烟气脱硫液相氧化制硫酸新方法的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在火电厂和冶炼厂烟气脱硫的同时,如能将其低浓度SO_2转化成硫酸则可实现硫的资源化。但在传统的两转两吸接触氧化制硫酸工艺中,由SO_2转化为SO_3的过程要求在较高温度和催化剂存在的条件下完成,对SO_2气相氧化能量要求高,成本也高。如在液相氧化则可使SO_2转化难度大幅度降低,但在酸性溶液中SO_2又很难溶于液相,限制了液相氧化制硫酸工艺的实现。因此,探索快速溶解SO_2并能氧化制成硫酸的新方法具有重要意义。
     本文探索了将臭氧作为氧化剂引入硫酸工艺中,利用其自身的强氧化性,将溶解于溶液中的二氧化硫迅速氧化为硫酸的新方法。并对新方法的氧化效果及氧化机理进行了研究。同时对双氧水协同氧气液相氧化SO_2产硫酸的过程也进行了初步的研究。
     实验结果表明向酸性液体中加入臭氧能够显著地提高二氧化硫转变成硫酸的速度和气相二氧化硫的吸收率。通过对其机理的解析结果表明臭氧的存在提高了二氧化硫由气相转移到液相的能力,对其原因分析发现为加快了亚硫酸向硫酸的转化且提高了二氧化硫的氧化速率。进一步解析发现臭氧的存在显著提高了溶液的氧化还原电位,可能是由亚硫酸向硫酸转化能力提高的根本原因。
     通过对SO_2氧化和溶液中氧元素的存在形式的解析研究表明,臭氧的存在促进了氧气参与到二氧化硫的氧化过程。在吸收液硫酸浓度为3%,二氧化硫气相浓度为1.33%,臭氧浓度为1.31%,反应时间为10.15min时,每摩尔臭氧在与SO_2反应过程中,臭氧除产生的1mol氧原子参与反应外,还促进0.602mol氧气参与二氧化硫的氧化反应中。
     在气相二氧化硫浓度较低的情况下,即吸收液硫酸浓度为3%,二氧化硫气相浓度为0.67%(V/V),臭氧气相浓度为1.31%(V/V)时,硫酸根产率接近100%。随着气相中SO_2浓度的提高,使液相中亚硫酸根的累积量增加,造成SO_2的吸收效率降低。在高浓度气相SO_2的情况下,增加气相臭氧浓度可使二氧化硫的吸收和转化效果大幅提高。
     另外,通过对双氧水协同氧气液相氧化制硫酸的实验研究,发现当用氧气取代部分双氧水协同氧化SO_2时,产生的硫酸根的量与单独双氧水液相氧化时产生的量相当,且SO_2的氧化速率也相近。因此双氧水协同氧气液相氧化也可作为脱除烟气中的SO_2并副产硫酸的一种途径。但添加双氧水中的水分会稀释所得到的硫酸溶液,降低硫酸的浓度。
In the process of flue gas desulfurization for power plant and smeltery, how couldconverse into sulphuric acid from low concentration SO_2will realize the resourceutilization of sulfur element. In the traditional double-absorption contact oxidationprocess of sulphuric acid production, energy input and operating cost for the oxidationof gas SO_2are higher because of the conversion from SO_2into SO_3requiring highertemperature and catalyst. Oxidating in liquid phase could greatly decrease thedifficulty in the conversion of SO_2, but in the acid solution SO_2is little dissolved inthe liquid phase, and it has hampered the application of sulphuric acid production byoxidating SO_2in the liquid phase. Therefore, it has important significance forexploring a new technique of sulphuric acid production by dissolving rapidly andoxidating SO_2.
     In this study, a new method of sulphuric acid production in the liquid wasproposed, in which ozone as the oxidant was introduced and oxidated rapidly SO_2inthe liquid into sulphuric acid by its own strong oxidative ability. The oxidation effectand oxidation mechanism of this method was investigated. Moreover, SO_2oxidatedby hydrogen peroxide combining with oxygen in the liquid phase into sulphuric acidwas primary explored.
     The results showed that ozone introduced in the acid solution could greatlyimprove the conversion rate of SO_2into sulphuric acid and absorptivity of gas SO_2.By analyzing the oxidation mechanism of SO_2, it was found out that the masstransmission of SO_2was improved from the gas phase to the liquid phase in thepresence of ozone, which results from the strengthen of transformation velocity ofsulfuric acid into sulphuric acid and the enhancement of oxidation rate of SO_2. Further,the oxidation-reduction potential of the solution significantly increased, it may be thekey reason of the improvement of conversion from sulfuric acid into sulphuric acid.
     By analyzing the oxidation of SO_2and existing forms of oxygen element in thesolution, it implied that the existence of ozone could promote the oxygen from ozonegenerator involved in the oxidation process of SO_2. Besides1mol oxygen atomproduced by ozone involving the oxidation process,0.602mol oxygen was alsopromoted to react with per mole of ozone under the condition of10.15min, sulphuric acid concentration of3%(mass concentration), SO_2concentration of1.33%(V/V)and ozone concentration of1.31%.
     For low concentration gas SO_2, sulfate ion yield was up to100%at sulphuric acidsolution of3%(mass concentration), SO_2gas concentration of0.67%(V/V), ozoneconcentration of1.31%(V/V). The increase of gas SO_2concentration and theaccumulation of sulfuric acid in the liquid led to the decrease of absorbing efficiencyof SO_2. For high concentration gas SO_2, the increase of gas ozone concentration couldgreatly enhance the absorptivity and conversion of SO_2in the gas phase.
     In addition, the sulphuric acid production through SO_2oxidated by hydrogenperoxide combining with oxygen in the liquid phase was studied. The results showedthat the amount of sulfate ion produced from half of hydrogen peroxide substituted byoxygen was equivalent to that of hydrogen peroxide alone, and the oxidation rate ofSO_2between them was close, which implied hydrogen peroxide combining withoxygen is feasible for the oxidation of SO_2in the liquid phase into sulphuric acid toremove SO_2in flue gas. However, water in hydrogen peroxide will lead to the dilutionof sulphuric acid produced and decrease the concentration of sulphuric acid.
引文
[1]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [2]李德华.化学工程基础[M].北京:化学工业出版社,2008.
    [3]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001.
    [4]曾庭华,杨华,马斌.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社,2004.
    [5]孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社,2005.
    [6]李晓芸,赵毅,王修彦.火电厂有害气体控制技术[M].北京:北京水利水电出版社,2005.
    [7]杨建伟.大气污染对植物的影响[J].南都学坛(自然科学版),1996,16(3):102-104.
    [8]张学元.中国酸雨对材料腐蚀的经济损失估算[J].中国腐蚀与防护学报,2002,22(5):316-319.
    [9]杨宗慧.我国酸雨状况和对策[J].云南环境科学,2002,21(1):25-27.
    [10]李连山.大气污染控制工程[M].北京:高等教育出版社,2003.
    [11]中华人民共和国环境保护部.中国环境状况公报(2008)[R].2009.
    [12]赵鹏高.燃煤电厂烟气脱硫有关问题的思考[J].中国电力,2004,37(10):1-3.
    [13] Kaneko S, Fujii H, Sawazu N. Financial allocation strategy for the regionalpollution abatement cost of reducing sulfur dioxide emissions in the thermalpower sector in China[J]. Energy Policy,2009,38(5):2131-2141.
    [14]中华人民共和国环境保护部.全国环境统计公报(2008)[R].2009.
    [15]人民网-环保频道.全国污染源普查公报:二氧化硫排放总量2320万吨
    [EB/OL]. http://env.people.com.cn/GB/10957830.html,2010-2-9/2012-4-20.
    [16]中华人民共和国环境保护部.全国环境统计公报(2010)[R].2010.
    [17]中华人民共和国环境保护部.全国环境统计年报(2006)[R].2007.
    [18]中国环境监测总站.2003年环境统计年报[R].2004.
    [19]中国环境监测总站.2004年环境统计年报[R].2005.
    [20] Fang Y P, Zeng Y, Li S M. Technological influences and abatement strategies forindustrial sulphur dioxide in China[J]. International Journal of SustainableDevelopment and World Ecology,2008,15(2):122-131.
    [21]郝吉明,贺克斌.中国燃煤二氧化硫污染控制战略[J].中国国环境科学,1996,16(3):208-212.
    [22] Wang D X, Deng W. Atmospheric SO2pollution and acidity of rain in ChangchunChina[J]. Water Air and Soil Pollution,2001,130(1-4):1631-1634.
    [23] Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China:SO2,NOx, and CO[J]. Atmospheric Environment,2000,34(3):363-374.
    [24] Xu X, Chen C, Qi H, et al. Development of coal combustion pollution control forSO2and NOxin China[J]. Fuel Processing Technology,2000,62(2-3):153-160.
    [25]马广大.大气污染控制工程[M].北京:中国环境科学出版社,2002.
    [26]钟秦.燃煤烟气脱硫脱销技术及工程实例[M].北京:化学工业出版社,2007.
    [27]雷仲存.工业脱硫技术[M].北京:化学工业出版社,2001.
    [28]杨飏.二氧化硫减排技术与烟气脱硫工程[M].北京:北京冶金工业出版社,2004.
    [29]肖文德,吴志泉.二氧化硫脱除与回收[M].北京:化学工业出版社,2001.
    [30] Karatepe N. A comparison of flue gas desulfurization processes[J]. EnergySources,2000,22(3):197-206.
    [31] Anon S. Tail-gas desulfurization operations successful[J]. Oil and Gas Journal,1972,70(6):65-66.
    [32] Sun X, Meng F, Yang F. Application of seawater to enhance SO2removal fromsimulated flue gas through hollow fiber membrane contactor[J]. Journal ofMembrane Science,2008,312(1-2):6-14.
    [33] Tomas A F. A new perspective about recovering SO2offgas in coal power plants:Energy saving. Part III. Selection of the best methods[J]. Energy Sources,2005,27(11):1051-1060.
    [34] Tomas A F. A new perspective about recovering SO2offgas in coal power plants:Energy saving. Part II. Regenerable dry methods[J]. Energy Sources,2005,27(11):1043-1049.
    [35] Tomas A F. A new perspective about recovering SO2offgas in coal power plants:Energy saving. Part I. Regenerable wet methods[J]. Energy Sources,2005,27(11):1035-1041.
    [36]吴基荣,李晋睿.可再生无机缓冲溶液烟气脱硫技术概述[J].硫酸工业,2009,(3):13-16.
    [37]蒋利桥,陈恩鉴.可回收硫资源的烟气脱硫技术概述[J].工业锅炉,2003,77(1):4-6.
    [38] Zhou J H, Huo C X. Study on desulfurization (H2S) capacity of regeneratedactivated carbon[C].2009International Conference on Future BioMedicalInformation Engineering,2009.
    [39] Pandey R A, Biswas R, Chakrabarti T, et al. Flue gas desulfurization:Physicochemical and biotechnological approaches[J]. Critical Reviews inEnvironmental Science and Technology,2005,35(6):571-622.
    [40] Tong R L N, Keenan J D. Cost-effectiveness evaluation of flue gasdesulfurization processes[J]. Journal of Environmental Systems,1982,12(4):289-302.
    [41] Pandey R A, Malhotra S. Desulfurization of gaseous fuels with recovery ofelemental sulfur: An overview[J]. Critical Reviews in Environmental Science andTechnology,1999,29(3):229-268.
    [42] Murthy K S, Rosenberg H S, Engdahl R B. Status and problems of regenerableflue gas desulfurization processes[J]. Journal of the Air Pollution ControlAssociation,1976,26(9):851-855.
    [43]叶奕森.美国回收法烟气脱硫工艺介绍[J].环境与可持续发展,1985,(5):4-6.
    [44]蒋利桥,赵黛青,陈恩鉴.亚硫酸钠循环法烟气脱硫工艺实验研究[J].热能动力工程,2005,20(4):384-386.
    [45] Mitachi K, Murakami K, Sato J. Thermal decomposition/regeneration ofdesulfurization liquor[J]. Chemical Engineering Progress,1981,77(4):56-61.
    [46] Leckner P, Pearson R O, Wood R T. Wellman-Lord SO2recovery process[J].Chemical Engineering Progress,1982,78(2):65-70.
    [47] Slimane R B, Abbasian J. Regenerable mixed metal oxide sorbents for coal gasdesulfurization at moderate temperatures[J]. Advances in Environmental Research,2000,4(2):147-162.
    [48] Srivastava R K, Jozewicz W. Flue gas desulfurization: The state of the art[J].Journal of the Air&Waste Management Association,2001,51(12):1676-1688.
    [49] Ellison W. Limiting of SO2and NOxemissions in worldwide coal-powerproduction[J]. Radiation Physics and Chemistry,1995,45(6):1003-1011.
    [50] Xu Y, Williams R H, Socolow R H. China's rapid deployment of SO2scrubbers[J]. Energy&Environmental Science,2009,2(5):459-465.
    [51] Gao C L, Yin H Q, Ai N S, et al. Historical analysis of SO2pollution controlpolicies in China[J]. Environmental Management,2009,43(3):447-457.
    [52] Anon S. China power investment grp co.Situation and future of de-SO2andde-NOxtechnologies applicable to China's coal-fired power generations[C].Proceedings of the World Engineers' Convention,2004, F-B:96-102.
    [53]张超林.我国硫酸工业的发展趋势[J].化工进展,2007,26(10):1363-1368.
    [54]沙业汪.硫磺与我国硫酸工业[J].硫酸工业,2005,(2):7-10.
    [55]郭景芝.国外硫酸工艺技术进展[J].化工生产与技术,2003,10(3):25-29.
    [56]刘福生. WAS湿法硫酸工艺运行总结[J].化工设计通讯,2012,38(2):85-87.
    [57] Masseling J J H, Netz D.无催化剂制硫酸工艺[J].大化科技,2000,(3):62-64.
    [58]郭智生,黄卫华.有色冶炼烟气制酸技术的现状及发展趋势[J].硫酸工业,2007,(2):13-21.
    [59]余韬.低浓度二氧化硫烟气制酸技术进展[J].硫酸工业,2009,(4):8-11.
    [60]储金宇,吴春笃,陈万金等.臭氧技术及应用[M].北京:化学工业出版社,2002.
    [61]王智化,周俊虎,温正城等.利用臭氧同时脱硫脱硝过程中NO的氧化机理研究[J].浙江大学学报(工学版),2007,41(5):765-769.
    [62] Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozoneinjection and absorption-reduction technique[J]. Fuel Processing Technology,2006,87(7):591-597.
    [63] Penkett S A. Oxidation of SO2and other atmospheric gases by ozone in aqueoussolution[J]. Nature Physical Science,1972,240(12):105-106.
    [64] Erickson R E, Yates L M, Clark R L, et al. The reaction of sulfur dioxide withozone in water and its possible atmospheric significance[J]. AtmosphericEnvironment,1977,11(9):813-817.
    [65] Botha C F, Hahn J, Pienaari J J. Kinetics and mechanism of the oxidation ofsulfur(IV) by ozone in aqueous solutions[J]. Atmospheric Environment,1994,28(20):3207-3212.
    [66] Hoffman M R. On the kinetics and mechanism of oxidation of aqueous sulfurdioxide by ozone[J]. Atmospheric Environment,1986,20(6):1145-1154.
    [67] Nahir T M, Dawson G A. Oxidation of sulfur dioxide by ozone in highlydispersed water droplets[J]. Journal of Atmospheric Chemistry,1987,5(4):373-383.
    [68] Harrison H, Larson T V, Monkman C S. Aqueous phase oxidation of sulfites byozone in the presence of iron and manganese[J]. Atmospheric Environment,1982,16(5):1039-1041.
    [69]陈卫国,熊际翎.雨水中的液相氧化试验[J].环境化学,1986,5(1):38-44.
    [70] Penkett S A, Jones B M R, Brice K A. The importance of atmospheric ozone andhydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater[J].Atmospheric Environment,1979,1(13):123-137.
    [71] Moeller D. Kinetic model of atmospheric SO2oxidation based on publisheddata[J]. Atmospheric Environment,1980,14(9):1067-1076.
    [72] Hoigne J, Bader H. Rate constants of reactions of ozone with organic andinorganic compounds in water-I non-dissociating organic compounds[J]. WaterResearch,1983,17(2):173-183.
    [73]姜树栋,周俊虎,王智化等. O3液相氧化脱除SO2试验研究[J].中国电机工程学报,2008,28(15):57-60.
    [74]张暐.高压下双氧水性质的第一性原理研究[D].长春:吉林大学原子与分子物理研究所,2011.
    [75]吴吟怡.氧化液膜脱硫新技术的研究[D].杭州:浙江工业大学生物与环境工程学院,2008.
    [76]王玉强.双氧水的应用及其工艺进展[J].广东化工,2006,56(1):45-46.
    [77]陈迪航,李绵庆.过氧化氢的应用领域与主要生产方法[J].化工技术与开发,2011,40(3):32-35.
    [78] Thomas D, Colle S, Vanderschuren J. Kinetics of SO2absorption into fairlyconcentrated sulphuric acid solutions containing hydrogen peroxide[J]. ChemicalEngineering Processing,2003,42(6):487-494.
    [79] Colle S, Vanderschuren J, Thomas D. Pilot-scale validation of the kinetics of SO2absorption into sulphuric acid solutions containing hydrogen peroxide[J].Chemical Engineering and Processing: Process Intensification,2004,43(11):1397-1402.
    [80] Méndez M R, Souto J A, Casares J J, et al. The effect of the limited availabilityof H2O2in the competitive deposition of sulfur and oxidized nitrogen[J].Chemosphere,2003,53(9):1165-1178.
    [81]王静.臭氧烟气多脱技术中SO2氧化脱除的试验研究[D].杭州:浙江大学机械与能源工程学院,2008.
    [82]张秀云,郑继成.国内外烟气脱硫技术综述[J].电站系统工程,2010,26(4):1-2.
    [83]马勇.二氧化硫现状与控制分析[J].中国电力教育,2010,(S1):5-7.
    [84]施群.我国硫酸工业现状和冶炼烟气制酸特点[J].有色冶金设计与研究,2006,27(1):1-3.
    [85] Vasishtha N, Someshwar A V. Absorption characteristics of sulfur dioxide inwater in the presence of a corona discharge[J]. Industrial Engineering ChemistryResearch,1988,27(7):1235-1241.
    [86]王正烈,周亚平.物理化学[M].北京:高等教育出版社,2001.
    [87] Saboni A, Alexandrova S. Sulfur dioxide absorption and desorption by waterdrops[J]. Chemical Engineering Journal,2001,84(3):577-580.
    [88] Buzek J, Jaschik M, Podkanski J, et al. A non-isothermal model of thermaldesorption with chemical reaction in the liquid phase[J]. Chemical Engineeringand Processing,1998,37(3):233-247.
    [89] Buzek J, Jaschik M. Gas-liquid equilibria in the system SO2-aqueous solutions ofNaHSO3/Na2SO3/Na2SO4[J]. Chemical Engineering Science,1995,50(19):3067-3075.
    [90] Zidar M. Gas-liquid equilibrium-operational diagram: Graphical presentation ofabsorption of SO2in the NaOH-SO2-H2O system taking place within a laboratoryabsorber[J]. Industrial&Engineering Chemistry Research,2000,39(8):3042-3050.
    [91] Vanden B W, Lefers J. Absorption and desorption of SO2into/from aqueoussolutions[J]. Chemie-Ingenieur-Technik,1984,56(10):792-793.
    [92]克里斯蒂安,戈特沙克等著,李风亭等译.水和废水臭氧化—臭氧及其应用指南[M].北京:中国建筑工业出版社,2004.
    [93] Morris J L. The aqueous solubility of ozone—a review[J]. Ozone Water System,1988,23(1):1239-1246.
    [94] Sotelo J L, Beltrán F J, Benitez F, et al. Henry's law constant for the ozone-watersystem[J]. Water Research,1989,23(10):1239-1246.
    [95]谢甫钦柯.气体吸收[M].北京:化学工业出版社,1985.
    [96]胡洪营,张旭,王伟.环境工程原理[M].北京:高等教育出版社,2005.
    [97]姚玉英.化工原理[M].天津:天津大学出版社,2000.
    [98]姜树栋.利用臭氧及活性分子协同脱除多种污染物的实验及机理研究[D].杭州:浙江大学能源工程学系,2010.
    [99]国家环境保护总局空气和废气监测分析方法编委会.空气和废气监测分析方法[M].4版.北京:中国环境科学出版社,2003.
    [100]宋仁杰,张亚杰,王维一.水和废水标准检验法[M].15版.北京:中国建筑工业出版社,1985.
    [101]陈银生,张新胜,戴迎春等.高压脉冲放电降解水溶液中4-氯酚过程的数学模型(Ⅱ)鼓泡过程中臭氧传质增强因子E与4-氯酚浓度的关系[J].化工学报,2005,56(3):531-537.
    [102]储金宇,吴春笃,陈万金等.臭氧技术及应用[M].北京:化学工业出版社,2002.
    [103] Eriksson M. Ozone chemistry in aqueous solution–ozone decomposition andstabilisation[D]. Stockholm: Royal Institute of Technology Department ofChemistry,2004.
    [104] Sehested K, Cotfltzen H, Holcman J, et al. The primary reaction in thedecomposition of ozone in acidic aqueous solutions[J]. Environmental Science andTechnology,1991,25(9):1589-1596.
    [105]任露泉.试验设计及其优化[M].北京:科学出版社,2009.
    [106] ün ü T, Koparal A S, ütveren ü B. Sulfur dioxide removal from flue gasesby electrochemical absorption[J]. Separation and Purification Technology,2007,53(1):57-63.
    [107] Hoffmann M R, Edwards J O. Kinetics of the oxidation of sulfite by hydrogenperoxide in acidic solution[J]. The Journal of Physical Chemistry,1975,79(20):2096-2098.
    [108] McArdle J V, Hoffmann M R. Kinetics and mechanism of the oxidation ofaquated sulfur dioxide by hydrogen peroxide at low pH[J]. The Journal ofPhysical Chemistry,1983,87(26):5425-5429.
    [109] Colle S, Vanderschuren J, Thomas D. Simulation of SO2absorption into sulfuricacid solutions containing hydrogen peroxide in the fast and moderately fast kineticregimes[J]. Chemical Engineering Science,2005,60(22):6472-6479.
    [110] Colle S, Vanderschuren J, Thomas D. Effect of temperature on SO2absorptioninto sulphuric acid solutions containing hydrogen peroxide[J]. ChemicalEngineering and Processing: Process Intensification,2008,47(9-10):1603-1608.
    [111]中国环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法
    [M].北京:中国环境科学出版社,2002.
    [112]徐晖.烟气钠碱脱硫吸收富液超声波解吸方法研究[D].天津:天津大学环境科学与工程学院,2010.
    [113]刘秀铨.硫酸价格走势图[EB/OL].http://chem.hq5.com.cn/tag.php?tag=%C1%F2%CB%E1%BC%DB%B8%F1%D7%DF%CA%C6%CD%BC&page=19,2010-6-29/2012-5-25.