龙木错双湖缝合带中段的变形特征及构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙木错-双湖缝合带是青藏高原内部一条极为重要的印支期构造带,分隔了两侧的北羌塘地块和南羌塘增生杂岩带,并保留着古、中、新特提斯洋演化的重要信息。1:5万、1:1万地质填图及构造解析表明:缝合带以南为三叠纪古特提斯洋俯冲、消减形成的增生杂岩带,区域上与藏东的聂荣、嘉玉桥、吉塘变质杂岩系,以及滇川西部的云岭、昌宁-孟连变质杂岩系相连,构成了青藏高原及周缘印支期的巨型增生造山带。增生杂岩主要经历了三期构造变形,两期区域变质作用;第一期变形(D1)与三叠纪古特提斯洋沿海沟发生的俯冲消减作用相关,为右行剪切下的塑性流变,塑造了增生杂岩的总体构造样式,形成了区域上的E-W及N-S向构造带,发育透入性的面理S1时代为244-202Ma。200Ma左右,古特提斯洋闭合,俯冲-增生事件结束,第二期挤压变形(D2)引起了强烈的纵向构造置换,发育纵弯褶皱和小型逆冲断层,形成了区域性的轴面褶劈理S2,指示增生杂岩早侏罗世被剥露到浅构造层次所经历的一期水平收缩变形。第三期变形(D3)表现为浅-表构造层次形成的中常-开阔型纵弯褶皱,指示羌塘盆地上新世发生的一次NW-SE向收缩变形,轴面劈理S3具有非透入性特点,变质作用微弱。
     侏罗纪以后,南、北羌塘对接成为统一地块,北羌塘地块在燕山晚期及新生代经历了中、新特提斯洋闭合引起的浅-表层次板内变形。燕山晚期形成的NW-SE向逆冲断层带、褶皱及相关断裂叠加在印支期的纵弯褶皱之上。新生代以来羌塘盆地存在两个变形体制的转折,构造变形可分为三个阶段:Ⅰ幕(50-40Ma至8-4Ma),最大主应力轴N-S向近水平,最小主应力轴近垂直,地壳发生南北向大规模水平缩短,近东西向纵弯褶皱和逆冲断层造成了羌塘盆地地壳的持续加厚。Ⅱ幕(8-4Ma至86.9Ka),最大主应力轴仍为近N-S向,但中间应力轴垂直地表。地壳厚度剧烈增加后重力作用凸显,E-W向被动伸展形成了共轭状的走滑断裂系和拉分盆地。羌塘盆地向东逃逸,次生有南北向的纵弯褶皱,河流冲积层的水平收缩与下部固体地壳走滑变形存在不耦合滑脱面。Ⅲ幕(更新世至今),应力场发生了反转,最大主应力垂直地面,N-S向挤压应力退缩为中间主应力,羌塘盆地发生E-W向的主动伸展,形成共轭状正断层。
The Longmu Co-Shuanghu suture, which is located in the Central Qiangtang, isan extremely important Indosinian tectonic zone in the Tibetan Plateau that separatesthe South Qiangtang accretionary complex belt and the North Qiangtang terrane. Thissuture retains important information regarding the evolution of the Palaeo-TethysOcean and its deformations after Jurassic reflect a portion of the closure of the Meso-and Neo-Tethys ocean.1:50000and1:10000geological mappings indicate that theaccretionary complex belt on th south of the suture formed during the northwestwardsubduction of the Paleo-Tethys Ocean in Triassic and tectonically linked with Nierong,Jiayuqiao and Jitang metamorphic complexes in east Tibet and Changning-Mengliancomplex in west Yunnan. Generally, the above metamorphic complexes constitute alarge-scale Indosinian accretionary orogen in Tibetan Plateau. Based on structuralanalyses on both macroscopic and microscopic scales, it’s concluded that theaccretionary complex mainly experienced three stages of deformation and two stagesof regional metamorphism. The earliest deformation(D1) bearing dextral shearexhibites intense rheology and shaped the general structural style, formed the regionalE-W-and N-S-trending tectonic belts and developed a penetrative foliation S1. The D1deformation is resulted from the subduction of the Paleo-Tethys Ocean dated at244-202Ma. Around200Ma,The Paleo-Tethys Ocean closed and the subduction andaccretion event finished. Under the convergence background, the accretionary complexexperienced the second contractional deformation(D2) and formed flexural folds, smallthrust faults and an axial crenulation foliation S2overpinting S1, reflecting that theaccretionary complex experienced a subsequent compressional deformation whenexhumed onto an shallower tectonic level. The last deformation(D3) recorded by nearlyN-S-trending buckle folds and nonpenetrative axial cleavage S3is deduced to beassociated with an contraction deformation of Qiangtang basin in Pliocene.
     After the Jurassic, the South Qiangtang accretionary complex belt and the NorthQiangtang terrane merged into one unified terrane which exhibits intraplate deformation. The North Qiangtang terrane experienced Late Yanshanian, and Cenozoicdeformations on shallow-superficial level resulting from the closure of the Meso-andNeo-Tethys Oceans. The structural mapping of the Permian-Triassic structural layerindicates that the Mesozoic structural style was dominated by Late Yanshanianhorizontal contractional deformation characterised by NW-SE trending thrust faultsand flexural-slip folds. These folds and thrusts were superimposed on Indosinianbuckle folds. Structural analysis on deformations of the Neogene structural layerindicates that there were two transitions in the tectonic evolution of North Qiangtangterrane dividing the Cenozoic deformation into three stages. In episode I (50-40Ma to8-4Ma), the crust experienced large-scale N-S horizontal shortening and verticalthickening showing by buckle folds and thrust faults. In episode II (8-4Ma to86.9Ka), E-W passive extension formed conjugate strike-slip fault systems and pull-apartbasins. During this episode, the Qiangtang basin was extruded eastwards, and a numberof superficial N-S trending buckle folds were formed. In episode III (86.9Ka to thepresent), the stress field was reversed, and the Qiangtang basin experienced E-W activeextension, forming conjugate normal faults.
引文
Armijo R, Tapponnier P, Tonglin H. Late Cenozoic right-lateral strike-slip faulting insouthern Tibet. Journal of Geophysical Research,94:2787~2838
    Arnaud F, Boullier A M, Burg J P, et al. Shear structures and microstructures inmicaschists:The Variscan Cevennes duplex (French Massif Central). Journal ofStructural Geology,2004,26:856~862
    Bell T H. Deformation partitioning and porphyroblast rotation in metamorphic rocks:a radical reinterpretation. J. metamorphic Geol,1985,3:109~110
    Blisniuk P M, Hacker B R, Glodny J. Normal faulting in central Tibet since at least13.5Myr ago. Nature,2001,412:628~632
    Bodnar R J, Vityk M O. Interpretation of microthermometric data for H2O-NaCl fluidinclusions. in Fluid Inclusions in Minerals, Methods and Applications, B. DeVivo and M. L. Frezzotti, eds., published by Virginia Tech, Blacksburg, VA:117~130
    Brown P E, Lamb W M. P-V-T properties of fluids in the system H2O±CO2±NaCl:New graphical presentations and implications for fluid inclusion studies.Geochimica et Cosmochimica Acta,53(6):1209~1221
    Cawood P A, Buchan C. Linking accretionary orogenesis with supercontinentassembly. Earth-Science Reviews,2007,82:217~226
    Delaney P T, Pollard D D, Ziony J I, et al. Field relations between dikes and joints:emplacement processes and palaeostress analysis. Journal of GeophysicalResearch,1986,91(B5):4920-4938
    Dewey J F, Shackleton R M, Chang C F, et al. The Tectonic Evolution of the TibetanPlateau. Philosophical Transactions of the Royal Society London Series A,1988,327:379~382,384~402
    Durney D W. Solution-transfer, an important geological deformation mechanism.Nature,1972,235:315~316
    Eric A., Erslev. Trishear fault-propagation folding. Geology,1991,19:617-620
    Goffe′B, Murphy W M, Lagache M. Experimental transport of Si,Al and Mg inhydrothermal solutions: an application to veinmineralization during highpressure, low temperature metamorphism in the French Alps. Contributions toMineralogy and Petrology,1987,97:438~450
    Hening A. Eur Petrographic and Geologie Von Sudwest Tibet[C]//Hedin S. SouthernTibet. Stockholm: Noratet,1915,5:220
    Hsü K J, Pan G T, Seng r A M C. Tectonic Evolution of the Tibetan Plateau: AWorking Hypothesis Based on theArchipelago Model of Orogenesis.International Geology Review,1995,37:473~508
    Jamison W J. Geometric analysis of fold development in overthrust terranes. Journalof Structural Geology,1987,9:207~219
    Johnson S E. Porphyroblast microstructures: A review of current and future trends.American Mineralogist,1999,84:1715~1716
    Kapp, P., Yin, A., Manning, C.E., et al. Blueschist-bearing metamorphic corecomplexes in the Qiangtang block reveal deep crustal structure of northern Tibet.Geology,2000,28:19~22
    Kapp P, Yin A, Manning C E, et al. Tectonic evolution of the early Mesozoicblueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics,2003,22:17-9~17-12,17-18~17-22
    Liang X, Wang G H, Yuan G L, et al.2012. Structural sequence and geochronologyof the Qomo Ri accretionary complex, Central Qiangtang, Tibet: Implicationsfor the Late Triassic subduction of the Paleo-Tethys Ocean. Gondwana Research,22:470~481
    Liu Y, Santosh M, Zhao Z B, et al. Evidence for palaeo-Tethyan oceanic subductionwithin central Qiangtang, northern Tibet. Lithos,2011,127:39~53
    Metcalfe I. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of EastAsian crustal fragments: The Korean Peninsula in context. Gondwana Research,2006,9:24~25,30,35~43
    Mitra S. Fold-accommodation faults. AAPG Bulletin,2002,86(4):671–692
    Miyashiro. Metamorphic Petrology. London: UCL Press,1994
    Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening duringcontinental collision: Evidence from Cenozoic igneous rocks in southern Tibet.Lithos,2007,96(1-2):225~242
    Pan G T, Wang, L Q, Li R S. et al. Tectonic evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences,2012,53:3~14
    Passchier C W, Trouw R A J. Microtectonics. Berlin: Springer,2005
    Peltzer G, Tapponnier P. Formation and evolution of strike-slip faults, rifts, andbasins during the India-Asia Collision: An experimental approach. Journal ofGeophysical Reseach,1988, Vol.93(B12):15,085~15,117
    Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibetand Mediterranean-style closure of the Paleo-Tethys Ocean. Geology,2008,36:351~353
    Richards J P. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) DepositFormation. Economic Geology,2003,98:1515~1533
    Seng r A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collageand Paleozoic crustal growth in Eurasia. Nature,1993,364:299~300
    Searle M P, Elliott J. R., Phillips R. J., Chung S.-L. Crustal–lithospheric structure andcontinental extrusion of Tibet. Journal of the Geological Society, London,2011,168:633~637,646,649,662~666
    Steven E B, David E. Thrust system. The American Association of PetroleumGeologists Bulletin,1982,66(9):1196~1212
    Suppe J. Geometry and kinematics of fault-bending folding. American journal ofscience,1983,283(7):684~690
    Suppe J, Medwedeff D A. Geometry and kinematics of fault-propagation folding.Eclogae Geologicae Helvetiae,1990,83(3):409~454
    Swanenberg H E C. Phase equilibria in carbonic systems, and their application tofreezing studies of fluid inclusions. Contributions to Mineralogy and Petrology,1979,68:303~306
    Tapponnier P&Molnar p. Slip line field theory and large-scale continental tectonics.Nature,1976,264:319~324
    Taylor M, Yin A, Ryerson F J, et al. Conjugate strike-slip faulting along theBangong-Nujiang suture zone accommodates coeval east-west extension andnorth-south shortening in the interior of the Tibetan Plateau. Tectonics,2003,22(4):18-1~18-20
    Williams P F, Jiang D. Rotating garnets. J. metamorphic Geol,1999,17:367~368.
    Xiao W J, Huang B C, Han C M, et al. A review of the western part of the Altaids: Akey to understanding the architecture of accretionary orogens. GondwanaResearch,2010,18(2-3):253~256
    Yin A. Mode of Cenozoic east-west extension in Tibet suggesting a common originof rifts in Asia during the Indo-Asian collision. Joural of geophysical research,2000,105(B9):21,745~21,757
    Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Science Letters,2000,28:219–223,229~231,236~240,251~254
    Yin A, Kapp P A, Michael A. Murphy, et al. Significant late Neogene east-westextension in northern Tibet. Geology,1999,27(9):787~790
    Zhai Q G, Jahn B M, Zhang R Y, et al.Triassic Subduction of the Paleo-Tethys innorthern Tibet, China: Evidencefrom the geochemical and isotopic characteris-
    tics of eclogites and blueschistsof the Qiangtang Block. Journal of Asian EarthSciences,2011,42:1356~1360
    Zhai Q G, Zhang R Y, Jahn B M, et al. Triassic eclogites from central Qiangtang,northern Tibet, China: Petrology, geochronology and metamorphic P–T path.Lithos,2011,125:173~176
    Zhang K J, Cai J X, Zhang Y X. Eclogites from central Qiangtang, northern Tibet(China) and tectonic implications. Earth and Planetary Science Letters,2006,245:722~723,726~727
    Zhao Z Z, Li Y T. Conditions of petroleum geology of the Qiangtang basin of theQinghai-Tibet plateau. Acta Geologica Sinica,2000,74(3):661-665
    邓万明,尹集祥,禺中平.羌塘茶布-双湖地区基性超基性岩和火山岩研究.中国科学D辑,1996,26(4):299~301
    邓希光,丁林,刘小汉,等.藏北羌塘中部冈玛日-桃形错蓝片岩的发现.地质科学,2000,35(2):227~232
    董永胜,张修政,施建荣,等.藏北羌塘中部高压变质带中石榴子石白云母片岩的岩石学和变质特征.地质通报,2009,28(9):1203~1205
    耿全如,潘桂棠,王立全,彭智敏,张璋.班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景.地质通报,2011,30(8):1261~1263
    黄继钧.藏北羌塘盆地构造特征及演化.中国区域地质,2001,20(2):179~182
    黄继钧.羌塘盆地基地构造特征.地质学报,2001,75(3):333~337
    吉林大学地质调查研究院.1∶25万玛依岗日幅地质调查成果与进展.沉积与特提斯地质,2005,25(1-2):51~56
    纪沫,胡玲,刘俊来,等.主要造岩矿物动态重结晶作用及其变质条件.地学前缘,2008,15(3):226~233
    贾保江,刘建清,杨平.北羌塘盆地中的一种重要褶皱样式—穹窿构造.沉积与特提斯地质,2006,26(4):8,12~13
    雷振宇,李永铁,刘忠,等.藏北羌塘盆地构造变形及其动力学背景.地质论评,2001,47(4):415~418
    梁晓,王根厚,杨广全.滇西景谷地区澜沧江沿岸早古生代构造片岩中石英脉的成因与变形.地质通报,2009,28(9):1342~1349
    李才.龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界.长春地质学院学报,1987,17(2),156–162
    李才.青藏高原龙木错—双湖—澜沧江板块缝合带研究二十年.地质论评,2008,54(1):106~110
    李才.羌塘基底质疑.地质论评,2003,49(1):4~7
    李才,程立人,胡克,等.西藏龙木错—双湖古特提斯缝合带研究.北京:地质出版社,1995
    李才,董永胜,翟庆国,等.青藏高原羌塘高压变质带的特征及其构造意义.地质通报,2008,27(1):27~35
    李才,黄小鹏,翟庆国,等.龙木错—双湖—吉塘板块缝合带与青藏高原冈瓦纳北界.地学前缘,2006,13(4):137~141
    李才,翟刚毅,王立全,等.认识青藏高原的重要窗口──羌塘地区近年来研究进展评述(代序).地质通报,2009,28(9):1170~1175
    李才,翟庆国,陈文,等.青藏高原羌塘中部榴辉岩Ar-Ar定年.岩石学报,2006,22(12):2843~2847
    李继亮.增生型造山带的基本特征.地质通报,2004,23(9-10):947~950
    李亚林,王成善,黄继钧.羌塘盆地褶皱变形特征、定型时间及其与油气的关系.石油与天然气地质,2008,29(3):283~289
    李亚林,王成善,伊海生,等.西藏北部双湖地堑构造与新生代伸展作用.中国科学D辑,2001,31:228~232
    李亚林,黄继钧,王成善,等.羌塘盆地构造改造强度划分与油气远景区分析.沉积与特提斯地质,2005,25(4):11~16
    李曰俊,吴浩若,李红生,等.藏北阿木岗群、查桑群和鲁谷组放射虫的发现及有关问题讨论.地质论评,1997,43(3):250~256
    刘本培,冯庆来,C. chonglakmani,等.滇西古特提斯多岛洋的结构及其南北延伸.地学前缘,2002,(9)3:163~164
    刘焰,吕永增.西藏羌塘中部绒马地区石榴蓝闪片岩变质演化过程的视剖面模拟及其意义.地学前缘,2011,18(2):100~115
    鲁兵,刘池阳,刘忠,等.羌塘盆地的基底组成、结构特征及其意义.地震地质,2001,23(4):510~517
    路凤香,桑隆康.岩石学.北京:地质出版社,2002
    卢焕章,范宏瑞等.流体包裹体.北京:科学出版社,2004
    陆济璞,张能,黄位鸿,等.藏北羌塘中部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及意义.地质通报,2006,25(1-2):70~75
    卢占武,高锐,李永铁,等.青藏高原羌塘盆地基底结构与南北向变化—基于一条270km反射地震剖面的认识.岩石学报,2011,27(11):3319~3320
    潘桂棠,肖庆辉,陆松年,等.大地构造相的定义、划分、特征及其鉴别标志.地质通报,2008,27(10):1613~1617
    单文琅,宋鸿林,傅照仁,等.构造变形分析的理论方法和实践.武汉:中国地质大学出版社,1991
    王根厚,韩芳林,杨运军,等.藏北羌塘中部晩古生代增生杂岩的发现及其地质意义.地质通报,2009,28(9):1182~1187
    王根厚,贾建称,万永平,等.藏东巴青县北部酉西岩组构造片理形成及构造意义.地学前缘,2006,13(4):180~187
    王根厚,张维杰,周详,等.西藏东部嘉玉桥变质杂岩内中侏罗世高压剪切作用:来自多硅白云母的证据.岩石学报,2008,24(2):395~400
    王根厚,周详.喜马拉雅造山带变质杂岩表露机制.地质力学学报,1996,2(3):27~28
    王根厚,周详,普布次仁,等.西藏他念他翁山链构造变形及其演化.北京:地质出版社,1996
    王根厚,周详,曾庆高,等.西藏东部嘉玉桥变质杂岩中片理化岩组主期面理形成及构造意义.中国区域地质,1998,17(2):176~180
    王成善,胡承祖,吴瑞忠,等.西藏北部查桑一茶布裂谷的发现及其地质意义.成都地质学院学报,1987,14(2):296~301
    王成善,伊海生.羌塘盆地地质演化与油气远景评价.北京:地质出版社,2001
    王国芝,王成善.西藏羌塘基底变质岩系的解体和时代厘定.中国科学D辑,2001,31:77~81
    王剑,谭富文,李亚林,等.青藏高原重点沉积盆地油气资源潜力分析.北京:地质出版社,2004
    夏代祥,刘世坤.西藏自治区岩石地层.武汉:中国地质大学出版社,1997
    夏浩然,刘俊来.石英结晶学优选与应用.地质通报,2011,30(1):8~18
    肖化云,吴学益,朱建明,等.韧性剪切作用下千枚岩中SiO2的迁移模拟实验—以金山金矿为例.矿物学报,1999,19(3):344~347
    解超明,李才,董永胜,等.青藏高原羌塘中部冈玛日—菊花山地区大型逆冲推覆构造的基本特征及形成机制.地质通报,2010,29(12):1857~1861
    许志琴,徐惠芬,张建新,等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,1994,68(1):1~9
    姚尧.西藏冈玛日地区晚古生代构造片岩中石英脉的成因与变形研究:[硕士学位论文].北京:中国地质大学(北京),2012
    杨广全,梁晓,王根厚.逆冲断裂及相关褶皱的几何学与运动学定量化研究进展.地质通报,2010,29(1):58~61
    杨巍然,王杰,梁晓.亚洲大地构造基本特征和演化规律.地学前缘,2012,19(5):1~17
    尹集祥.青藏高原及邻区冈瓦纳相地层地质学.北京:地质出版社,1997
    袁四化,潘桂棠,王立全,等.大陆边缘增生造山作用.地学前缘,2009,16(3):32~39
    雍永源.羌塘及可可西里地区几个重要地质、构造与资源问题.沉积与特提斯地质,2004,24(1):1~12
    翟庆国,李才.藏北羌塘菊花山那底岗日组火山岩锆石SHRIMP定年及其意义.地质学报,2007,81(6):795~796
    翟庆国,李才,王军.藏北羌塘中部戈木日榴辉岩的岩石学、矿物学及变质作用PTt轨迹.地质通报,2009,28(9):1217~1219
    翟庆国,李才,王军,等.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar/39Ar年代学.岩石学报,2009,25(9):2281~2288
    翟庆国,王军,王永.西藏改则县冈玛错地区发现榴辉岩.地质通报,2009,28(12):1720~1721
    张开均,唐显春.青藏高原腹地榴辉岩研究进展及其地球动力学意义.科学通报,2009,54(13):1808
    张开均,王启飞,夏邦,等.羌塘中部后中新世叠瓦式逆冲推覆构造.南京大学学报(自然科学),2002,38(2):266~269
    张建新,许志琴,徐惠芬,等.北祁连加里东期俯冲—增生楔结构及动力学.地质科学,1998,33(3):290~297
    吉林大学地质调查研究院.1:25万玛依岗日幅(I45C003002)区域地质调查报告,2006
    中国地质大学(北京)地质调查研究院.1:5万西藏双湖角木日地区区域地质调查报告,2011
    中国地质大学(北京)地质调查研究院.1:5万西藏双湖冈玛日地区区域地质调查报告,2011