离子液体固载于双模型介孔分子筛的制备及其在不对称双羟基化反应中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体作为新兴的绿色溶剂成为有机合成、分离分析及功能材料等领域的研究热点之一,但成本较高、用量大、催化剂不易分离等缺点限制了其广泛应用。目前人们提出的解决方法之一就是将离子液体负载在无机多孔材料或者有机高分子材料上,然后把催化剂再溶解在固载化后的离子液体中,制得多相催化剂,从而把离子液体的特性转移到多相固体催化剂上。目前固载型离子液体用于催化反应主要集中在两方面,一是将酸性离子液体固定,用作反应的酸性催化剂;另一方面是将离子液体作为过渡金属催化剂载体再固定于有机或无机介质中进行催化研究。
     双模型孔道介孔分子筛(BMMs)是孔道尺寸可以在2nm~20nm范围内得到有效调控的新型材料,其孔道内表面均带有丰富的羟基,与单一孔道的介孔分子筛相比,双孔结构有助于大分子在孔道内的扩散,减少反应物和产物的堆积,从而提高反应效率,为负载型离子液体催化剂根据具体要求进行分子设计和结构“剪裁”提供了可能。本论文以双模型介孔分子筛(BMMs)作为载体,将锇金属催化剂与离子液体结合,利用离子液体的高沸点、低蒸汽压等特点,力图实现一种金属催化剂与离子液体所构成的均相催化体系“高分散”装载于介孔材料中的制备过程,并选用较全面的结构表征方法(如XRD、TEM、FT-IR、TG-DTA等)研究离子液体在介孔分子筛孔道内的微环境以及两者间的相互影响规律,同时将固载型离子液体用于不对称双羟基化反应以考察其催化活性。在保持金属络合物-离子液体体系的活性和选择性的同时又具有担载催化剂的活性组分高度分散、用量少、易与产物分离的优点,这就在实现均相催化剂多相化而保持均相催化特点的同时,又降低了离子液体的用量,形成一种与以往“均相催化多相化”催化剂不同的催化剂体系。
     本论文的主要工作有:
     1.功能化介孔分子筛固载离子液体
     制备了双模型介孔分子筛(BMMs)并通过3-氨丙基三乙氧基硅烷改性后引入-NH2基团,利用氨基与离子液体阳离子的配位作用将离子液体[2AlCl3/Et3NHCl]和一系列咪唑类离子液体固载到BMMs上,同时研究了不同负载时间和负载浓度对分子筛结构的影响。通过XRD、BET及TEM等分析表征证明BMMs具有双模型介孔特征分布,两种孔分布分别是最大孔23.6nm、小孔2.9nm,比表面积为959m2/g,孔体积为2.0cm3/g。改性并负载离子液体后没有改变BMMs的典型孔道结构,且随着离子液体浓度的增加使得分子筛的结构有序性下降。FT-IR分析测试中1560 cm-1处的振动峰表明-NH2成功锚固在BMMs表面,C-N键特征吸收在944cm-1和1083cm-1的出现也说明离子液体[2AlCl3/Et3NHCl]在与氨丙基修饰的分子筛组装时与氨基发生配位作用从而成功地固载到分子筛表面。TG分析测试中330℃~650℃之间一系列弱的失重速率峰,对应于分子筛表面-NH2基团和离子液体在空气中的氧化分解,对应失重10%左右。离子液体固载于改性后BMMs在不对称双羟基化(AD)反应中由于分子筛改性引入的氨基与锇催化剂的配位作用使其失去活性。
     2.嫁接法固载离子液体
     制备了阳离子上含有-Si(OMe)3基团的离子液体,并通过分子筛表面羟基与-Si(OMe)3硅氧基团的缩聚反应将离子液体阳离子基团键连到介孔分子筛BMMs表面。XRD分析测试表明,在105℃下负载12h后BMMs孔道结构的有序性大大降低。FT-IR表征结果中在1576cm-1、1460cm-1处出现的峰为咪唑环骨架振动的特征峰,证明了离子液体在分子筛上的存在。在AD反应中当锇催化剂投入量降到0.1%mmol时仍能达到57%的产率和99%的e.e值。
     3.溶胶-凝胶法固载离子液体
     通过溶胶-凝胶法在模板剂作用下,以含有-Si(OMe)3基团的离子液体与正硅酸乙酯(TEOS)的混合物作为硅源前驱体一步共聚合成介孔材料,使离子液体有机官能团存在于介孔材料骨架中。XRD结果表明,当离子液体引入量从10%逐渐降低到2%时,所得样品的(100)衍射峰逐渐明显并增强,说明所得介孔材料的结构有序度渐强。TEM分析可看到固载型离子液体材料焙烧(550℃)所得样品孔径约为2.3nm,萃取所得样品孔径约为1.7nm且与焙烧样品相比孔道更为发达。TG分析测试中420℃~440℃范围内的样品失重(~8%)对应于咪唑盐离子液体的热分解。FT-IR分析测试中3000cm-1~2700cm-1及1600cm-1~1400cm-1波数范围内的谱带被认为是饱和的C-H伸缩振动和芳环骨架振动,说明离子液体的存在,这些峰只在萃取样品中出现,可见键连的离子液体的结构在焙烧过程中被破坏。该类材料在AD反应中可达到87%的产率和96%的e.e值,用于循环使用时可重复利用4次以上。
Ionic liquids (ILs) have received much attention in many areas of organic synthesis, segregation analysis and functional materials due to their potential as a“green solvents”. However, they are limited to be widely used in different fields because of high price, large dosage, inconvenient separation and purification of catalyst. One of the effective approaches to solve these problems is to immobilize the ionic liquid on a solid support, in order to transfer the desired catalytic properties of the liquids to a solid catalyst. Currently supported-ionic liquid used in catalytic reaction mainly are concentrated on two areas. Firstly, the acidic ionic liquids are immobilized and used as acid catalytic reaction. Secondly, ionic liquids as supports for transition metal catalyst and further fixed in the medium of organic or inorganic are researched in the study of catalysis.
     The bimodal mesoporous materials (BMMs) is a new kind of mesoporous materials with a controlled pore structure in the range of 2nm~20nm. There are abundant -OH groups on the surface of BMMs channels. Compared with the single channel of mesoporous sieve, bimodal structure of BMMs is beneficial for large molecular to diffuse inside, and helps to reduce the accumulation of reactant and production in order to improve the reaction efficiency. In this dissertation, preparation and characteristization of BMMs as support and therefore the supported metal catalysis-ionic liquid catalysts were studied by use of XRD, FT-IR, SEM, TEM, and TG-DTA techniques. As a result, it is shown that catalytic behavoiuor of catalysts above for asymmetric dihydroxylation is of high activity and good recycle properties.
     The main contents of this dissertation are as following:
     1. Immobilization of IL on functionalized BMMs
     The BMMs was synthesized and modified by (3-aminopropyl)triethoxysilane (APTES) solution to improve its loading capability. Then, the [2AlCl3/Et3NHCl] and a series of N, N’- dialkylimidazolium-based ionic liquids were grafted onto the inner surface of BMMs through an aminosilane linker, and the effects of concentration and time of reaction on the structure of BMMs were investigated. The characterizations of XRD、BET and TEM analysis methods indicated that BMMs have bimodal mesoporous with the larger pore of 23.6nm, the smaller pore of 2.9nm, the specific surface area of 959m2/g and pore volume of 2.0cm3/g. The typical channel structure was maintained after modified by APTES and loaded by ionic liquid. However, the order degree of (100) peak for BMMs would be decreased with the increased concentration of ionic liquid. On the basis of FT-IR spectra, a new band at 1560 cm-1 indicated that the functional groups -NH2 was grafted onto inner surface of BMMs. And after loading IL, the bands appearing at 944cm-1 and 1083cm-1 suggested that the IL has been assembled into the modified BMMs via the coordination between -NH2 and [2AlCl3/Et3NHCl]. The results of TG-DTA curves revealed that the weight loss (~10%) during the temperature from 330℃to 650℃can be attributed to the oxidative decomposition of -NH2 and ionic liquid. Meanwhile, when the supported ionic liquid is used in asymmetric dihydroxylation reaction, there was no catalystic activity of osmium catalyst.
     2. Immobilization of IL by grafting method
     The 1-methyl-3-[3-(trimethoxysiyl)propyl]imidazolium chloride, which contains the cation of the ionic liquid, was prepared and grafted on the surface of the BMMs. The XRD patterns indicated that the mesoporous order degree of ionic liquid hybrid supported by BMMs would be decreased greatly when grafted with above ionic liquid at 105℃for 12h. FT-IR spectrum showed that the peaks located at 1576cm-1 and 1460cm-1 were assigned to the framework vibration feature of imidazole ring. In asymmetric dihydroxylation reaction, the activity of catalysis revealed yield of 57% and e.e of 99% even when the amount of Os catalyst decreased to 0.1%mmol.
     3. Immobilization of IL by sol-gel method
     By using mixture containing 1-methyl-3-[3-(trimethoxysiyl)propyl]imidazolium chloride and TEOS as silicon source, the mesoporous hybrids were prepared via template mechanism and sol-gel route. According to XRD patterns, the intensity of (100) peak of above the mesoporous hybrids increased with the amount of ionic liquid decreased. TEM images showed the mesoporous structure with the mean pore size of around 2.3nm after calcinations and 1.7nm after extraction. Meanwhile, TG-DTA results suggested that the weight loss (~8%) during the period temperature from 420℃to 440℃was corresponding to the oxidative decomposition of imidazolium ionic liquid. FT-IR spectrum showed that the new bands at 3000cm-1~2700cm-1 and 1600cm-1~1400cm-1 were assigned to the C-H telescopic vibration and the framework vibration feature of imidazole ring, besides the characteristic bands of BMMs appeared in all samples, however, all of characteristic bands for imidazolium ionic liquid disappeared in the samples when calcined at 550oC, which implied that the structure of imidazolium ionic liquid has been destroyed during calcinations. In asymmetric dihydroxylation, the activity of above hybrids revealed higher yield of 87% and e.e of 96%, whereas the catalyst can be reused over four times.
引文
1 S. Sugden, H. Wilkins CLVXIL-the Parachor and Chemical Constitution Part Ⅶ. Fused Metals and Salts. J. Chem. Soc. 1929, 7: 1291~1298
    2 F. H. Hurley. U. S. Patent 2446331, 1948
    3 F. H. Hurley, T. P. Wier. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98(5): 203~206
    4 H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung. Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt. J. Am. Chem. Soc. 1975, 97(11): 3264~3265
    5 J. Robinson, R. A. Osteryoung. An Electrochemical and Spectroscopic Study of some Aromatic Hydrocarbons in the Room Temperature Molten Salt System Aluminum Chloride-n-butylpyridinium Chloride. J. Am. Chem. Soc. 1979, 101(2): 323~327
    6 J. S. Wilkes, J. A. Levisky, R. A. Wilson, et al. Dialkylimidazolium Chloroaluminate Melts: a New Class of Room-temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem. 1982, 21(3): 1263~1264
    7 T. B. Scheffler, C. L. Hussey, K. R. Seddon, et al. Molybdenum Chloro Complexes in Room-temperature Chloroaluminate Ionic Liquids: Stabilization of Hexachloro- molybdate(2-) and hexachloromolybdate(3-). Inorg. Chem. 1983, 22(15): 2099~2100
    8 T. M. Laher, C. L. Hussey. Copper(I) and Copper(II) Chloro Complexes in the Basic Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Ionic Liquid. Inorg. Chem. 1983, 22(22): 3247~3251
    9 T. B. Scheffler, C. L. Hussey. Electrochemical Study of Tungsten Chloro Complex Chemistry in the Basic Aluminum Chloride-1-methyl-3-ethylimidazolium Chloride Ionic Liquid. Inorg. Chem. 1984, 23(13): 1926~1932
    10 D. Appleby, C. L. Hussey, K. R. Seddon, J. E. Turp. Room-temperature Ionic Liquids as Solvents for Electronic Absorption Spectroscopy of Halide Complexes. Nature. 1986, 323(6089): 614~615
    11 K. R. Seddon. Ionic Liquids for Clean Technology. J. Chem. Biotechnol. 1997, 68: 351~356
    12 顾彦龙, 石峰, 邓友全. 室温离子液体-一类新型的软介质和功能材料. 科学通报. 2004, 49(6): 515~521
    13 张玉芬, 乔聪震, 张金昌, 李成岳. 离子液体—环境友好的溶剂和催化剂. 化学反应工程与工艺. 2003, l19(2): 164~170
    14 石家华, 孙逊, 杨春和, 高青雨, 李永舫. 离子液体研究进展. 化学通报, 2002, 4: 243~250
    15 P. Wasserscheid, W. Keim. Ionic Liquids-New 'solutions' for Transition Metal Catalysis.Angew. Chem. Int. Ed. 2000, 39: 3773~3779
    16 阎立峰, 朱清时. 离子液体及其在有机合成中应用. 化学通报. 2001, 64 (11): 673~679
    17 L. A. Blanchard, et al. Green Processing Using Ionic Liquids and CO2. Nature. 1999, 399: 28~29
    18 T. Welton. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99(8): 2071~2083
    19 C. M. Gordon. New Developments in Catalysis Using Ionic Liquids. Appl Catal A General. 2002, 222: 101~117
    20 Q. Kun, Y. Q. Deng. Alkylations of Benzene in Room Temperature Ionic Liquids Modified with HCl. Molecular Catalysis A: Chemical. 2001, 171: 81~84
    21 J. J. Peng, Y. Q. Deng. Ionic Liquids Catalyzed Biginelli Reaction under Solvent-free Conditions. Tetrahedron Letters. 2001, 42: 5917~5919
    22 Y. Q. Deng, F. Shi, J. J. Peng, et al. Ionic Liquid as a Green Catalytic Reaction Medium for Esterifications. Molecular Catalysis A: Chemical. 2001, 165: 33~36
    23 乔琨, 邓友全. 氯铝酸室温离子液体介质中正十二碳烯的选择环化反应. 催化学报. 2002, 23 (2): 165~167
    24 乔琨, 邓友全. 氯铝酸室温离子液体系中 HCl 促进的苯的烷基化反应研究. 分子催化. 2002, 16 (3): 187~190
    25 D. B. Zhao, M. Wu, Y. Kou, et al. Ionic Liquids Applications in Catalysis. Catalysis Today. 2002, 74: 157~189
    26 赵东滨, 寇元. 室温离子液体:合成、性质及应用. 大学化学. 2002, 17(1): 42~46
    27 C. DeCastro, E. Sauvage, M. H. Valkenberg, W. F. Holderich. Immobilised Ionic Liquids as Lewis Acid Catalysts for the Alkylation of Aromatic Compounds with Dodecene. J. of Catalysis. 2000, 196: 86~94
    28 M. H. Valkenberg, C. Decastro, W. F. Holderich. Immobilisation of Ionic Liquids on Solid Supports. Green Chem. 2002, 4: 88~93
    29 田小宁, 乔聪震, 张金昌, 李成岳. 负载离子液体合成十二烷基苯. 石油化工. 2004, 33(8): 714~716
    30 H. Hisahiro, S. Yoshitaka, H. Takashi, et al. Sustainable Mizoroki-Heck Reaction in Water: Remarkably High Activity of Pd (OAc)2 Immobilized on Reversed Phase Silica Gel with the Aid of an Ionic Liquid. Chem. Commun. 2005, 23: 2942~2944
    31 C. P. Mehnert, J. M. Edmund, A. C. Raymond. Supported Ionic Liquid Catalysis Investigated for Hydrogenation Reactions. Chem. Commun. 2002, 24: 3010~3011
    32 A. Wolfson, I. F. J. Vankelecom, P. A. Jacobs. Co-immobilization of Transition-metal Complexes and Ionic Liquids in a Polymeric Support for Liquid-phase Hydrogenations.Tetrahedron Letters. 2003, 44: 1195~1198
    33 C. P. Mehnert, R. A. Cook, N. C. Dispenziere, et al. Supported Ionic Liquid Catalysis: a New Concept for Homogeneous Hydroformylation Catalysis. JACS. 2002, 124: 12932~12933
    34 Y. Kazuya, Y. Chie, U. Sayaka, et al. Peroxotungstate Immobilized on Ionic Liquid-modified Silica as a Heterogeneous Epoxidation Catalyst with Hydrogen Peroxide. JACS. 2005, 127: 530~531
    35 邓友全, 石峰, 彭家建, 等. 中国专利. CN02119568.4
    36 F. Shi, J. J. Peng, Y. Q. Deng. Highly Efficient Ionic Liquid-Mediated Palladium Complex Catalyst System for the Oxidative Carbonylation of Amines. J. Catal., 2003, 219 (2): 372~375
    37 石峰, 马宇春, 周瀚成, 邓友全. 钯-离子液体钛硅复合氧化物催化剂的合及在胺羰化中的应用. 高等学校化学学报. 2002, 23(9): 1781~1783
    38 张庆华, 石峰, 邓友全. 硅胶担载离子液体催化剂的制备及其在由胺制二取代脲反应中的应用. 催化学报. 2004, 25(8): 607~610
    39 J. Y. Ying, P. C. Mehnert, M. S. Wong. Synthesis and Applications of Supramolecular- Templated Mesoporous Materials. Angew. Chem. Int. Ed. 1999, 38: 56~77
    40 H. P. Yiu, C. H. Botting, N. P. Botting, P. A. Wright. Size Selective Protein Adsorption on Thiol-functionalized SBA-15 Mesoporous Molecular Sieve. Phys. Chem. Chem. Phys. 2001, 3(15): 2983~2985
    41 F. DiRenzo, H. Cambon, R. Dutartre. A 28-year-old Synthesis of Micelle-templated Mesoporous Silica. Microporous Mater. 1997, 10: 283~286
    42 T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato. The Preparation of Alkyltrimethylammonium -Kanemite Complexes and Their Conversion to Micro-porous Mterials. Bull. Chem. Soc. Jpn. 1990, 63(4): 988~992
    43 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonwicz, et al. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Soc. 1992, 114(19): 10834~10843
    44 J. Vartuli, K. Schmitt, C. Kresge, W. Roth, et al. Development of a Formation Mechanism for M41S Mterials. Studies in Surface Science and Catalysis. 1994, 84: 53~60
    45 J. Vartuli, C. Kresge, M. Leonowicz, A. Chu, S. McCullen, I. Johnsen, E. Sheppard. Synthesis of Mesoporous Materials: Liquid-Crystal Templating versus Intercalation of Layered Silicates. Chem. Mat. 1994, 6(11): 2070~2077
    46 Q. Huo, R. Leon, P. Petroff, G. Stucky. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science. 1995, 268(5215): 1324~1327
    47 A. Firouzi, F. Atef, A. Oertli, G. Stucky, B. Chmelka. Alkaline Lyotropic Silicate-SurfactantLiquid Crystals. J. Am. Chem. Soc. 1997, 119(15): 3596~3610
    48 X. Chen, G. Ding, H. Chen, Q. Li. Formation at Low Surfactant Concentrations and Characterization of Mesoporous MCM-41. Sci. China, Ser. B-Chem. 1997, 40(3): 278~285
    49 Q. Huo, D. Margolese G. Stucky. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mat. 1996, 8(5): 1147~1460
    50 C. Y. Chen, H. X. Li, M. Davis. Studies on Mesoporous Materials I: Synthesis and Characterization of MCM-41. Microporous Mater. 1993, 2(1): 17~26
    51 C. Y. Chen, S. Burkette, H. X. Li, M. Davis. Studies on Mesoporous Materials II: Synthesis Mechanism of MCM-41. Microporous Mater. 1993, 2(1): 27~34
    52 Q. Huo, D. Margolese, U. Ciesla, D. Demuth, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater. 1994, 6(8): 1176~1191
    53 G. Stucky, Q. Huo, A. Firouzi, B. Chemlka, S. Schacht, I. Voigtmarthin, F. Schuth. Directed Synthesis of Organic/Inorganic Composite Structures. Studies in Surface Science and Catalysis. 1997, 105A: 3~28
    54 A. Firouzi, D. Kumar, L. Bull, T. Besier, et al. Cooperative Organization of Inorganic- Surfactant and Biomimetic Assemblies. Science. 1995, 267(5201): 1138~1143
    55 Q. Huo, D. Margolese, U. Ciesla, P. Feng, et al. Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials. Nature. 1994, 368(6469), 317~321
    56 A. Monnier, F. Schuth, Q. Huo, D. Kumar, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science. 1993, 261(5126): 1299~1303
    57 S. Inagaki, Y. Fukushima, K. Kuroda. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate. J. Chem. Soc-Chem. Commun. 1993, 8: 680~682
    58 C. Goltner, M. Antonietti. Mesoporous Materials by Templating of Liquid Crystalline Phases. Adv. Mater. 1997, 9(5): 431~436
    59 C. Goltner, S. Henke, M. Weissenberger, M. Antonietti. Mesoporous silica from lyotropic liquid crystal polymer templates. Angew. Chem. Int. Edit. 1998, 37(5): 613~616
    60 L. M. Huang, H. T. Wang, C. Y. Hayashi, et al. Single-Strand Spider Silk Templating for the Formation of Hierarchically Ordered Hollow Mesoporous Silica Fibers. J Mater. Chem. 2003, 13: 666~668
    61 A. Dong, Y. Wang, Y. Tang, N. Ren, Y. Zhang, Y. Yue, Z. Gao. Zeolite Tissue through Wood Cell Templating. Adv. Mater. 2002, 14(12): 926~929
    62 M. W. Anderson, S. M. Holmes, N. Hanif, C. S. Cundy. Hierarchical Pore Structures through Diatom Zeolitization.Angew. Chem. Int. Ed. 2000, 39(15): 2707~2710
    63 P. Van Der Voort, P. I. Ravikovitch, K. P. De Jong, A. V. Neimark, et al. Plugged HexagonalTemplated Silica: a Unique Micro- and Mesoporous Composite Material with Internal Silica Nanocapsules. Chem Commun. 2002, 9: 1010~1011
    64 T. Kyotani, Z. X. Ma, A. Tomita.Template Synthesis of Novel Porous Carbons Using Various Types of Zeolites. Carbon. 2003, 41: 1451~1459
    65 I. Schmidt, A. Krogh, K. Wienberg, A. Carlsson, et al. Catalytic Epoxidation of Alkenes with Hydrogen Peroxide over the First Mesoporous Titanium-Containing Zeolite. Chem. Commun. 2000, 21: 2157~2158
    66 A. G. Dong, Y. J. Wang, Y. Tang, Y. H. Zhang, N. Ren, Z. Gao. Mechanically Stable Zeolite Monoliths with Three-Dimensional Ordered Macropores by the Transformation of Mesoporous Silica Spheres. Adv Mater. 2002, 14(20): 1506~1510
    67 J. H. Sun, J. A. Moulijn, J. C. Jansen, et al. Alcothermal Synthesis under Basic Conditions of an SBA-15 with Long-Range Order and Stability. Advanced Material, 2001, 13(5): 327~331
    68 J. H. Sun, Z. Shan, J. A. Moulijn, et al. Synthesis of Tailored Bimodal Mesoporous Materials with Independent Control of the Dual Pore Size Distribution. Chem. Commun. 2001, 2670~2671
    69 J. H. Sun, J. A. Moulijn, J. C. Jansen, et al. Synthesis of Bimodal Nanostructured Silicas with Independently Controlled Small and Large Mesopore Sizes. Langmuir. 2003, 19: 8395~8402
    70 D. Brunel. Functionalized Micelle-Templated Silicas (MTS) and Their Use as Catalysts for Fine Chemicals. Microporous Mesoporous Mater. 1999, 27(2-3): 329~344
    71 R. Anwander, I. Nagl, M. Widenmeyer. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation. J. Phys. Chem. B. 2000, 104(15): 3532~3544
    72 M. Benjelloun, P. Van der Voort, P. Cool, et al. Reproducible Synthesis of High Quality MCM-48 by Extraction and Recuperation of the Gemini Surfactant. Phys. Chem. Phys. 2001, 3: 127~131
    73 B. Z. Tian, X. Y. Liu, C. Z. Yu, D. Y. Zhao. Microwave Assisted Template Removal of Siliceous Porous Materials. Chem. Commun. 2002, 1186~1187
    74 J. He, X. B. Yang, D. G. Evans, et al. New Methods to Remove Organic Templates from Porous Materials. Mater. Chem. Phys. 2003, 77: 270~275
    75 S. Kawi. Supercritical Fluid Extraction of Surfactant Template from MCM-41. Chem. Commun. 1998, 1407~1408
    76 X. B. Lu, W. H. Zhang, J. H. Xiu, R. He, L. G. Chen, X. Li. Removal of the Template Molecules from MCM-41 with Supercritical Fluid in a Flow Apparatus. Ind. Eng. Chem. Res. 2003, 42(3): 653~656
    77 F. De Juan, E. Ruiz-Hitzky. Selective Functionalization of Mesoporous Silica. Adv. Mater. 2000, 12(6): 430~432
    78 W. H. Zhang, X. B. Lu, J. H. Xu, Z. L. Shi, L. X. Zhang, Mark Robertson, J. L. Shi, D. Sh. Yan, Justin D. Holmes. Synthesis and Characterization of Bifunctionalized Ordered Mesoporous Materials, Adv. Funct. Mater. 2004, 14: 6~9
    79 H. P. Lin, C. Y. Mou. Structural and Morphological Control of Cationic Surfactant-Templated Mesoporous Silica. Acc. Chem. Res. 2002, 35: 927~935
    80 V. Antochshuk, M. Jaroniec. Functionalized Mesoporous Materials Obtained via Interfacial Reactions in Self-Assembled Silica Surfactant System, Chem. Mater. 2000, 12: 2496~2501
    81 X. S. Zhao, G. Q. Lu, A. K. Whittaker, G. J. Millar, H. Y. Zhu. Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si Cp/Mas NMR, FTIR, Pyridine-TPD, and TGA. J. Phys. Chem. B. 1997, 101: 6525~6531
    82 P. Van Der Voort, M. Baltes, E. F. Vansant. Synthesis of Stable, Hydrophobic MCM-48/VOx Catalysts Using Alkylchlorosilanes as Coupling Agents for the Molecular Designed Dispersion of VO(acac)2. J. Phys. Chem. B. 1999, 103: 10102~10108
    83 S. A. Raynor, J. M. Thomas, R. Raja, B. F. G. Johnson, R. G. Bell, M. D. Mantle. A One-Step, Enantioselective Reduction of Ethyl Nicotinate to Ethyl Nipecotinate Using a Constrained, Chiral, Heterogeneous Catalyst. Chem. Commun. 2000, 1925~1926
    84 M. Jia, A. Seifert, W. R. Thiel. Mesoporous MCM-41 Materials Modified with Oxodiperoxo Molybdenum Complexes: Efficient Catalysts for the Epoxidation of Cyclooctene. Chem. Mater. 2003, 15: 2174~2180
    85 C. Pérez, S. Pérez, G. A. Fuentes, C. Avelino. Preparation and Use of a Chiral Amine Ruthenium Hydrogenation Catalyst Supported on Mesoporous Silica. Journal of Molecular Catalysis A: Chemical. 2003, 197: 275~281
    86 J. Pleiss, M. Fischer, R. D. Schmid. Anatomy of Lipase Binding Sites: the Scissile Fatty Acid Binding. Chemistry and Physics Lipids. 1998, 93: 67~80
    87 徐坚, 杨立明, 王玉军, 骆广生, 戴猷元. 介孔分子筛 SBA-15 的表面改性对脂肪酶固定化的强化作用. 化工学报. 2006, 10(57): 2407~2410
    88 M. A. Andersson, R. Epple, V. V. Fokin, K. B. Sharpless. A New Approach to Osmium-Catalyzed Asymmetric Dihydroxylation and Aminohydroxylation of Olefins. Angew Chem. Int. Ed. 2002, 41(3): 472~475
    89 张生勇, 郭建权. 不对称催化反应. 北京, 科学出版社, 2002.
    90 S. Nagayama, M. Endo, S. Kobayashi. Microencapsulated Osmium Tetraoxide. A New Recoverable and Reusable Polymer-Supported Osmium Catalyst for Dihydroxylation of Olefins. J. Org. Chem. 1998, 63(18): 6094~6095
    91 B. M. Choudary, N. S. Chowdari, K. Jyothi, M. L. Kantam. MCM-41 Anchored Cinchona Alkaloid for Catalytic Asymmetric Dihydroxylation of Olefins: A Clean Protocol for ChiralDiols Using Molecular Oxygen. Cata. Lett. 2002, 82: 99~102
    92 S. Nagayama, M. Endo, S. Kobayashi. Microencapsulated Osmium Tetraoxide. A New Recoverable and Reusable Polymer-Supported Osmium Catalyst for Dihydroxylation of Olefins. J. Org. Chem. 1998, 63(18): 6094~6095
    93 B. M. Choudary, N. S. Chowdari, M. L. Kantam, K. V. Raghavan. Catalytic Asymmetric Dihydroxylation of Olefins with New Catalysts: The First Example of Heterogenization of OsO42- by Ion-Exchange Technique. J. Am. Chem. Soc. 2001, 123(37): 9220~9221
    94 A. Severeyns, D. E. De Vos, F. Lucien, et al. A Heterogeneous Cis-Dihydro- xylation Catalyst with Stable, Site-Isolated Osmium-Diolate Reaction Centers. Angew Chem. Int Ed. 2001, 40: 586~589
    95 R. Yanada, Y. Takemoto. OsO4-Catalyzed Dihydroxylation of Olefins in Ionic Liquid [emim]BF4: a Recoverable and Reusable Osmium. Tetrahedron Lett. 2002, 43(38): 6849~6851
    96 L. C. Branco, C. A. M. Afonso. Catalytic Asymmetric Dihydroxylation of Olefins Using a Recoverable and Reusable OsO42- in Ionic Liquid [bmim][PF6]. Chem. Commun. 2002, 3036~3037
    97 C. E. Song, D. Jung, E. J. Roh, S. Lee, D. Y. Chi. Osmium Tetroxide-(QN)2PHAL in an Ionic Liquid: a Highly Efficient and Recyclable Catalyst System for Asymmetric Dihydroxylation of Olefins. Chem. Commun. 2002, 3038~3039
    98 Q. B. Liu, Z. H. Zhang, F. Rantwijk, R. A. Sheldon. Osmium-Catalyzed Asymmetric Dihydroxylation of Olefins in Ionic Liquids. J. Mol. Catal. A. 2004, 224: 213~216
    99 李守贵,房铭,庞文琴,等. 钌卟啉/MCM-41 催化剂的制备、表征及性质. 催化学报. 1999, 20(2): 161~165
    100 徐庆红,李洪武,李连生,等. 铕配合物[C5H5NC16H33][Eu(TTA)4]在改性介孔材料Si-MCM-41 孔道中的组装研究. 高等学校化学学报. 2003, 24(10): 1758~1760
    101 高波. 介孔材料组装酶蛋白的研究. 吉林大学博士论文. 2005: 5~7
    102 刘鹰, 刘植昌, 黄崇品, 徐春明. 氯铝酸离子液体催化异丁烷/丁烯烷基化反应. 化学反应工程与工艺. 2004, 20(3):229~234
    103 郑珊, 高濂, 郭景坤. 配合物[Mn(phen)2]2+修饰的 MCM-41 的合成与表征. 无机材料学报. 2001, 16(3): 459~464
    104 马 骞, 毛学峰, 魏宏广, 田锐. MCM-41 介孔分子筛的修饰与表征. 西北师范大学学报. 2003, 4(39): 54~56
    105 房宝青. 在离子液体中合成微/纳米材料的研究. 南京航空航天大学硕士论文. 2006: 48~49
    106 曹洁明, 房宝青, 王军, 等. 离子液体在无机纳米材料合成上的应用. 化学进展. 2005,17(6): 1028~1032
    107 O. Vassylyev, J. Chen, A. P. Panarello, J. G. Khinast. Catalytic Properties of Several Supported Pd(II) Complexes for Suzuki Coupling Reactions. Tetrahedron Letters. 2005, 46: 6865~6869
    108 C. E. Song, J. W. Yang, H. J. Ha, S. Lee. Efficient and Practical Polymeric Catalysts for Heterogeneous Asymmetric Dihydroxylation of Olefins. Tetrahedron: Asymmetry. 1996, 3(7): 645~648
    109 陈运法, 金联明, 张国昌, 谢裕生. 溶胶-凝胶法制备无机-有机杂化材料 I. 无机-有机杂化材料的分类及制备方法. 功能材料. 1999, 30(5): 449~455
    110 刘健, 杨启华, 张磊, 郭亚军. 有机-无机杂化氧化硅基介孔材料. 化学进展. 2005, 5(17): 809~817
    111 孙晓莉, 匡永清, 南鹏娟, 张生勇. 1, 4-双(9-O-奎宁)-2, 3-二氮杂萘的合成及其在烯烃不对称二羟基化反应中的应用. 高等学校化学学报. 2003, 7(24): 1216~1218
    112 H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless. Catalytic Asymmetric Dihydroxylation. Chem. Rev. 1994, 94: 2483~2546
    113 S. Kobayashi, M. Sugiura. Immobilization of Osmium Catalysts for Asymmetric Dihydroxylation of Olefins. Adv. Synth.Catal. 2006, 348: 1496~1504
    114 B. M. Kim, K. B. Sharpless. Heterogeneous Catalytic Asymmetric Dihydroxylation: Use of a Polymer-Bound Alkaloid. Tetrahedron. Lett. 1990, 31: 3003~3006
    115 秦绍清, 宋国强, 姚培忠. 离子液体重要中间体的合成研究. 江苏工业学院学报. 2003, 3(15): 9~11
    116 卢泽湘, 袁霞, 吴剑, 王良芥, 罗和安. 咪唑类离子液体的合成和光谱表征. 化学世界. 2005: 148~150
    117 刘复初, 唐有根, 赵雁来. 开链冠醚类似物研究Ⅲ 2, 2’, 2”-三(4-氧安替比林)三乙胺的合成及其 Cu(Ⅱ)、Bi(Ⅲ)和 Fe(Ⅲ)配合物的制备. 云南大学学报. 1992, 1(14): 45~50