1997.35(3): 660~669
    [51] Hanssen R and Bamler R, Evaluation of interpolation kernels for SAR interferometry. IEEE Trans. Geosci. Remote Sens., 1999.37(1): 318~321
    [52] Harris R A., and Simpson R W, Changes in static stress on southern California faults after the 1992 Landers earthquake, Nature, 1992, 360:251-254
    [53] Haukkson E, Jones L M, Hutton K. et al. The 1992 Landers Earthquake Sequence: Seismological Observations, J. Geophys. Res., 1993, 98: 19835~19858
    [54] Hernand N. A comparison between short term (Co-seismic) and long term (one year) slip for the Landers earthquake Measurements from strong motion and SAR interferometry Geophysical Research Letters ,1997, 24(13): 1579~1582
    [55] Hoen E W and Zebker H A, Penetration depths inferred from interferometric volume decorrelation observed over the Greeland ice sheet. IEEE Trans. on Geosci. and Remote Sens., 2000. 38(6): 2571~2582
    [56] Just D andBamler R, Phase statistics of interferograms with applications to synthetic aperture radar. Appl. Optics, 1994.33(20): 4361~4368
    [57] Keys R G, Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech. Signal Processing, 1981. ASSP-29:1153~1160
    [58] Kwok R, Fahnestock M A, Ice sheet motion and topography from radar interferometry. IEEE Transaction on Geoscience and Remote Sensing, 1996,34(1):189~200
    [59] Klinger Y, Michel R, and Avouac J P, Co-seismic deformation during the M_W 7.3 Aqaba earthquake (1995)
    
    from ERS-SAR interferometry. Geophysical Research Letters ,2000, 27(22): 3651~3654
    [60] Kramer R, Lottled O, Phase unwrapping for SAR interferomtry with Kalman filters. European Conference on Synthetic Aperture Radar (EUSAR'96), Germany, 1996:199~202
    [61] Lanari R, Lundgren P and Sansosti E, Dynamic deformation of Etna volcano observed by satellite radar interferometry. Geophysical Research Letters, 1998, 25(10): 1541~1544
    [62] Lee H and Liu J G, Analysis of topographic decorrelation in SAR interferometry using ratio coherence imagery.IEEE Trans. on Geosci. and Remote Sens., 2001.39(2): 223~232
    [63] Li, F. K., and Goidstein R.M., Studies of multibaseline spacebome interferometric Synthetic Aperture Radars, IEEE Trans. Geose. and Rem. Sensing, 1990, 28:88~97
    [64] Lin Q, Vesecky J F and Zebker H A, New Approaches in Interferometric SAR data Processing. IEEE Trans. Geosci. Remote Sens., 1992. 30(3): 560~567
    [65] Lin Q and Veseeky J F, Registration of Interferometric SAR images. Proceedings if International Geoscience and Remote Sensing Symposium (IGARSS'1992). 1992.: 1579~1581
    [66] Madsen, S. N., Estimating the Doppler Centroid of SAR Data, IEEE Trans. Aerospace and Elec. Sys., 1989, AES-25:134-140
    [67] Madsen N, Zebker H A and Martin J M, Topographic mapping using radar interferometry: Processing techniques, IEEE Trans. Geosci. Remote Sens., 1993.31(1): 246~256
    [68] Marechal N, Tomographic formulation of interferometric SAR for terrain elevation mapping. IEEE Trans. on Geosci. and Remote Sens., 1995.33(3):726~739
    [69] Massonnet D, Rossi M, Carmona C, The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 1993, 364:138~142
    [70] Massonnet D, and T. Rabaute. radar interferometry: Limits and Potential. IEEE Trans.Geosci. Remote Sens., 1993.31(2): 455~464
    [71] Massonnet D, Feigl K L, Rossi M, et al. Radar interferometric mapping of deformation in the year after the Landers earthquake, Nature, 1994, 369:227~230
    [72] Massonnet D, Briol P and Arnaud A, Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 1995, 375:567~570
    [73] Massonnet D, Feigl KL, Discrimination of geophysical phenomena in satellite radar interferograms, Geophys. Res. Lett., 1995, 22:1537~1540
    [74] Massonnet D, Feigl KL, Satellite radar interferometrie map of the coseismic deformation field of the M=6.1 Eureka Valley, California earthquake of May 17, 1993, Geophys. Res. Lett., 1995, 22: 1541~1544
    [75] Massonnet D, and Feigl K L, Radar intereferometry and its application to changes in the Earth's surface.. Reviews of Geophysics, 1998.36(4): 441~500
    [76] Murakami M, Tobita M, Fujiwara S et al. Coseismic, crustal deformations of 1994 Northridge, California, earthquake detected by interferometrie JERS-1 synthetic aperture radar. Journal of Geophysical Research, 1996, 101(B4):8605~8614
    [77] Park S K and Schowengerdt R A, Image reconstruction by parametric cubic convolution. Comput. Vision Graph. Image Processing, 1983, 23(3): 258~272
    
    
    [78] Peltzer G, Hudnut K W and Feigl K L, Analysis of coseismic surface displacement gradients using radar interferometry: New insights into the Landers earthquake, J. Geophys. Res., 1994, 99: 21971~21981
    [79] Peltzer G and Rosen P. Surface displacement of the 17 May 1993 Eureka Valley, California, Earthquake observed by SAR interferometry, Science, 1995, 268:1333~1336
    [80] Pritt M D, Shipman J S, Least-squares two-dimensional phase unwrapping using FFT's. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32 (3): 706~708
    [81] Pritt M, Phase unwrapping by means of multi-grid techniques for interferomtric SAR, IEEE Transaction on Geoscience and Remote Sensing, 1996,34(3): 728~738
    [82] R.aney R. K, Runge H, Bamler R, Precision SAR processing using Chirp Scaling. IEEE Transaction on Geoscience and Remote Sensing, 1994, 32:786~799
    [83] Rosen P A, Hensley S, Zebker H A, et al. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii from SIR-C radar interferometry, J. Geophys. Res., 1996, 101 : 23109-23125
    [84] Rosen P A, Hensley S, Ioughin I R et al. Synthetic aperture radar inteferometry. Precedings of the IEEE, 2000, 88(3): 333~382.
    [85] Sandwell D T and Price E, Sums and differences of interferograms: Imaging the troposphere. Eos Trans. AGU, 78(46). Fall Meet. 1997.Suppl. F144
    [86] Sandwell D T, Smith W H F, Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. Journal of Geophysical Research, 1997, 102:10039~10054.
    [87] Sandwell D T, Sichoix L, Topographic phase recovery from stacked ERS interferometry and a low-resolution digital elevation model. Journal of Geophysical Research, 2000, 105(B12): 28211~28222.
    [88] Savage J C, Lisowski M and Murray M, Deformation from 1973 Through 1991 in the Epicentral Area of the 1992 Lander,, California, Earthquake (Ms=7.5), J. Geophys. Res., 1993, 98: 19951~19958
    [89] Sherwin C W, Ruina J P and Raweliff R D, Some early developments in synthetic aperture radar systems., IRE Trans. on Millitary Electronics,1962, 6 (2)
    [90] Stevens N F, Wadge G, Williams C A et al. Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. Journal of Geophysical Research, 2001, 106(B6): 11293~11313
    [91] Tarayre H, Atmospheric propagation heterogeneities revealed by ERS-1 interferometry. Geophys. Res. Lett, 1996.23(9): 989~992
    [92] Wiley C A, Synthetic aperture radars-a paradigm for technology evolution. IEEE Transaction on Aerospace and Electronic Systems, 1985,AES-21:440~443
    [93] Williams C A, Wadge G, An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry. Journal of Geophysical Research, 2000, 105(B4): 8103~8120
    [94] Xu W and Cumming I, Simulator for repeat-pass InSAR studies. Proceedings of International Gcoscicnce and Remote Sensing Symposiurn(IGARSS' 1997), 1997: 1704~1706
    [95] Zebker H A and Goldstein R M, Topographic mapping from SAR observation. J. Geophys. Res, 1986. 91(B5): 4993~4999
    [96] Zcbker H A, Madsen S N, Martin J M, et al. The TOPSAR interferometric radar topographic mapping
    
    instrument. IEEE Trans. Geosci. Remote Sens., 1992.30(5): 933~939
    [97] Zebker H A, Villasenor J, Decorrelation in interferometric radar echoes. IEEE Transaction on Geoscience and Remote Sensing, 1992, 30(5):950~959
    [98] Zebker H A, Werner C L, Rosen PA , et al., Accuracy of topographic maps derived from ERS-1 interferometric radar, IEEE Trans.Geosci. Remote Sens., 1994.32(4): 823~836
    [99] Zebker H A, Rosen P A, Goldstein R M et al.On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research, 1994, 99(B10): 19617~19634
    [100] Zebker H A, Rosen P A and Hensley S, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. J. Geophys. Res, 1997.102(B4): 7545~7563
    [101] Zhong L, Mann D, Freymueller J T et al. Synthetic aperture radar interferometry of Okmok volcano, Alaska: Radar observations. Journal of Geophysical Research, 2000, 105(B5): 10791~10806
    [102] Zhong L, Charies W J, Power J A et al. Ground deformation associated the March 1996 earthquake swarm at Akutan volcano, Alaska, revealed by satellite radar interferometry. Journal of Geophysical Research, 2000, 105(B9): 21483~21495