Ti/BMMS分子筛催化剂在环己烯环氧化反应中的催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧环己烷是一类非常重要的化学反应中间体,在有机合成领域中有着重要的学术价值。其制备方法主要分为均相和非均相两大催化体系,均相反应具有选择性好,转化率高等优点。但其缺点主要表现为催化剂回收困难,导致生产成本较高。为了克服均相反应所存在的弊端,近年来,这类反应的研究热点主要集中在开发非均相催化反应体系。以MCM-41为代表的介孔分子筛的出现,为人们定向合成结构可控和稳定的催化剂提供了丰富的理论基础和技术保证。
     本文以双模型介孔分子筛(BMMs)为载体、通过嫁接法将二氯二茂钛负载在BMMs的孔道表面,从而制备出一系列Ti/BMMs介孔分子筛催化剂。以环己烯的环氧化反应为探针,结合多种表征手段,详细考察了影响反应的诸多因素,从而筛选出性能最优的催化剂,并找出最佳的反应条件。同时,本文对催化反应机理也进行了探讨。主要获得以下结果:
     1.利用嫁接法将二氯二茂钛负载在BMMs的孔道表面制备出一系列Si/Ti摩尔比不同的Ti/BMMs分子筛催化剂,采用XRD、SEM、TEM、TG、UV-vis、ICP、FT-IR等测试手段对样品进行了结构分析和性能表征。结果表明,当n(Si)/n(Ti)分别为:82.9,61.5和47.9时,Ti主要以四配位状态存在于分子筛的孔道结构中。随着Ti含量的进一步增加(n(Si)/n(Ti)小于38.1),UV-vis光谱图上出现了八配位钛的特征吸收峰。ICP测试结果显示,在Si/Ti摩尔比为61.5时,所制备的Ti/BMMs分子筛催化剂中Ti的实际含量为0.47 (wt) %。该催化剂不仅能够保持BMMs分子筛的双模型等级孔道结构,且Ti在Ti/BMMs分子筛的孔道表面主要以四配位结构存在,并得到较好分散。
     2.以环己烯的环氧化反应为探针反应,详细考察了Si/Ti摩尔比、煅烧温度、反应温度、溶剂种类和反应时间等诸多因素对催化反应的影响规律。结果表明,最佳反应条件为:n(环己烯)/n(TBHP)=1: 1.1,氯仿为溶剂, Si/Ti摩尔比为61.5的Ti/BMMs分子筛催化剂,反应温度为60°C,反应时间为6 h。在此条件下,环己烯的转化率达到61.75 %,环氧环己烷的选择性与频率转化因子(TOF)分别为73.54 %和87.88 h-1。
     3.考察了催化剂的煅烧温度对其孔道结构和Ti的配位环境的影响规律。结果表明,当Ti/BMMs分子筛催化剂在450°C煅烧时,BMMs分子筛的双模型孔道结构保持完好,且Ti在分子筛孔道表面主要以四配位状态存在。在温度低于450°C时,由于二氯二茂钛在Ti/BMMs分子筛孔道内分解不完全导致孔道堵塞;温度高于450°C时,分子筛的孔道结构出现坍塌。
     4.进一步探索了催化剂回收以及再利用问题。初步结果表明催化剂经过3次循环后,仍能够保持比较完整的双模型孔道结构,且具有较高的催化活性与选择性,其中环己烯的转化率达到57.37 %,环氧环己烷的选择性为72.61 %。
     5.结合TG表征结果以及环己烯环氧化反应机理,造成Ti/BMMs分子筛催化剂失活的原因主要有以下3点:(1)Ti/BMMs分子筛催化剂回收利用多次后,催化剂的孔道结构遭到一定程度的破坏。特别是经过第4次回收后,Ti/BMMs分子筛催化剂不再保持BMMs分子筛独特的双模型孔道结构;(2)环己烯环氧化反应所产生的有机分子吸附在分子筛孔道表面,阻止了反应物分子与活性中心的接触,降低了四配位钛与反应物分子之间的碰撞几率,从而降低了Ti/BMMs催化剂的活性;(3)随着催化剂回收次数的不断增加,Ti在回收过程中的流失或配位环境的变化(由四配位转变为八配位)也是造成催化活性下降的原因。总之,造成催化剂失活的主要原因还需要深入细致的考察。
Cyclohexene oxide, one of the most important organic intermediates, has attracted great academic interest in the field of organic synthesis. At present, its synthesis methods are divided into the homogeneous and the heterogeneous system, the former possesses many advantages, such as good conversion and high selectivity, however, there are many shortcomings, for example, the catalysts are difficult to be reused, and therefore cost too much. To overcome these limitations, researches focus on the field of heterogeneous reaction system. In the early 1990s, a new theory and method has been carried out to synthesize stabilized catalysts with controllable struture after the MCM-41 mesoporous molecular sieves have been reported.
     In this dissertation, a series of Ti/BMMs samples were prepared by grafting titanocene dichloride into bimodal mesoporous materials. The catalytic properties of Ti/BMMs were investigated by using epoxidation reaction of cyclohexene as model reaction. Combining with some characterization techniques, the effects of many factors on the epoxidation properties have been studied in details, and the best catalyst and optimum reaction condition were obtained. In addition, the relationship between mechanism of epoxidation reaction and catalyst structure was also discussed.
     Below are the main results:
     1. A series of catalysts were prepared by incorporating titanocene dichloride on the surface of BMMs with different ratios and were characterized by XRD, SEM, TEM, TG, UV-vis, ICP and FT-IR, and so on. The results showed that the tetrahedral titanium complexes highly dispersed in the mesoporous surface of BMMs samples with Si/Ti molar ratio of 82.9, 61.5 and 47.9, respectively. However, with the increasing Ti content (Si/Ti molar ratio was lower than 38.1), besides tetrahedral titanium complexes, octahedral Ti species also presented on the basis of UV-vis spectra. Additionally, Ti amount for catalyst with the Si/Ti molar ratio at 61.5 was around 0.47(wt) % by ICP measurement, the resultant catalysts maintain a typical bimodal mesoporous structure, in which, titanium species exist in the form of tetrahedral and dispersed on the mesoporous surface.
     2. The effects of Si/Ti ratio, heating temperature, reaction temperature, solvents and reaction time on the epoxidation reaction of cyclohexene were investigated. The best reaction conditions were as follow: cyclohexene/TBHP = 1:1.1(molar ratio), chloroform as solvent, Ti/BMMs catalyst with Si/Ti ratio at 61.5, reaction temperature at 60°C and reaction time for 6 hours. Ti/BMMs catalysts showed high catalytic activity with the conversion of cyclohexene up to 61.75 %, selectivity of cyclohexene oxide near 73.54 % and turnover frequency (TOF) achieved 87.88 h-1.
     3. In addition, the effect of heating temperature on the coordinated environment of Ti ions of catalysts was studied. The results indicated that when calcined at 450°C, Ti/BMMs catalyst could maintain bimodal pore structure and tetrahedral titanium be dispersed on the mesoporous surface. In the case of lower temperature, the mesopores might be blocked since titanocene dichloride was not decomposed fully according to the TG analysis, when above 450°C, the pores structure was damaged on the basis of XRD pattern.
     4. Meantime, recycling and reuse of Ti/BMMs catalysts were also performed. The results showed that after recycled three times, the catalyst could still maintain a typical bimodal mesoporous structure with high conversion and selectivity, that the cyclohexene conversion reached up to 57.37 % and selectivity of cyclohexene oxide was around 72.61 %.
     5. Combining with the TG analysis, and the mechanism of cyclohexene epoxidation, some possible reasons for the decreasing of activity of Ti/BMMs were put forward, as follow: (1) The mesopore structure were damaged to some extent after series of recycling, especially at the forth time; (2) Some organic molecules which were by-produced in the cyclohexene epoxidation were absorbed on the mesoporous surface, resulting in that the reactants could not easily diffuse into the active sites; (3) With the increasing of recycling times, the tetrahedral titanium complexes were not only strongly leached, but also turned into other species. In a word, the investigations for decreasing of catalytic activity need to be further done.
引文
1章亚东.环己烯环氧化催化剂的合成、表征及其催化性能研究.郑州大学博士学位论文. 2002:1~3
    2贾义霞,徐亚雄,俞开新,高建荣. 1,2-环氧环己烷的合成及应用.化工众横. 2002, 4:11~14
    3雷忠华. 1,2-环氧环己烷.湖南化工. 1989, 2:63~67
    4 USP4, 754, 076
    5 JP 087, 644, 1999
    6谢高阳,许临晓,马士明,侯薇,孙关中,陶凤岗.无机过氧化物在有机反应中作用的研究I:利用过硼酸钠进行烯烃环氧化反应.化学学报. 1989, 47: 614~617
    7张侦祥,冯利民. 1,2-环氧环已烷的开发与应用.湖南化工. 1995, 3:19~22
    8中国化工信息. 2001, 21:17
    9 Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359:710~712
    10 Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992, 114(27): 10834~10843
    11 Tabushi I, Koga N. P-450 Type oxygen activation by porphyrin-Manganese complex. J Am Chem Soc. 1979, 101:6456~6458
    12马红竹,索继栓. MnTFPPCl模拟体系催化环己烯氧化反应性能研究.分子催化. 1999, 13(3):165~168
    13盛卫坚,贾建洪,韩非,王淑英,史娟玲,高建荣.环氧环己烷的新合成工艺研究.浙江工业大学学报. 2006, 34(4):386~388
    14 Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. U S Patent 4410501, 1983
    15 Corma A, Esteve P, Martinez A, Valencia S. Oxidation of Olefins with Hydrogen Peroxide and tert-Butyl Hydroperoxide on Ti-Beta Catalyst. J Catal. 1995, 152:18~24
    16 Thomas J M. Design, synthesis, and in situ characterization of new solid catalysts. Angew Chem Int Ed. 1999, 38:3588~3628
    17 Wang Lingling, Liu Yueming, Xie Wei, Wu Haihong, Li Xiaohong, He Mingyuan, Wu Peng. Improving the Hydrophobicity and Oxidation Activity of Ti-MWW by Reversible Structural Rearrangement. J Phys Chem C. 2008, 112:6132~6138
    18 Corma A, Navarro M T, Pariente J P. Synthesis of an Ultralarge Pore Titanium Silicate lsomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons. J Chem Soc-Chem Commun. 1994:147~148
    19 Maschmeyer T, Rey F, Sankar G, Thomas J M. Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature. 1995, 378:159~162
    20 Shan Z, Jansen J C, Marchese L, Maschmeyer T. One-Step Synthesis of a Highly Active, Mesoporous, Titanium-Containing Silica by Using Bifunctional Templating. Microporous and Mesoporous Materials. 2001, 48:181~187
    21 M L Pe?a, V Dellarocca, F Rey, A Corma, S Coluccia, L Marchese. Elucidating the local environment of Ti(IV) active sites in Ti-MCM-48:a comparison between silylated and calcined catalysts. Microporous and Mesoporous Materials. 2001, 44-45:345~356
    22 Xiao F S, Han Y, Yu Y, et al. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. J Am Chem Soc. 2002, 124:888~889
    23 WU Peng, Takashi T, Takayuki K, Tatsuaki Y. Postsynthesis, Characterization, and Catalytic Properties in Alkene Epoxidation of Hydrothermally Stable Mesoporous Ti-SBA-15. Chem Mater. 2002, 14(4):1657~1664
    24朱金华,沈伟,徐华龙,周亚明,余承宗,赵东元.水热一步法合成Ti-SBA-15分子筛及其催化性能研究.化学学报. 2003, 61:202~207
    25 Ramanathan Anand, Hamdy Mohamed S, Parton Rudy, Maschmeyer Thomas, Jacobus C, Hanefeld Jansen Ulf. Co-TUD-1 catalysed aerobic oxidation of cyclohexane. Applied Catalysis A. 2009, 355:78~82
    26 Punniyamurthy T, Velusamy Subbarayan, Iqbal Javed. Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen. Chem Rev. 2005, 105 (6):2329~2364
    27 Christopher A Bradley, Meredith J McMurdo, T Don Tilley. Selective Catalytic Cyclohexene Oxidation Using Titanium-Functionalized Silicone Nanospheres. J Phys Chem C. 2007, 111: 17570~17579
    28 Kenji Wada, Naoki Watanabe, Teruyuki Kondo, Take-aki Mitsudo. Preparation of silica- immobilized titanium-containing silses quioxane catalysts and activity for the epoxidation of alkenes. Chemical Engineering Science. 2008, 63:4917~4923
    29 Vasant R Choudhary, Rani Jha, Prabhas Jana. Selective epoxidation of styrene to styrene oxide by TBHP using simple transition metal oxides (NiO, CoO or MoO3) as highly active environmentally-friendly catalyst. Catalysis Communications. 2008, 10:205~207
    30 Mandelli Dalmo, van Vliet Michiel C A, Sheldon Roger A, Schuchardt Ulf. Alumina- catalyzed alkene epoxidation with hydrogen peroxide. Applied Catalysis A:General. 2001, 219:209~213
    31陈杨英,韩秀文,包信和.W-SBA-15介孔分子筛的直接合成及其对环己烯环氧化反应的催化性能.催化学报. 2005, 26(5):412~416
    32杨新丽,戴维林,徐建华,陈浩,曹勇,范康年.新型WO3/HMS催化剂的制备及其对环戊烯选择氧化反应的催化性能.催化学报. 2005, 26(4):311~316
    33章亚东,高晓蕾,蒋登高,陈霞,王自健.聚苯乙烯负载席夫碱Mo(Ⅵ)配合物合成、表征及其在环己烯环氧化反应中的催化活性.高等化学学报. 2003, 24: 2099~2102
    34黄仲涛,耿建铭.工业催化.第二版.北京:化学工业出版社. 2006:40~41
    35傅玉普,郝策,蒋山.物理化学.第三版.大连:大连理工大学出版社. 2001:392~393
    36梁延刚,郭超,金国新.介孔分子筛催化剂SBA-15负载的二双齿钛烯烃聚合催化剂的合成及催化乙烯聚合反应.无机化学学报. 2004, 7:763~769
    37 Clerici M G, Ingallina P. Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal. 1993, 140(1):71~83
    38 Weerayuth Panyaburapa, Tanin Nanok, Jumras Limtrakul. Epoxidation Reaction of Unsaturated Hydrocarbons with H2O2 over Defect TS-1 Investigated by ONIOM Method: Formation of Active Sites and Reaction Mechanisms. J Phys Chem C. 2007, 111:3433~3441
    39 Yuan Qingchun, Hagen Anke, Roessner Frank. An investigation into the Ti-grafting structure on MCM-41 and epoxidation catalysis. Applied Catalysis. 2006, 303:81~87
    40 Swarup K Maiti, Subhajit Dinda, Ramgopal Bhattacharyya. Unmatched efficiency and selectivity in the epoxidation of olefins with oxo-diperoxomolybdenum(VI) complexes as catalysts and hydrogen peroxide as terminal oxidant. Tetrahedron Letters. 2008, 49:6205~ 6208
    41 David H Wells, Jr W Nicholas Delgass, Kendall T Thomson. Evidence of Defect- Promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts:A DFT Study. J Am Chem Soc. 2004, 126:2956~2962
    42 Zhuang Jianqin, Yang Gang, Ma Ding, Lan Xijie, Liu Xiumei, Han Xiuwen, Bao Xinhe, Mueller Ulrich. In Situ Magnetic Resonance Investigation of Styrene Oxidation over TS-1 Zeolites. Angew Chem Int Ed. 2004, 43:6377~6381
    43 Fan Weibin, Wu Peng, Namba Seitaro, Tatsumi Takashi. Synthesis and catalytic properties of a new titanosilicate molecular sieve with the structure analogous to MWW-type lamellar precursor. Journal of Catalysis. 2006, 243:183~191
    44 Sheldon R A, Van Doorn J A. Metal-catalyzed epoxidation of olefins with organic hydroperoxides:I. A comparison of various metal catalysts. J Catal. 1973, 31: 427~437
    45 Sun Ji-Hong, Shan Zhi-Ping, Maschmeyer T, et al. Synthesis of Bimodal Nanostructured Silicas with Independently Controlled Small and Large Mesopore Sizes. Langmuir. 2003, 19: 8395~8402
    46钮永,孙继红.降解法合成具有纳米ZSM-5结构的双模型介孔分子筛.石油学报. 2006 (增刊):107~109
    47 Alba M D, Luan Z, Klinowski J. Titanosilicate Mesoporous Molecular Sieve MCM-41: Synthesis and Characterization. J Phys Chem. 1996, 100(6):2178~2182
    48 Bharat L Newalkar, Johnson Olanrewaju, Sridhar Komarneni. Direct Synthesis of Titanium- Substituted Mesoporous SBA-15 Molecular Sieve under Microwave-Hydrothermal Conditions. Chem Mater. 2001, 13(2):552~557
    49 Melosh N A, Davidson P, Feng P, Pine D J, Clmaelka B F. Macroscopic Shear Alignment of Bulk Transparent Mesostructured Silica. J Am Chem Soc. 2001, 123:1240~1241
    50 Vavssiloy G N. Structural and physicochemical features of titanium silicalites. Catal Rev Sci Eng. 1997, 39:209~251
    51 Davis Robert J, Liu Zhufang. Titania-Silica: A Model Binary Oxide Catalyst System. Chem Mater. 1997, 9:2311~2324
    52 Sinha A K, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M. Three-Dimensional Mesoporous Titanosilicates Prepared by Modified Sol-Gel Method:Ideal Gold Catalyst Supports for Enhanced Propene Epoxidation. J Phys Chem B. 2005, 109:3956~3965
    53 Klein S, Weckhuysen B M, Martens J A, Maier W F, Jacobs P A. Homogeneity of titania- silica mixed oxides:On UV-DRS sutdies as a function of titania content. J Catal. 1996, 163: 489~491
    54 Damyanova S, Dimitrov L, Mariscal R, Fierro J L G, Petrov L, Sobrados I. Immobilization of 1,2-molybdophosphoric and 1,2-tungstophosphoric acids on metal-substituted hexagonal mesoporous silica. Appl Catal A. 2003, 256:183~197
    55 Vinu A, Srinivasu P, Miyahara M, Ariga K. Preparation and Catalytic Performances of Ultralarge-Pore TiSBA-15 Mesoporous Molecular Sieves with Very High Ti Content. J Phys Chem B. 2006, 110:801~806
    56 Galacho C, Ribeiro Carrott M M L, Carrott P J M. Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content. Microporous and Mesoporous Materials. 2007,100:312~321
    57 Griselda A Eimer, Sandra G Casuscelli, Corina M Chanquia, Vero′nica El?′as, Mo′nica E Crivello, Eduardo R Herrero. The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catalysis Today. 2008, 133-135:639~646
    58俞卫华,周春晖,倪着明,张波,葛忠华.钛嫁接介孔分子筛Ti-HMS的合成、表征与催化性能.催化学报. 2006, 27:961~966
    59 Maria D A, Luan Z H, Klinowskli J. Titanosilicate mesoporous molecular sieves MCM-41: Synthesis and characterization. J Phys Chem. 1996, 100:2178~2182
    60何静,孙鹏,段雪等. Ti-MCM-41的结构特征与芳烃羟化反应的化学亲和选择性.燃料化学学报. 2001, 29:417~421
    61汪正范.色谱定性与定量.第二版.北京:化学工业出版社. 2007:143~145, 170~172
    62 Luan Zhaohua, Maes Estelle M, van der Heide Paul A W, Zhao Dongyuan, Czernuszewicz Roman S, Kevan Larry. Incorporation of Titanium into Mesoporous Silica Molecular Sieve SBA-15. Chem Mater. 1999, 11:3680~3686
    63 Enrica Gianotti, Chiara Bisio, Leonardo Marchese, Matteo Guidotti, Nicoletta Ravasio, Rinaldo Psaro, Salvatore Coluccia. Ti(IV) Catalytic Centers Grafted on Different Siliceous Materials:Spectroscopic and Catalytic Study. J Phys Chem C. 2007, 111 (13):5083~5089
    64 Corma A, Garcia H, Navarro M T, Palomares E J, Rey F. Observation of a 390-nm Emission Band Associated with Framework Ti in Mesoporous Titanosilicates. Chem Mater. 2000, 12 (10):3068~3072
    65许俊强.掺杂介孔MCM-41分子筛的制备,表征及其催化性能研究.四川大学博士学位论文. 2007:19~20
    66 Li Xue Feng, Gao Huan Xin, Jin Guo Jie, Ding Lin, Chen Lu, Yang Hong Yun, He Xin, Chen Qing Ling. Characterization of silylated Ti-grafted HMS catalyst and its excellent epoxidation performance. Chinese Chemical Letters. 2007,18:591~594
    67 Ruth Ballesteros, Yolanda Pérez, Mariano Fajardo, Isabel Sierra, Isabel del Hierro. Grafting or tethering titanium alkoxo complexes on MCM-41? Strategies to prepare epoxidation catalysts. Microporous and Mesoporous Materials. 2008,116:452~460
    68 Sui Yan, Fu Xiangkai, Chen Jingrong, Yin Liyang. Grafting polyethylene glycols molybdenum(VI) complexes on ZSPP and their catalytic epoxidation of cyclohexene. Catalysis Communications. 2008, 9:2616~2619
    69 Corma A, Domine M, Gaona J A, Jorda J L, Navarro M T, Rey F, Parez-Pariente J, Tsuji J, McCullocch B, Nemeth L T. Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41. Chem Commun. 1998:2211~2212