几类奇异积分算子的性质及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1878年,W. K. Clifford将高维空间中的几何与代数结合起来,引入了几何代数,后人以他的名字命名为Clifford代数.Clifford代数是一个可以结合但不可交换的代数,Clifford分析这个数学分支就是在Clifford代数An(R)上进行经典的函数理论分析,例如:研究正则函数,超正则函数以及k-超正则函数的基本性质;研究Cauchy型奇异积分算子的性质;研究各种边值问题等等.Clifford分析是实分析和复分析的自然推广.当n=0时,Clifford分析就是实分析;当n=1时,Clifford分析就是单复分析;当n=2时,Clifford分析就是四元数分析.因此Clifford分析是一个活跃的数学分支,它在许多数学领域内都具有重要的理论和应用价值.
     在经典的函数理论分析中,研究Cauchy型积分的性质是非常重要的,它是解决各类边值问题的基本工具之一.Cauchy型积分是一类奇异积分,它在偏微分方程理论,奇异积分方程理论以及广义函数理论中有着广泛的应用.尤其是在偏微分方程和奇异积分方程的边值问题中,应用Cauchy型积分这个工具可以使得偏微分方程和奇异积分方程的处理显得特别地简练.Cauchy型积分算子的换序问题在奇异积分算子的正则化和奇异积分算子的合成中起着至关重要的作用.有了Cauchy型积分算子的换序公式,我们就可以解决闭光滑流形上具有B-M核的奇异积分方程的各种边值问题.因此Cauchy型积分算子的换序问题是解决许多问题的核心.在单复分析及多复分析中,Cauchy型积分算子的性质和换序问题解决得很彻底并且广泛地应用于弹性力学,流体力学以及高维奇异积分和积分方程中.但是在Clifford分析中,由于Clifford代数的不可交换性,有着同样重要性的Cauchy型积分算子的性质和换序问题却没有得到彻底解决.这给Cauchy型积分算子的合成和正则化带来了很大的挑战,从而影响了Clifford分析中积分方程和偏微分方程边值问题的发展.
     1998年,黄沙证明了Clifford分析中Cauchy型积分的P-B (Poincare-Bertrand)置换公式,得到了很好的结论.在黄沙工作的基础上,本文另辟蹊径,给出了Clifford分析中累次奇异积分算子在Cauchy主值意义下更具体的一种新定义.然后利用Cauc-hy型奇异积分算子的性质证明了几个比较简单的情况下的两个奇异积分算子的换序公式.接下来又证明了一个关于被积表达式的不等式,即Clifford分析中的函数和微元乘积的不等式.这个不等式在本文中有着重要的意义.最后再利用此不等式和前面的结果证明了Clifford分析中关于一元函数及二元函数的Cauchy型奇异积分算子的P-B(Poincare-Bertrand)置换公式.
     另外,本文还研究了一类Rn空间中的高阶奇异Teodorescu算子.通过这类高阶奇异算子,我们可以得到非齐次Dirac方程的解的积分表达式,从而可以解决许多边值问题.本文着重研究了这类高阶奇异Teodorescu算子的有界性,Holder连续性以及它的广义微商.同时还研究了它关于积分区域的边界曲面摄动的稳定性并给出了误差估计.最后用这个算子给出Rn空间中的一个广义Hn方程组的解的积分表达式.
     全文共包括八个部分:
     1.绪论.介绍了Clifford分析的历史背景,意义和研究现状,同时简单地介绍了一下我们的工作.
     2.第一章.讨论了Clifford分析中一个Cauchy型奇异积分算子和普通积分算子的换序问题.首先证明了Clifford分析中两个普通积分算子在Liapunov曲面上的换序公式,然后在此基础上证明了Cauchy型奇异积分算子和普通积分算子的换序公式.证明过程中先证明两个累次积分在Cauchy主值意义下是收敛的,然后将两个累次积分分别分成两部分N1,N2和N1*,N2*,先证明N1=N1*,再证明
     3.第二章.研究了Clifford分析中两个Cauchy型奇异积分算子的换序问题.先将两个累次积分分别分解为几个Cauchy型奇异积分算子与一个函数的和,从而证明了这两个累次积分是有意义的.然后再分别将两个累次积分分为四个部分,第一部分是挖掉奇点后的区域上的积分,另外几部分是带有奇点的区域上的积分.首先证明第一部分的值相等,再证明剩下的部分的差的极限为零.
     4.第三章.研究了Clifford分析中一个普通积分算子和以普通积分算子的积分变量为奇点的Cauchy型奇异积分算子的换序问题.首先证明了几个相关的奇异积分算子的性质,并利用这些性质证明了两个累次积分是有意义的.然后巧妙地将积分区域分为几部分,从而将积分算子分成带有奇性的部分和不带奇性的部分.我们证明了带有奇性的部分的极限是零,并且不带奇性的部分相等.这样我们就证明了普通积分算子和以普通积分算子的积分变量为奇点的Cauchy型奇异积分算了的换序公式.
     5.第四章.研究了Clifford分析中关于一元函数的两个Cauchy型奇异积分算子的换序问题,其中第二个Cauchy型奇异积分算子的奇点是第一个Cauchy型奇异积分算子的积分变量.这个问题的结论与前几章大不相同,这是因为当两个算子换序后,会多出一个函数项,这与复分析中的结果是一致的.在证明过程中,我们首先证明了一个带有微元的不等式.然后利用这个不等式证明了我们所讨论的两个累次奇异积分算子是有意义的.同时利用这个不等式和挖掉奇点的方法证明了换序公式,即Clifford分析中关于一元函数的Cauchy型奇异积分算于的P-B(Poincare-Bertrand)置换公式.
     6.第五章.利用前面的结果讨论了Clifford分析中关于含有两个高维变量的函数的Cauchy型奇异积分算子的P-B(Poincare-Bertrand)置换公式.先给出了关于二元函数的Cauchy型奇异积分算子的定义,讨论了累次奇异积分算子的收敛性.然后将累次奇异积分算子分解为几个部分,对不同的部分利用前面的结论证明了关于二元函数的Cauchy型奇异积分算子的P-B(Poincare-Bertrand)置换公式.
     7.第六章.研究了Rn空间中的一类高阶奇异Teodorescu算子的性质,分为三块内容:
     (1).利用几个不等式证明了这类算子有界性.又通过证明几种特殊情况下这类算子的Holder连续性证明了算子在整个Rn空间中的Holder连续性,同时根据定义得到了它的广义微商.
     (2).利用几个重要的不等式研究了这类算子关于积分区域的边界曲面摄动的稳定性并给出了误差估计.
     (3).利用变量替换将广义H。方程组转换为一个Clifford分析中向量值的广义Di-rac方程.然后利用高阶奇异Teodorescu算子给出广义Dirac方程的解的积分表达式,从而得到了广义Ⅱn方程组的解的积分表达式.
     8.结论.总结了论文的结论和有待解决的问题.
Clifford algebra is named after W. K. Clifford who introduced geometric algebra by the combination of the high-dimensional geometry with algebra in 1878. It is an associative and incommutable algebra. Clifford Analysis is a branch of mathematic study which is to execute typical functional theory analysis on Clifford algebra An(R), such as the study of the properties of regular functions, hypermongenic functions and k-hypermongenic functions; the study of the properties of the Cauchy-type singular integral operators and the study of various boundary value problems. Clifford analysis is the natural extension of complex analysis. When n = 0, Clifford analysis is the real analysis; when n= 1, Clifford analysis is the complex analysis; when n= 2, Clifford analysis is the quaternionic analysis. Therefore as an active branch of mathematical study, it has significant theoretical and applied value in various fields of mathematical study.
     It is very important to study the properties of Cauchy-type integral in the typical functional theory analysis and it is one of the basic tools to solve various boundary value problems. Cauchy-type integral is a type of singular integral. It is widely used in the partial differential equational theories, the singular integral equational theories and the general functional theories, especially in the boundary value problems of the partial differential equations and the singular integral equations. It simplifies and stresses the process by using Cauchy-type integral. The transformation problem of Cauchy-type operators is crucial in the regularization and composition of the singular integral oper-ators. With the transformation formula, we can solve various boundary problems of the singular integral equation which has B-M core and is on the closed smooth manifold. As a result, the transformation problem is the core problem in the salvation of many problems. In complex analysis and multi-complex analysis, the nature and transfor-mation problem of Cauchy type integral operators are defined and solved thoroughly. It is widely used in elastic mechanics, fluid mechanics, hyper-dimensional singular integrals and integral equations. However, the nature and transformation problem of Cauchy-type integral operators have not been defined and solved although it is also very important and that is because Clifford algebra is incommutable. Consequently, it put us in great trouble in the composition and regularization of Cauchy type integral op-erators so that it has impeded the development of the boundary problems of the integral equations and the partial differential equations in Clifford analysis.
     In 1998 Huang Sha proved the P-B(Poincare-Bertrand) transformation formula of the Cauchy-type integrals in Clifford analysis. On the base of Huang Sha's works, this dissertation finds a new approach. It first gives a new definition of the the Cauchy-type integrals in Clifford analysis. Then it proves the transformation formula of the iter-ated integral in several fairly simple cases by using Cauchy singular integral operators' nature; then it proves a very important inequation about integrated element i.e. a in-equation with a differential element; and further it proves the P-B(Poincare-Bertrand) transformation formula about Clifford values functions with one or two variables by using that inequation and the aforementioned results.
     Besides, this dissertation also studies a high-order singular Teodorescu operator in the space Rn. By this kind of operator, we get the integral expression of the solution to the non-homogeneous Dirac equation so that many boundary value problems can be solved. It stresses on the boundedness, Holder continuity and the general differential of the high-order singular Teodorescu operator. Meanwhile it studies the perturbation stability concerning boundary surface of the integral domain and gives its error estima-tion. Ultimately, it gives an integral expression of a general Hn system in the space of Rn by using that operator.
     The dissertation consists of eight parts:
     1. Introduction. In this part, it recalls the history, academic significance and status que of Clifford analysis.
     2. Chapter 1. It discusses the transformation problems of the Cauchy-type singular integral operator and the general integral operator. Firstly, it proves the transformation formula of the two general integral on the Liapunov surface in Clifford analysis; then based on that it proves the transformation formula of the Cauchy-type singular integral operators and the general operators. In the aforementioned process, at the outset, it proves that the two iterated integrals are convergent according to the Cauchy principal values. The two iterated integral are separated into N1, N2and N1*, Ar2*, and first it proves N1= N1*, and then proves (?) N2 - (?) N2*= 0.
     3. Chapter 2. It studies the transformation problems of two Cauchy-type singular integral operators. Firstly, it separates the two iterated integrals into several Cauchy type singular integral operators and the sum of a function respectively to prove that the two iterated integrals are well defined. Then each of the aforementioned integrals are, respectively, separated into four parts. Part 1 are the integrals in the domain where the singular points are eliminated and the rest parts are integrals in the domain where the singular points exist. At the beginning it proves the values in the first part are equal and then the limit of the differences of the rest parts is zero.
     4. Chapter 3. It studies the transformation problem of a general integral operator with the Cauchy type singular integral operators whose singular point is the integral variable of a general integral. Firstly, it proves the nature of several relevant singular integral operators and then it proves that the two iterated integrals are well defined by using that nature. Next, it divides cleverly the integral domain into several parts. Naturally, the integral operators are grouped into two parts. One is with the singular integrals and the other is with non-singular operators. And it proves that the limit of the part with the singular operators is zero and the part without singularity are equal. Thus, it proves the transformation formula of a general integral with the Cauchy type integral whose singular point is the integral variable of a general integral.
     5. Chapter 4. It studies the transformation problem of two Cauchy type singular integral operators, among which the singular point of the second Cauchy type inte-gral is the integral variable of the first Cauchy singular integral. The conclusion of this problem is extremely different from those of the aforementioned chapters. Af-ter the transformation of the two operators, it has an extra function which agrees with the results in the multi-complex analysis. In the proving process, first it proves the existence of an inequation with differential elements. Then it proves that the iterated singular integrals under discussion are well defined. Meanwhile, by using that inequa-tion and eliminating the singular points, it proves the transformation formula, i.e., the P-B(Poincare-Bertrand) transformation formula of the Cauchy type singular integral operators in Clifford analysis.
     6. Chapter 5. It discusses the P-B(Poincare-Bertrand) transformation formula of the Cauchy singular integral operators in the two dimensional Clifford function by us-ing the results above. First, it defines the Cauchy singular integral operators in the two dimensional Clifford function and then discusses the convergence of the iterated singu-lar integrals. Next it separates the iterated singular integral operators into several parts. Then for each part it proves the correctness of the P-B(Poincare-Bertrand) transfor-mation formula of Cauchy singular integral operators in the two dimensional Clifford function by using the conclusion it has already got.
     7. Chapter 6. It studies the nature of a high-order singular Teodorescu operator in the space of Rn and this chapter consists of three sections:
     (1). First by using several inequations it proves the boundedness of this operator. Then it proves the Holder continuity of the operator in several special cases to sup-port that the Holder continuity of the operator in the whole space of Rn also exists. Meanwhile, it gets the general differential elements according to the definition.
     (2). By using several important inequations, it studies the perturbation stability concerning the boundary surface in the integral domain and it gives the error estimation too.
     (3). First by using variable replacement, it transforms a general Hn equation sys-tem into a general vector value Dirac equation in Clifford analysis. Then it gives the integral expression of the general Dirac equation by using high-order singular Teodor-escu operators so that it gets the integral expression of the generalⅡn equation system.
     8. Conclusions. The conclusions will be drawn and the problems get to be solved will be summarized in this part.
引文
[1]Clifford W K. Applications of Grassman's extensive algbra[J]. Amer. J. Math., 1878,1:350-358.
    [2]Dirac P A M. The quantum theory of electron[J]. Proc. Roy. Soc,1928,117: 610-624.
    [3]Lounesto P. Clifford algbra and spinors[M]. Cambridge Univ. Press,1997.
    [4]Gurlebeck K, Sprossig W. Quaternionic and Clifford calculus for physicists and engineers[M]. John Wiley,1997.
    [5]Mitrea M. Generalized Diral orerators on non-smooth manifolds and Maxwell's equations[J]. Journal of Fourier Analysis and its Applications,2001,7:207-256.
    [6]Mitrea M. Clifford Wavelets, Singular integrals and Hardy spaces[M]. Lecture Notes in Math Springer-Verlag,1994.
    [7]Fueter R. Die funktionentheorie der differentialgeichungen △u= 0 and △△u= 0 mit vier reallen variablen[J]. Commentiaril Mathematic Helvetici,1935,7: 307-330.
    [8]Moisil G C, Theodorescu N. Functions holomorphes dansliespace[J]. Mathemat-ica(Cluj),1931,5:142-159.
    [9]Sudbery A. Quaternionic analysis[J]. Math Pro of Cambridge Philosophical Soc, 1979,85:199-225.
    [10]Dixon A C. On the Newtonian potential[J]. Quarterly Journal of mathematics, 1904,35:283-296.
    [11]Delange R. On regular analytic functions with Values in Clifford algebra[J]. Math Ann,1970,185:91-111.
    [12]Iftimie V. Functions hypercomplexes[J]. Bull. Math. de la Soc. Sci. Math. de la R. S. R.,1965,9(57):279-332.
    [13]Hestenes D. Multivector functions[J]. J Math Anal appl,1968,24:467-473.
    [14]Brackx F, Delanghe R, Sommen F. Clifford analysis. Research Notes in Mathe-matics 76[C]. Pitman, London,1982:44-136.
    [15]Delanghe R. On singularities of functions with values in Clifford algebra[J]. Math Ann,1972,196:293-319.
    [16]Delange R. Morera's theorem for functions with values in Clifford algebra[J]. Simon Stevin,1969,43:129-140.
    [17]Delange R. On regular points and Liouville's theorem for functions with values in Clifford algebra[J]. Simon Stevin,1970,44:55-66.
    [18]Sommen F.Spherical monogenic functions and analytic functions on the unit sphere[J]. Tokyo J Math,1981,4:427-456.
    [19]Sommen F. Power series expansions for monogenic functions[J]. Complex Vari-ables,1989,11:49-70.
    [20]Sommen F. Some connections between Clifford analysis and complex analy-sis[J]. Complex Variables,1983,1:97-118.
    [21]Sommen F. Monogenic differential forms and homology theory[J]. Proc. R. Irish. Acad.,1984(2):87-109.
    [22]徐振远.Clifford代数上正则函数的Riemann问题[J].科学通报,1987,32(23):476-477.
    [23]Wen G C. Clifford analysis and elliptic system, Hyperbolic systems of first order equations[C]. Singapore:World Scientific,1991:230-237.
    [24]黄沙.Clifford分析中一个带位移的非线性边值问题[J].系统科学与数学,1991,11(4):336-346.
    [25]黄沙.实Clifford分析中带共轭值的边值问题解的存在唯一性[J].科学通报,1991,36(9):715-716.
    [26]黄沙.Clifford分析中双正则函数的非线性边值问题[J].中国科学(A辑),1996,39(11):1152-1164.
    [27]黄沙.取值在实Clifford代数上的双正则函数在超球上的两个边值问题[J].系统科学与数学,1996,9(3):284-290.
    [28]黄沙.Clifford分析中双曲调和函数的一种边值问题[J].系统科学与数学,1996,16(1):60-64.
    [29]黄沙,李生训.复Clifford分析中一类二阶偏微分方程于Lie球双曲空间上的拟变态Dirichlet问题[J].科学通报,1989.34(19):1452-1453.
    [30]Huang S, Li S X. On oblique derivate problem for generalized reguar functions with values in a real CliffordAlgebra[M]. World Scientific,1991, (4):80-86.
    [31]黄沙.拟置换与实Clifford分析中的P-R-H边值问题[J].系统科学与数学,2000,20(3):270-279.
    [32]黄沙,焦红兵,乔玉英,陈振国.Clifford分析中多个未知函数向量的非线性边值问题[J].数学物理学报,1998,44(6):1185-1192.
    [33]黄沙.Clifforrd分析中广义双正则函数的(线性)非线性边值问题[J].数学学报,1997,40(6):913-920.
    [34]柴志明,黄沙,乔玉英.实Clifford分析中双正则函数向量的非线性边值问题[J].数学物理学报,2001,20:121-129.
    [35]乔玉英,黄沙.多复变解析函数在多圆柱域上的Riemann-Hilbert边值问题[J].数学杂志,1993,13(4):505-511.
    [36]乔玉英,赵红芳,陈振国,黄沙.多圆柱域上带间断系数边值问题[J].纯粹数学与应用数学,1994,10(1):49-58.
    [37]乔玉英,黄沙,赵红芳,陈振国.Clifford分析中一类非线性边值问题[J].数学物理学报,1996,16(3):284-290.
    [38]乔玉英.四元数广义正则函数的斜微商边值问题[J].数学物理学报,1997,17(4):447-451.
    [39]乔玉英,黄沙,李生训.具有间断系数的一阶椭圆复方程的Hilbert问题[J].数学进展,Ⅰ 1997,26(4):317-322.
    [40]乔玉英.双正则函数的非线性带位移边值问题[J].系统科学与数学,1999,19(4):484-489.
    [41]Qiao Y Y, Xie Y H. The generalized integrals and integral equation in Clifford analysis[J]. Advances in Applied Clifford Algebras,2001,11(1):269-276.
    [42]乔玉英.广义双正则函数的非线性带位移边值问题[J].系统科学与数学,2002,22(1):43-49.
    [43]谢永红,乔玉英,焦红兵.广义双正则函数向量的非线性边值问题[J].数学物理学报,2003,23A(1):52-59.
    [44]Qiao Y Y. A boundary value problem for hypermonogenic functions in Clifford analysis[J]. Science in China Series.A,2005,48:324-333.
    [45]黄沙.实Clifford分析中三类高阶奇异积分及其非线性微分积分方程[J].数学进展,2000,29(3):253-268
    [46]黄沙.Clifford分析中于特征流形上奇异积分方程的正则化[J].数学物理学报,1998,18(3):257-263.
    [47]黄沙,乔玉英.典型域的调和分析和复Clifford分析[J].数学学报,2001,44(1):29-36.
    [48]黄沙.Clifford分析中奇异积分的Poincare-Bertrand置换公式[J].数学学报,1998,41(1):119-126.
    [49]黄沙,李玉成,牟卫华.复Clifford分析中的双曲调和函数[J].纯粹数学与应用数学,1999,15(2):30-32.
    [50]黄沙.拟置换与实Clifford分析中的广义正则函数[J].系统科学与数学,1998,18(3):380-384.
    [51]黄沙,乔玉英.新超复结构和Clifford分析[J].系统科学与数学,1996,16(4):367-371.
    [52]李玉成,乔玉英.复Clifford分析中一个方程组的几个性质[J].数学杂志,2001,21(4):392-396.
    [53]王丽丽,乔玉英,曹南斌.实Clifford分析中奇异积分方程的可解性[J].河北师大学学报,2001,25(3):287-290.
    [54]曹南斌,乔玉英,王丽丽.实Clifford分析中奇异积分方程组的可解性[J].河北师范大学学报,2001,25(4):421-444.
    [55]张艳慧,乔玉英.复Clifford分析中的超正则函数及其性质[J].河北师范大学学报,2001,25(3):427-431.
    [56]乔玉英,黄沙.关于实Clifford分析中六类拟Bochner-Martinelli型高阶奇异积分的几个问题[J].系统科学与数学,2002,22(2):180-191.
    [57]赵丽琴,乔玉英, 李尊凤,许娜.实Clifford分析中正则函数的几条性质[J].数学的实践与认识,2005,35(2):177-182.
    [58]乔玉英,王丽丽,焦红兵.实Clifford分析中拟Bochner-Martinelli型高阶奇异积分[J].数学物理学报.2005,25(3):289-298.
    [59]Huang S, Qiao Y Y and Wen G C. Real and complex Clifford analysis[M]. Springer,2005.
    [60]Eriksson S L, Leutwilcr H. Hypermonogenic function. Clifford Algebras and their Applications in Mathematical physics[C]. Basel, Boston, Berlin: Birkhauser,2000,2:287-302.
    [61]Eriksson. S L, Leutwiler H. Hypermonogenic functions and their Cauchy-type theorems. Advanced in analysis and geometry[C].2004, Basel, Boston, Berlin: Birkhauser,6:97-112.
    [62]Eriksson S L, Leutwiler H. Hypermonogenic functions and Mobius transforma-tions[J]. Advance in Applied Clifford Algebra,2001,11(2):67-76.
    [63]Leutwiler H. Modified Clifford analysis[J]. Complex Analysis,1992,17:153-171.
    [64]乔玉英,贾美枝.实Clifford分析中超正则函数列和函数空间的几条性质[J].高校应用数学学报,2006,21(4):477-483.
    [65]彭维岭,张永,乔玉英.实Clifford分析中双正则函数列的性质[J].数学的实践与认识,2009,39(9):385-396.
    [66]袁洪芬,乔玉英.k-超正则函数及其相关函数的性质[J].数学物理学报,2009,29A(3):716-726.
    [67]王丽萍,乔玉英,乔海英.Clifford分析中一类拟Cauchy型积分算子的不动点定理及迭代构造[J].数学进展,2009,38(4):385-402.
    [68]王海燕,乔玉英,李小伶,扈玮玮.实Clifford分析中双正则函数的一些性质[J].河北师范大学学报,2008,32(3):281-286.
    [69]李小伶,乔玉英,扈玮玮,王海燕.Clifford分析中超正则函数的几个基本定理[J].河北师范大学学报,2008,32(2):153-158.
    [70]Kruasshar R S, Qiao Y Y, and Ryan J. Harmonic, Monogenic and hypermono-genic functions on some conformaly flat manifolds in rn arising from special arithmetic groups of the vahlen group[J]. Contemporary Mathematics,2005, 370:159-173.
    [71]Qiao Y Y, Bernstein S, Eriksson S L. Function theory for Laplace and Dirac-Hodge operators on hyperbolic space[J]. Journal D'Analyse Mathematique, 2006,98:43-63.
    [72]Bian X L, Eriksson S L, Li J X, Qiao Y Y. Cauchy integral formula and Plemelj formula of bihypermonogenic functions in real Clifford analysis[J]. Complex Variables and Elliptic Equations,2009,54(10):957-976.
    [73]张忠祥,杜金元.泛Clifford分析中的laurent展式和留数定理[J].数学物理学报,2003,23(A):692-703.
    [74]Du J Y, Zhang Z X. A Cauchy integral formula for functions with values in uni-versal Clifford algebra and its applications[J]. Complex Variables,2002,47(10): 915-928.
    [75]张忠祥,杜金元.关于Clifford分析中的某些Riemanns边值问题与奇异积分方程[J].数学年刊,2001,22A(4):421-426.
    [76]Ku M, Du J Y. On the integral representation of spherical k-regular functions in Clifford analysis[J]. Advances in Applied Clifford Algebras,2009,19(1):83-100.
    [77]Li W F, Du J Y. Riemann boundary value problems with given principal part[J]. Acta Mathematica Scientia,2009,1:25-32.
    [78]He F L, Du J Y. Teodorescu operators in Clifford analysis[J]. Acta Mathematica Scientia,2009,55(4):377-380.
    [79]Bu Y D, Du J Y. The boundary value problem of k-monogenic functions in Clif-ford analysis[J]. Acta Mathematica Scientia,2009(5):1321-1330.
    [80]He F L, Du J Y. An operatorial approach to singular integral equations of a mod-ified Type[J]. Acta Mathematica Scientia,2008,28(4):763-769.
    [81]Du Z H, Du J Y. On direct method of solution for a class of singular integral equations[J]. Acta Mathematica Scientia,2007,27(2):301-307.
    [82]Du J Y, Xu N, Zhang Z X. Boundary behavior of Cauchy-type integrals in Clif-ford analysis[J]. Acta Mathematica Scientia,2009,29(1):210-224.
    [83]Zhang Z X. Some properties of operators in Clifford analysis[J]. Complex Var, Elliptic Eq.2007,52 (6):455-473.
    [84]Qian T. Singular integrals with monogenic kernels on the m-torus and their Lip-schits perturbations[J]. Clifford Algebralt in Analysis and Related Topics. CRC Press, Boca Raton New York London Tokyo,1996,157-171.
    [85]Qian T. Singular integrals associated with holomorphic functional calculus of the spherical Diracoperator on star-shaped Lipschitz surfaces in the quaternionic space[J]. Math. Ann.,1998,310:601-630.
    [86]Qian T. Fourier analysis on starlike Lipschitz surfaces[J]. Journal of Functional Analysis,183,2001,370-412.
    [87]Qian T, Hempfling Th, McIntosh A, Sommen F. Advances in Analysis and Ge-ometry [M]. Birkhauser Verlag,2004.
    [88]Li C, Mcintosh A, Qian T. Clifford algebra, Fourier transforms and singular Con-volution operators on Lipschitz sufface[J]. Revista Mathematica Iberoamericana, 1994,10:665-721.
    [89]Qian T, Ryan J. Conformal transformations and Hardy spaces arisingin Clifford analiysis[J]. J. Operator Theory,1996,35:349-372.
    [90]Ryan J. Complexified Clifford analysis[J]. Complex Variables,1983,1:119-149.
    [91]Ryan J. Special functions and relations within complex Clifford analysis[J]. Complex Variables,1983,2:177-198.
    [92]Ryan J. Dirac operators on spheres and hyperbolae[J]. Bolletin de la Sociedad Matematica a Mexicana,3,1996,255-270.
    [93]Ryan J. C2 extensions of analytic functions defined in the complex plane[J]. Advances in Applied Clifford Algebra,11,2002,137-145.
    [94]Ryan J. Clifford algebra in Analysis and Related Topics[M]. CRC Press,1996.
    [95]李尊凤;乔玉英,许娜;赵丽琴.复Clifford分析中几类函数的等价描述[J].数学的实践与认识.2007,37(21):115-120.
    [96]Franks E, Ryan J. Bounded monogenic functions on unbounded domains[J]. Contemporary Mathematics,1998,212:71-79.
    [97]Ryan J. Clifford analysis over unbounded domains[J]. Advances in applied math-ematics,1997,19:216-239.
    [98]Qiao Y Y, Xu N, Wang L L. The boundary values problem of biregular functions on unbounded domains in Clifford analysis[J]. Complex Variables and Elliptic Equations,2006,51(8):793-804.
    [99]乔玉英,许娜,赵丽琴,李尊凤.Clifford分析中无界域上正则函数的边值问题[J].数学进展,2006,35(4):431-440.
    [100]许娜,乔玉英.Clifford分析中无界域上正则函数带Haseman位移的边值问题[J].数学物理学报,2008,28A(5):846-855.
    [101]Ren G B. Almansi type theorems in Clifford Analysis[J]. Math Meth Appl Sci, 2002,25:499-502.
    [102]Cerejeiras P, Kahler U, Ren G B. Clifford analysis for finite reflection groups[J]. Complex Var Elliptic Equ,2006,51:487-495.
    [103]Le H S. Cousin problem for biregular functions with values in a Clifford alge-bra[J]. Complex Variables,1992,20:255-263.
    [104]Li C, Mcintosh A, Semmes S. Convolution singular integrals on Lipschitz suf-face[J]. J of AMS,1992,5:455-481.
    [105]Brackx F, Pincket W. Two Hartogs theorems for nullsolutions of overdetermined systems in Euclidean space[J]. Complex Variables, Theory and Application, 1985,4:205-222.
    [106]Brackx F. On (k)-monogenic functions of a quaternion variable. Function The-oretic Methods in Differential Equations[C]. Pitman, London:Res Notes Math, 1976,8:22-44.
    [107]Begehr H. Du J Y, Zhang Z X. On Higher order Cauchy-Pompeiu formula in Clifford analysis and its application[J]. Gen Math,2003,11:5-26.
    [108]Gilbert R P, Buchanan J L. First order elliptic systems[M]. Academic Press, 1983.
    [109]Kimiro S. The derivatives of Cauchy's kernel and Cauchy's estimate in Clifford analysis[J]. Complex Variables,1989,11:203-213.
    [110]Obolalthvili E I. Higher order Partial differential equations in Clifford Analy-sis[M]. Birkhauser,2003.
    [111]Gurlebeck K, Kippig F. Complex Clifford analysis and Elliptic Boundary Value Problems[J]. Advanced in Applied Clifford Algebra,1995,5:51-62.
    [112]Gaudry G I, Long R L, Qian T. A martingale proof of L2-boundedness of Clifford valued singular integrals[J]. Ann. Mat. Pura Appl,1993.165:369-394.
    [113]McIntosh M. Clifford algebras and the higer dimensional Cauchy integral[J]. Approximation Theory and function Spaces, Banach Center Publ,1989,22:253-267.
    [114]Begehr H, Wen G C. Nonlinear elliptic boundary value problems and their appli-cations[M]. Addison Wesley Longman,1996.
    [115]Begehr H, Xu Z Y. Nonlinear half-Dirichlet problems for first order elliptic equa-tions in the unit ball of Rm(m≥ 3)[J]. Appl. Anal.,1992,45:3-18.
    [116]Alkhutov Y A, Mamedov I T. The first boundary value problem for nondiver-gence second order parabolic equations with discontinuous coefficients[J]. Math. USSR Sbornik,1988,59:471-495.
    [117]Kahler U. Elliptic boundary value problems in bounded and unbounded do-mains[J]. Dirac Operators in Analysis, Pitman Research Notes in Mathematics series,1998,394; 122-140.
    [118]赵祯.奇异积分方程[M].北京师范大学出版社,1984.
    [119]Vekua I N. Generalized analytic functions[M]. Oxford:Pergamon Press,1962.
    [120]Li X. General solution of a hypersingular integro-differential equation[J]. Com-plex Variables,2003,48,2003(6):543-546.
    [121]Avanissian V. Cellule d'harmonicite et prolongement analytigve complex[J]. Travaux en Cours, Hermann, Paris,1985.
    [122]Bernstein S. Operator calculus for elliptic boundary value problems in un-bounded domains[J]. Zeitschrift fur Analysis und ihre Anwendungen,1991, 10(4):447-460.
    [123]Fox C. A generalization of the Cauchy principal value[J]. Canadian J. Math., 1957,9:110-119.
    [124]Kandmanov R M. Bochner-Martinelli integrals and their application[J]. Sciences Siberia Press:209-213.
    [125]Tutschke W. Boundary value problems for generalized analytic functions of sev-eral complex variables[J]. Ann. Polon. Math.,1981,39:227-238.
    [126]Vahlen K T. Uber bewegungen und complexe zahlen[J]. Math. Ann.,1902,55: 585-593.
    [127]Wang X L. Singular integrals and analyticity theorems in several complex vari-ables[M]. Doctoral Dissertation, Uppsala University,1990.
    [128]Xu Z Y. A function theory for the operator D-λ[J]. Complex Variables,1991, 16(1):37-42.
    [129]钟同德.多复变函数Cauchy型积分的边界性质[J].数学学报,1965,15(2):227-241.
    [130]钟同德.具有Bochner-Martinelli核的多维奇异积分的置换公式[J].数学学报,1980,23(4):554-565.
    [131]林良裕,邱春晖.闭逐块光滑流形上奇异积分的Poincare-Bertrand公式[J].数学学报,2002,45(4):759-772.
    [132]钟同德.多复变函数的积分表示与多维奇异积分方程[M].厦门大学出版社,1986.
    [133]Wang X L, Gong Y F. The stabilities of a singular integral and Cauchy type integral about the integral surface[J]. Acta Math Sinica,1999,42(2):343-350.
    [134]Wang X L, Gong Y F. The stabilities of Cauchy kernel integral about the integral surface[J]. Chinese Annals of Mathematics(A),2001,22(4):447-452.
    [135]Begher H. Iterations of Pompeiu operators[J]. Meum Diff Equ math phys,1997, 12:13-21.
    [136]Gilbert R P, Hou Z Y, Meng X W. Vekua Theory in higher dimensional complex space:The II-operator in C"[J]. Complex Var,1993,21:99-103.
    [137]Meng X W. T-operator in Cn and its applications. Integral equations and Bound-ary Value problems[M]. World Scientific Publishing Co Pte Ltd,1991.
    [138]Yang P W. The operators T in Quaternionic Analysis and two classes of boundary value problems[J]. Acta Math Sinica,2001,44(2):343-350.