基于激光位移测量的光学压力传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力传感器是一种重要的压力信号感测和能量转换装置。近两百年来,历经了机械式量测、非电量电测、微机械系统(MEMS)、光学压力传感器等多次技术进步和性能提升的发展历程,当前向体积和结构微型化、功能智能化、制造工艺和材料多样化方向迅速发展。相对于微观结构的MEMS压力传感器,基于激光位移测量(LDM)的光学压力传感器采用宏观结构的压力腔、压力应变膜和激光探针,具有极小的差异性和精确的数学模型,结合了激光位移测量系统的高精度和高可靠性,对专用工艺装备的依赖性较弱,易于搭建压力传感器的模型验证实验平台等特点。本文对LDM光学压力传感器的位移模型、压力模型、光学压力传感器设计、压力信号分析、压力信号处理、标定方法等部分进行研究,主要研究成果如下:
     (1)提出LDM压力传感器的压力调和模型和最优调和参数变步长搜索算法。分析周边固支、均布载荷条件下压力应变圆膜的应变元,利用调和方程及其边界条件建立圆膜的位移函数和应力函数,选择调和参数为λ的幂函数exp[λ(1-r/a)],对圆膜的挠度进行非线性调制,采用Bubnov Galerkin变分方法,推导压力应变圆膜的最大挠度和挠度函数,建立LDM压力传感器的调和模型,分析调和参数λ对调和模型的影响。利用调和参数对调和模型的调制特性,以S.Timoshenko的挠度函数作为参考模型,将参考模型与调和模型在归一化条件下达到等挠度条件时,等挠度区间内的挠度模型误差获得最小二乘解,得到相对半径所对应的调和参数范围和调和裕量。提出最优调和参数变步长搜索算法,对归一化挠度误差在圆膜的相对半径范围内进行积分,以积分结果判断积分阈值终止条件,设计S形搜索加速模式修改步长因子,并更新搜索步长。当满足积分阈值终止条件时,停止搜索,获得最优调和参数。
     (2)提出LDM光学压力传感器的反射型激光三角法测量模型,制定总体方案并分步进行结构设计,搭建实验平台。反射型激光三角法测量模型将压力应变圆膜的最大挠度位移量放大4.7669倍,利用7mW、650nm的半导体激光管,像元间距为8um、3648个有效像元数的线阵CCD图像传感器,优化布置激光管、聚焦透镜、反射镜和CCD传感器,设计并调试激光管驱动电路、CCD时序电路、模拟前端电路。分别以厚度为50um和10um、弹性模量为130GPa和205GPa的材料进行组合,设计四种压力应变圆膜及其压力腔,使激光探针的最大挠度测量范围达到0~6.12mm。分析CCD传感器的像元成像偏移,提出查找表式像元成像偏移补偿方法;
     (3)研究压力信号的特性,推导LDM光学压力传感器的压力-像元解析模型,并采用最大三阶相关峭度反卷积算法对亚像元峰值位置进行盲提取。分析表面粗糙度对光强度信号的影响,测试光强度信号的偏度和峭度,以四组光强度信号的观测序列为Weibull概率分布的样本数据,采用极大似然估计法,对样本数据进行参数估计和Weibull概率分布测试,分析光强度信号的高斯分布、亚高斯分布和超高斯分布特性对亚像元峰值位置的影响。结合压力-挠度调和方程和挠度-位移方程,推导推导出压力-像元解析模型,分析LDM光学压力传感器的结构参数、调和参数、材料参数等对输入输出特性的影响。以三阶相关峭度最大为判定准则,推导反卷积逆滤波器的迭代解及其收敛性和稳定条件,仿真验证算法的收敛性;
     (4)进行标定实验和压力实验。利用伺服电机、滚珠丝杠副、标定块和激光探针,搭建激光位移标定实验平台,电机拖动激光探针总成,向激光探针输入6mm范围内、0.25mm等间距微进给量的标定位移,获得激光探针的标定曲线和满量程±0.5218%的精度;之后,利用四种压力应变圆膜、压力腔和激光探针构成压力传感器标定平台,输入0~100KPa范围内压力间距为10KPa、100KPa~600KPa范围内压力间距为100KPa的压力载荷,进行压力标定实验,获得压力标定曲线和满量程±2.7055%的精度;最后,对LDM光学压力传感器进行压力实验,四种压力应变圆膜对应的压力分辨率分别达到109.723Pa/pixel、21.9466Pa/pixel、173.0247Pa/pixel和34.6049Pa/pixel。
As is an important pressure signal sensing and energy conversion device, in the previous twohundred years, pressure sensors have been gained the great improvement from the progress ofmechanical measurement, the non electrical quantity measurement, Microelectromechanicalsystems (MEMS) to optical pressure sensor so its performance were swiftly promoted tominiaturization with volume and structure, function of intelligence, diversification ofmanufacturing process and materials development. Compared with the MEMS pressuresensors, optical pressure sensor based on laser displacement measurement (LDM), whichconstructed with the pressure chamber, pressure strain diapgragm and laser probe macrostructure, have many better properties of minimal differences, precise mathematical model,and combined with the advantages of high precision and high reliability from the laserdisplacement measuring system. On the other hand, LDM optical pressure sensors wereindependent with special process equipments, and easy to complete the experimental platformfor calibration and real time measurement. In this paper, LDM optical pressure sensor’spressure harmonic model and displacement model, general scheme, signal analysis, signalprocessing, pressure calibration method of harmonic model, set up the pressure, have beenmade the overall implementation. The main research results are as follows:
     (1) The harmonic model of LDM pressure sensor and the search algorithm for optimalharmonic parameter with variable step are proposed and tested. Strain element analysis ofcircular diaphragm with clamped edge under uniformly distributed load, using thedisplacement function and its boundary conditions of circular diaphragm to set up stressfunction and deflection function. The power function with parameter of lambda, exp [lambda(1-r/a)], was selected to modulate the nonlinear deflection of circular diaphragm. ApplyingBubnov Galerkin variational method, the maximum deflection function and deflectionfunction of circular diapgragm was deduced. The effect on harmonic model by harmonicparameter was examined. Using the harmonic parameters on the modulation characteristics ofharmonic model, the deflection function of S.Timoshenko was regarded as the referencemodel, and deflection error interval with least squares solution for the reference model and theharmonic model reached under the normalization condition to obtain the harmonic parameterrange and harmonic margin under the corresponding relative radius. The search algorithm ofoptimal harmonic parameter with variable steps was poposed with the integral of normalized deflection error which its relative radius was selected in the range of circular membrane, andthe integral result is judged by integral threshold termination condition. S-shaped searchacceleration mode was designed to modify the step size factor, and update the search step.When meet the integral threshold of the termination condition, the search progress stop socurrent harmonic parameter was the optimal one.
     (2)The reflecting-type measurement model of laser triangulation for LDM optical pressuresensor is proposed and formulated. The structure design for the general scheme are carried outand built the experimental platform. The displacement measurement range for maximumdeflection of circular diaphragm is magnified4.7669times with reflecing-type opticalstructure. Semiconductor laser diode with power of7mW and with wave length of650nm, thelinear array CCD image sensor with pixel pitch of8um and effective pixel number of3648, afocusing lens and a reflector mirror are layouted with optimal placement. The driver circuitfor laser diode, the timing driver circuit for CCD sensor, and analog-front-end are designed.With the composition by different materials which have the thickness of50um and10um,130GPa and205GPa of the elastic modulus, four kinds of pressure strain circular diaphragmare designed. And, the pressure chamber is finished. As a result, the measurement range ofmaximum deflection for laser probe has0~6.12mm. The lookup-table are used to compensatethe pixel imaging offset of linear array CCD image sensor.
     (3) Signal characteristics of LDM optical pressure sensor are researed and the laserdisplacement model is derived. The deconvolution algorithm with three order maximumcorrelation kurtosis is applied for blind extraction of sub-pixel peak position. Analysing theeffect of surface roughness on the laser intensity signal, skewness and kurtosis of laser signalintensity in the observation sequence are test. Four groups of the sample data with laserintensity signal which are regarded as Weibull probability distribution are used for parameterestimation with maximum likelihood estimation method. The impact of laser intensity signalto subpixel peak position is discussed with the Gauss distribution, sub-Gauss distribution andsuper-Gauss distribution characteristics. Combining the pressure deflection harmonic equationwith deflection displacement equation, the pressure-pixel analysis model is derived. Theinfluence on the characteristics of the input and output by the structural parameters, theharmonic parameters, material parameters are induced. The three order correlation kurtosismaximum criterion, iterative solution of deconvolution inverse filter, convergence andstability conditions, is derived and verified.
     (4) Pressure calibration and test. Servo motor, ball screw, calibration block and laser probeare established an experiment platform to calibrate laser probe’s displacement measurement. The laser probe obtained the micro displacement of0.25mm per step, and calibration curveand the precision0.5218percentage in measurement range of6mm. And, a pressure chamberand a laser probe are used for pressure calibration platform for four kinds of pressure circulardiaphragm. Pressure calibration input loaded with10KPa per step in the range of0-100KPa,100KPa per step in the range of0-600KPa, and obtain the pressure calibration curve and fullrange calibration precision of2.7055perentage. Finally, LDM optical pressure sensor is carryout the pressure test with four kinds of pressure circular diaphragm which its resolutionreached109.723Pa/pixel,21.9466Pa/pixel,173.0247Pa/pixel and34.6049Pa/pixel,respectively.
引文
[1] Eaton W P, Smith J H. Micromachined pressure sensors: review and recentdevelopments [C]. Smart Structures and Materials'97. International Society for Opticsand Photonics,1997:30-41
    [2] Berthold III J W. Historical review of microbend fiber optic sensors [C].10th OpticalFibre Sensors Conference. International Society for Optics and Photonics,1994:182-186
    [3] Amann M C, Bosch T, Myllyla R, et al. Laser ranging: a critical review of usualtechniques for distance measurement [J]. Optical Engineering,2001,40(1):10-19
    [4] Lobontiu N, Garcia E. Mechanics of microelectromechanical systems [M]. Springer,2005.
    [5] Ho C M, Tai Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):579-612
    [6] L fdahl L, Gad-el-Hak M. MEMS-based pressure and shear stress sensors for turbulentflows [J]. Measurement Science and Technology,1999,10(8):665
    [7] Madou M J. Fundamentals of microfabrication: the science of miniaturization [M]. CRCpress,2002
    [8] MEMS: introduction and fundamentals [M]. CRC press,2010
    [9] Handbook of Sputter Deposition Technology: Fundamentals and Applications forFunctional Thin Films, Nano-materials and MEMS [M]. William Andrew,2012
    [10] Gardner J W, Varadan V K, Awadelkarim O O. Microsensors, MEMS, and smartdevices [M]. Chichester: Wiley,2001
    [11] Karniadakis G, Beskok A, Aluru N R. Microflows and nanoflows: fundamentals andsimulation [M]. Springer,2006
    [12] Zappe H P. Fundamentals of Micro-optics [M]. Cambridge: Cambridge UniversityPress,2010
    [13] Haque M A, Saif M T A. Microscale materials testing using MEMS actuators [J].Microelectromechanical Systems, Journal of,2001,10(1):146-152
    [14] Crone W C. A brief introduction to MEMS and NEMS [J]. Springer Handbook ofExperimental Solid Mechanics,2008:203-228
    [15] Hsu T R. MEMS&Microsystems: Design, Manufacture, and Nanoscale Engineering[M]. John Wiley&Sons,2008
    [16]王喆垚,微系统设计与制造[M],北京:清华大学出版社,2008:177-198
    [17]贾伯年,俞朴,宋爱国,传感器技术(第3版),南京:东南大学出版社,2007:99-102
    [18] Fu Y, Du H, Huang W, et al. TiNi-based thin films in MEMS applications: a review [J].Sensors and Actuators A: Physical,2004,112(2):395-408
    [19] Zhao Y P, Wang L S, Yu T X. Mechanics of adhesion in MEMS—a review [J]. Journalof Adhesion Science and Technology,2003,17(4):519-546
    [20] Ho C M, Tai Y C. Review: MEMS and its applications for flow control [J]. Journal ofFluids Engineering,1996,118(3):437-447
    [21] Haque M A, Saif M T A. A review of MEMS-based microscale and nanoscale tensileand bending testing [J]. Experimental Mechanics,2003,43(3):248-255
    [22] Tanaka M. An industrial and applied review of new MEMS devices features [J].Microelectronic engineering,2007,84(5):1341-1344
    [23] Gad-el-Hak, Mohamed, ed. MEMS: introduction and fundamentals [M]. CRC press,2010.
    [24] Jérémie Bouchaud, Richard Dixon, Pressure Sensors will be Top MEMS Device in2014[R],2011:www.isuppli.com
    [25] Petersen K E. Silicon as a mechanical material [J]. Proceedings of the IEEE,1982,70(5):420-457
    [26] Effenhauser C S, Bruin G J M, Paulus A. Integrated chip‐based capillaryelectrophoresis[J]. Electrophoresis,1997,18(12‐13):2203-2213
    [27] Mangru S D, Harrison D J. Chemiluminescence detection in integrated post‐separationreactors for microchip‐based capillary electrophoresis and affinity electrophoresis [J].Electrophoresis,1998,19(13):2301-2307
    [28] Rogers T, Kowal J. Selection of glass, anodic bonding conditions and materialcompatibility for silicon-glass capacitive sensors [J]. Sensors and Actuators A: Physical,1995,46(1):113-120
    [29] Wise K D, Angell J B. An IC piezoresistive pressure sensor for biomedicalinstrumentation [J]. Biomedical Engineering, IEEE Transactions on,1973(2):101-109
    [30] Singh R, Ngo L L, Seng H S, et al. A silicon piezoresistive pressure sensor[C]//Electronic Design, Test and Applications,2002. Proceedings. The First IEEEInternational Workshop on. IEEE,2002:181-184
    [31] Mosser V, Suski J, Goss J, et al. Piezoresistive pressure sensors based on polycrystallinesilicon [J]. Sensors and Actuators A: Physical,1991,28(2):113-132
    [32] Merlos A, Santander J, Alvarez M D, et al. Optimized technology for the fabrication ofpiezoresistive pressure sensors [J]. Journal of Micromechanics and Microengineering,2000,10(2):204
    [33] Xu H, Zhang H, Deng Z, et al. Fabrication of silicon piezoresistive pressure sensorusing a reliable wet etching process [C]//Nano/Micro Engineered and MolecularSystems (NEMS),20138th IEEE International Conference on. IEEE,2013:424-427
    [34] Zhu S E, Ghatkesar M K, Zhang C, et al. Graphene based piezoresistive pressure sensor[J]. Applied Physics Letters,2013,102(16):161904
    [35] Pramanik C, Saha H, Gangopadhyay U. Design optimization of a high performancesilicon MEMS piezoresistive pressure sensor for biomedical applications [J]. Journal ofMicromechanics and Microengineering,2006,16(10):2060
    [36] Unger M A, Chou H P, Thorsen T, et al. Monolithic microfabricated valves and pumpsby multilayer soft lithography[J]. Science,2000,288(5463):113-116
    [37] Lorenz H, Despont M, Fahrni N, et al. SU-8: a low-cost negative resist for MEMS [J].Journal of Micromechanics and Microengineering,1997,7(3):121
    [38] Budach W, Abel A P, Bruno A E, et al. Planar waveguides as high-performance sensingplatforms for fluorescence-based multiplexed oligonucleotide hybridization assays [J].Analytical Chemistry,1999,71(16):3347-3355
    [39] Dielectric elastomers as electromechanical transducers: Fundamentals, materials,devices, models and applications of an emerging electroactive polymer technology [M].Elsevier,2011
    [40] Cheeke J D N. Fundamentals and applications of ultrasonic waves [M]. CRC press,2012
    [41] Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells [M]. New York:McGraw-hill,1959
    [42] Ugural A C. Stresses in plates and shells [M]. New York: McGraw-Hill,1999
    [43] Reddy J N. Theory and analysis of elastic plates and shells [M]. CRC press,2006
    [44] Ventsel E, Krauthammer T. Thin plates and shells: theory: analysis, and applications[M]. CRC press,2001
    [45] Wei-zang C, Kai-yuan Y. On the large deflection of circular plate [J]. Acta PhysicaSinica,1954,10(3):209-238
    [46] Timoshenko S P, Voinovskii-Kriger S. Plates and shells [J]. Fizmatgiz, Moscow,1963:635.
    [47] Libai A, Simmonds J G. The nonlinear theory of elastic shells [M]. CambridgeUniversity Press,2005
    [48] Komaragiri U, Begley M R, Simmonds J G. The mechanical response of freestandingcircular elastic films under point and pressure loads [J]. Journal of applied mechanics,2005,72(2):203-212
    [49] Sheploak M, Dugundji J. Large deflections of clamped circular plates under initialtension and transitions to membrane behavior [J]. Journal of Applied Mechanics,1998,65(1):107-115
    [50] Ellington L, Ellington D. LARGE DEFLECTIONS IN CLAMPED CIRCULARPLATES[R]. FELTMAN RESEARCH LABS PICATINNY ARSENAL DOVER NJ,1963
    [51] Chien W. Large deflection of a circular clamped plate under uniform pressure [J].1947
    [52] Qiu X, Deshpande V S, Fleck N A. Dynamic response of a clamped circular sandwichplate subject to shock loading [J]. Journal of applied mechanics,2004,71(5):637-645
    [53] Boresi A P, Schmidt R J, Sidebottom O M. Advanced mechanics of materials [M]. NewYork: Wiley,1993
    [54]刘鸿文,板壳理论[M],杭州:浙江大学出版社,1987:192-227
    [55] Eaton W P, Bitsie F, Smith J H, et al. A new analytical solution for diaphragm deflectionand its application to a surface-micromachined pressure sensor [C]//InternationalConference on Modeling and Simulation of Microsystems, MSM99.1999
    [56] Banerjee B, Datta S. A new approach to an analysis of large deflections of thin elasticplates [J]. International Journal of Non-linear Mechanics,1981,16(1):47-52
    [57] BALMER H A, LEECH J W, PIAN T H H, et al. Large dynamic deformations of beams,rings, plates, and shells[J]. AIAA Journal,1963,1(8):1848-1857
    [58] Nath Y. Large amplitude response of circular plates on elastic foundations [J].International Journal of Non-Linear Mechanics,1982,17(4):285-296
    [59] Kao R, Perrone N. Large deflections of axisymmetric circular membranes [J].International Journal of Solids and Structures,1971,7(12):1601-1612
    [60] Voorthuyzen J A, Bergveld P. The influence of tensile forces on the deflection ofcircular diaphragms in pressure sensors [J]. Sensors and Actuators,1984,6(3):201-213
    [61] Yasukawa A, Shimada S, Matsuoka Y, et al. Design considerations for silicon circulardiaphragm pressure sensors [J]. Japanese Journal of Applied Physics,1982,21(7R):1049
    [62] Scheeper P R, Olthuis W, Bergveld P. The design, fabrication, and testing of corrugatedsilicon nitride diaphragms [J]. Microelectromechanical Systems, Journal of,1994,3(1):36-42
    [63] Lee W S, Lee S S. Piezoelectric microphone built on circular diaphragm [J]. Sensorsand Actuators A: Physical,2008,144(2):367-373
    [64] Burns D W, Zook J D, Horning R D, et al. Sealed-cavity resonant microbeam pressuresensor [J]. Sensors and Actuators A: Physical,1995,48(3):179-186
    [65] Abeysinghe D C, Dasgupta S, Boyd J T, et al. A novel MEMS pressure sensorfabricated on an optical fiber [J]. Photonics Technology Letters, IEEE,2001,13(9):993-995
    [66] Zhang J, Tan K L, Hong G D, et al. Polymerization optimization of SU-8photoresistand its applications in microfluidic systems and MEMS [J]. Journal of Micromechanicsand Microengineering,2001,11(1):20
    [67] Born M, Wolf E. Principles of optics: electromagnetic theory of propagation,interference and diffraction of light [M]. CUP Archive,1999
    [68] Born M, Wolf E. Principles of optics electromagnetic theory of propagation [J].Principles of Optics Electromagnetic Theory of Propagation, INterference andDiffraction of Light2nd edition by Max Born, Emil Wolf New York, NY: PergamonPress,1964
    [69] Bom M, Wolf E. Principles of optics [M]//Pergamon Oxford (Ed.).1980
    [70] Shen Y R. The principles of nonlinear optics [J]. New York, Wiley-Interscience,1984,575p.,1984
    [71] Tyson R. Principles of adaptive optics [M]. CRC Press,2010
    [72] Hawkes P W, Kasper E. Principles of electron optics [M]. Academic Press,1996
    [73] Dakin J, Culshaw B. Optical fiber sensors: Principles and components. Volume1[J].Boston, MA, Artech House,1988,343p. For individual items see A90-36770to A90-36775.,1988
    [74] Spillman W B. Multimode fiber-optic pressure sensor based on the photoelastic effect[J]. Optics letters,1982,7(8):388-390
    [75] Nikkuni H, Dokko S, Ohkawa M, et al. Optical microphone using a silicon-basedguided-wave optical pressure sensor [C]//Integrated Optoelectronic Devices2005.International Society for Optics and Photonics,2005:317-324
    [76] Li T, Wang A, Murphy K, et al. White-light scanning fiber Michelson interferometer forabsolute position–distance measurement [J]. Optics letters,1995,20(7):785-787
    [77] Zhao Y, Ansari F. Intrinsic single-mode fiber-optic pressure sensor [J]. PhotonicsTechnology Letters, IEEE,2001,13(11):1212-1214
    [78] Wagner C, Frankenberger J, Deimel P P. Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si: H pin photodiode [J]. PhotonicsTechnology Letters, IEEE,1993,5(10):1257-1259
    [79] Porte H, Gorel V, Kiryenko S, et al. Imbalanced Mach-Zehnder interferometerintegrated in micromachined silicon substrate for pressure sensor [J]. LightwaveTechnology, Journal of,1999,17(2):229-233
    [80] Rao Y J. Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors [J].Optical Fiber Technology,2006,12(3):227-237
    [81] Cibula E, Donlagic D, Stropnik C. Miniature fiber optic pressure sensor for medicalapplications [C]//Sensors,2002. Proceedings of IEEE. IEEE,2002,1:711-714
    [82] Fu H Y, Tam H Y, Shao L Y, et al. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer [J]. Applied optics,2008,47(15):2835-2839
    [83] Fu H Y, Wu C, Tse M L V, et al. High pressure sensor based on photonic crystal fiber fordownhole application [J]. Applied optics,2010,49(14):2639-2643.
    [84] Ogle P C, Gysling D L. Mandrel-wound fiber optic pressure sensor: U.S. Patent6,233,374[P].2001-5-15
    [85] Gan J, Shen L, Ye Q, et al. Orientation-free pressure sensor based on π-shifted single-mode-fiber Sagnac interferometer [J]. Applied optics,2010,49(27):5043-5048
    [86] Gahir H K, Khanna D. Design and development of a temperature-compensated fiberoptic polarimetric pressure sensor based on photonic crystal fiber at1550nm [J].Applied optics,2007,46(8):1184-1189
    [87] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview [J].Journal of lightwave technology,1997,15(8):1263-1276
    [88] Hsu Y S, Wang L, Liu W F, et al. Temperature compensation of optical fiber Bragggrating pressure sensor [J]. Photonics Technology Letters, IEEE,2006,18(7):874-876
    [89] Sheng H J, Fu M Y, Chen T C, et al. A lateral pressure sensor using a fiber Bragggrating [J]. Photonics Technology Letters, IEEE,2004,16(4):1146-1148
    [90] Kostamovaara J, Manninen M, Myllyla R. Optical range finder for1.5–10-m distances[J]. Applied optics,1983,22(20):3258-3264
    [91] Poujouly S, Journet B, Miller D. Laser range finder based on fully digital phase-shiftmeasurement[C]//Instrumentation and Measurement Technology Conference,1999.IMTC/99. Proceedings of the16th IEEE. IEEE,1999,3:1773-1776
    [92] Castagnet D, Tap-Beteille H, Lescure M. Avalanche-photodiode-based heterodyneoptical head of a phase-shift laser range finder [J]. Optical Engineering,2006,45(4):043003-043003-7
    [93] Journet B, Bazin G. A low-cost laser range finder based on an FMCW-like method [J].Instrumentation and Measurement, IEEE Transactions on,2000,49(4):840-843
    [94] Rastogi P K. Optical measurement techniques and applications [M]. Boston, MA:Artech House,1997
    [95] Cuypers W, Van Gestel N, Voet A, et al. Optical measurement techniques for mobile andlarge-scale dimensional metrology [J]. Optics and Lasers in Engineering,2009,47(3):292-300
    [96] Koliopoulos C L. Interferometric Optical Phase Measurement Techniques [J].1981
    [97] Baney D M, Gallion P, Tucker R S. Theory and measurement techniques for the noisefigure of optical amplifiers [J]. Optical fiber technology,2000,6(2):122-154
    [98] Chen F, Brown G M, Song M. Overview of three-dimensional shape measurement usingoptical methods [J]. Optical Engineering,2000,39(1):10-22
    [99] Sherrington I, Smith E H. Modern measurement techniques in surface metrology: part II;optical instruments [J]. Wear,1988,125(3):289-308
    [100] Sirohi R S, Kothiyal M P. Optical components, systems, and measurement techniques[M]. M. Dekker,1991
    [101] Leach R. Optical measurement of surface topography [M]. Springer,2011
    [102] Lepetit L, Cheriaux G, Joffre M. Linear techniques of phase measurement byfemtosecond spectral interferometry for applications in spectroscopy [J]. JOSA B,1995,12(12):2467-2474
    [103] Vorburger T V, Teague E C. Optical techniques for on-line measurement of surfacetopography [J]. Precision Engineering,1981,3(2):61-83
    [104] Cohen L B, Salzberg B M. Optical measurement of membrane potential [M]. SpringerBerlin Heidelberg,1978
    [105] Peiponen K E, Myllyl R, Priezzhev A V. Optical measurement techniques: innovationsfor industry and the life sciences [M]. Springer,2009
    [106] Prasad R, Dovrolis C, Murray M, et al. Bandwidth estimation: metrics, measurementtechniques, and tools [J]. Network, IEEE,2003,17(6):27-35
    [107] Rembe C, Kant R, Muller R S. Optical measurement methods to study dynamicbehavior in MEMS [C]//Lasers in Metrology and Art Conservation. InternationalSociety for Optics and Photonics,2001:127-137
    [108] Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques [J].International journal of computer vision,1994,12(1):43-77
    [109] Lombardo V, Marzulli T, Pappalettere C, et al. A time-of-scan laser triangulationtechnique for distance measurements [J]. Optics and Lasers in Engineering,2003,39(2):247-254
    [110] Besl P J. Active, optical range imaging sensors [J]. Machine vision and applications,1988,1(2):127-152
    [111] Schwenke H, Neuschaefer-Rube U, Pfeifer T, et al. Optical methods for dimensionalmetrology in production engineering [J]. CIRP Annals-Manufacturing Technology,2002,51(2):685-699
    [112] Tuononen A J. Laser triangulation to measure the carcass deflections of a rolling tire [J].Measurement Science and Technology,2011,22(12):125304
    [113] Wu J H, Chang R S, Jiang J A. A novel pulse measurement system by using lasertriangulation and a CMOS image sensor [J]. Sensors,2007,7(12):3366-3385
    [114] Goh K H, Phillips N, Bell R. The applicability of a laser triangulation probe to non-contacting inspection [J]. International Journal of Production Research,1986,24(6):1331-1348
    [115] Hugenschmidt M. Lasermesstechnik [J]. Lasermesstechnik: Diagnostik derKurzzeitphysik, Springer-Lehrbuch. ISBN978-3-540-29920-2. Springer-Verlag BerlinHeidelberg,2007
    [116] Tao H, Liu W. Measurement System for Liquid Level based on Laser Triangulation andAngular Tracking [J]. Journal of Computers,2010,5(9):1444-1447
    [117] Brosed F J, Aguilar J J, Guillomía D, et al.3D geometrical inspection of complexgeometry parts using a novel laser triangulation sensor and a robot [J]. Sensors,2010,11(1):90-110
    [118] FENG J, Feng Q, KUANG C. Present Status of High Precision Laser DisplacementSensor Based on Triangulation [J]. Journal of Applied Optics,2004,3:011
    [119] Chen J, Wang X, Cao J D, et al. Development of highspeed CCD laser displacementsensor [J]. Optics and Precision Engineering,2008,16(4):611-616
    [120] JIN W, ZHAO H, TAO W. Modeling of Laser Triangulation Sensor and ParametersOptimization [J]. Chinese Journal of Sensors and Actuators,2006,4:039
    [121] Fan K C. A non-contact automatic measurement for free-form surface profiles [J].Computer integrated Manufacturing systems,1997,10(4):277-285
    [122][122]Ji Z, Leu M C. Design of optical triangulation devices [J]. Optics&LaserTechnology,1989,21(5):339-341
    [123] Lombardo V, Marzulli T, Pappalettere C, et al. A time-of-scan laser triangulationtechnique for distance measurements [J]. Optics and Lasers in Engineering,2003,39(2):247-254
    [124] LI Q, HOU X, SONG N. A new design of optical path with linear amplification used inlaser triangulation detection system [J]. Optical Technique,2010,6:003
    [125] Shiou F J, Liu M X. Development of a novel scattered triangulation laser probe with sixlinear charge-coupled devices (CCDs)[J]. Optics and Lasers in Engineering,2009,47(1):7-18
    [126] Yang G Y, Chen S J, Hu G Q, et al. Nonlinear optimization of structure and calibrationfor scattered triangulation laser displacement measurement [J]. Advanced MaterialsResearch,2011,204:695-698
    [127] Chang D Y. Design techniques for a pipelined ADC without using a front-end sample-and-hold amplifier [J]. Circuits and Systems I: Regular Papers, IEEE Transactions on,2004,51(11):2123-2132
    [128] XUE X C H, GUO Y F. Design of analog front end of CCD imaging system [J]. Opt.Precision Eng,2007,15(8):1191-1195
    [129] Holberg D R, Johnson S M, Itani N R, et al. CCD imager analog processor systems andmethods: U.S. Patent6,720,999[P].2004-4-13
    [130] Stover J C. Optical scattering: measurement and analysis [M]. Bellingham, Washington:SPIE optical engineering press,1995
    [131] Cao L, Vorburger T V, George Lieberman A, et al. Light-scattering measurement of therms slopes of rough surfaces [J]. Applied optics,1991,30(22):3221-3227
    [132][132]Wang S H, Quan C, Tay C J, et al. Surface roughness measurement in thesubmicrometer range using laser scattering [J]. Optical engineering,2000,39(6):1597-1601
    [133] Takahashi K, Kato H, Saito T, et al. Precise measurement of the size of nanoparticles bydynamic light scattering with uncertainty analysis [J]. Particle&Particle SystemsCharacterization,2008,25(1):31-38
    [134] Lehmann P. Surface-roughness measurement based on the intensity correlation functionof scattered light under speckle-pattern illumination [J]. Applied optics,1999,38(7):1144-1152
    [135] Dhanasekar B, Mohan N K, Bhaduri B, et al. Evaluation of surface roughness based onmonochromatic speckle correlation using image processing [J]. Precision Engineering,2008,32(3):196-206
    [136] Fujii H, Asakura T. Effect of surface roughness on the statistical distribution of imagespeckle intensity [J]. Optics Communications,1974,11(1):35-38
    [137] Pedersen H M. Theory of speckle dependence on surface roughness [J]. JOSA,1976,66(11):1204-1210
    [138] Hamed A M, El-Ghandoor H, El-Diasty F, et al. Analysis of speckle images to assesssurface roughness [J]. Optics&Laser Technology,2004,36(3):249-253
    [139] Rakels J H. Influence of surface skewness on the zero-order light scatter for a givenroughness [C]//International Conferences on Optical Fabrication and Testing andApplications of Optical Holography. International Society for Optics and Photonics,1995:131-136
    [140] Beckmann P, Spizzichino A. The scattering of electromagnetic waves from roughsurfaces [J]. Norwood, MA, Artech House, Inc.,1987,511p.,1987,1
    [141] Nayar S K, Ikeuchi K, Kanade T. Surface reflection: physical and geometricalperspectives [J]. IEEE transactions on pattern analysis and machine intelligence,1991,13(7):611-634
    [142] Welford W T. Optical estimation of statistics of surface roughness from light scatteringmeasurements [J]. Optical and Quantum Electronics,1977,9(4):269-287
    [143] Fujii H, Asakura T. Roughness measurements of metal surfaces using laser speckle [J].JOSA,1977,67(9):1171-1176
    [144] Bennett J M. Measurement of the rms roughness, autocovariance function and otherstatistical properties of optical surfaces using a FECO scanning interferometer [J].Applied Optics,1976,15(11):2705-2721
    [145] Tsai D M, Tseng C F. Surface roughness classification for castings [J]. Patternrecognition,1999,32(3):389-405
    [146] Smith K B, Zheng Y F. Point laser triangulation probe calibration for coordinatemetrology [J]. Journal of manufacturing science and engineering,2000,122(3):582-586
    [147] Agin G J. Calibration and use of a light stripe range sensor mounted on the hand of arobot [C]//Robotics and Automation Proceedings IEEE,1985,2:680-685
    [148] Kim K C, Oh S B, Kim J A, et al. Compensation of surface inclination for detecting inoptical triangulation sensors [C]//Instrumentation and Measurement TechnologyConference,2000. IMTC2000. IEEE,2000,3:1292-1296
    [149] Kay S M. Fundamentals of statistical signal processing: detection theory [J].1998.
    [150] Fisher R B, Naidu D K. A comparison of algorithms for subpixel peak detection[M]//Image Technology. Springer Berlin Heidelberg,1996:385-404
    [151] Blais F, Rioux M. Real-time numerical peak detector [J]. Signal Processing,1986,11(2):145-155
    [152] Jarman K H, Cebula S T, Saenz A J, et al. An algorithm for automated bacterialidentification using matrix-assisted laser desorption/ionization mass spectrometry [J].Analytical chemistry,2000,72(6):1217-1223
    [153] Jia H, Yang J, Li X. Minimum variance unbiased subpixel centroid estimation of pointimage limited by photon shot noise [J]. JOSA A,2010,27(9):2038-2045
    [154] Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy usingLaplacian-Gaussian masks [J]. Pattern Analysis and Machine Intelligence, IEEETransactions on,1986(5):651-664
    [155] Sj dahl M, Benckert L R. Electronic speckle photography: analysis of an algorithmgiving the displacement with subpixel accuracy [J]. Applied Optics,1993,32(13):2278-2284
    [156] Xu L, Yang H, Chen K, et al. Resolution enhancement by combination of subpixel anddeconvolution in miniature spectrometers[J]. Applied optics,2007,46(16):3210-3214
    [157] Fienup J R. Invariant error metrics for image reconstruction [J]. Applied optics,1997,36(32):8352-8357
    [158] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registrationalgorithms [J]. Optics letters,2008,33(2):156-158
    [159] Braggins D. Achieving sub-pixel precision [J]. Sensor Review,1990,10(4):174-177.
    [160][160]Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection[J]. Pattern recognition,1993,26(2):295-306
    [161] Silver W, Garakani A, Wallack A. Apparatus and method for detecting and sub-pixellocation of edges in a digital image: U.S. Patent6,408,109[P].2002-6-18
    [162] Huertas A, Medioni G. Detection of intensity changes with subpixel accuracy usingLaplacian-Gaussian masks [J]. Pattern Analysis and Machine Intelligence, IEEETransactions on,1986(5):651-664
    [163] Naidu D K, Fisher R B. A comparative analysis of algorithms for determining the peakposition of a stripe to sub-pixel accuracy [M]//BMVC91. Springer London,1991:217-225
    [164] Forest J, Salvi J, Cabruja E, et al. Laser stripe peak detector for3D scanners. A FIRfilter approach [C]//Pattern Recognition,2004. ICPR2004. Proceedings of the17thInternational Conference on. IEEE,2004,3:646-649
    [165] Bodendorfer T, Muller M S, Hirth F, et al. Comparison of different peak detectionalgorithms with regards to spectrometic fiber Bragg grating interrogation systems[C]//Optomechatronic Technologies,2009. ISOT2009. International Symposium on.IEEE,2009:122-126
    [166] Baba M, Ohtani K. A novel subpixel edge detection system for dimension measurementand object localization using an analogue-based approach [J]. Journal of Optics A: Pureand applied optics,2001,3(4):276
    [167] Foroosh H, Zerubia J B, Berthod M. Extension of phase correlation to subpixelregistration [J]. Image Processing, IEEE Transactions on,2002,11(3):188-200
    [168][168]Sj dahl M, Benckert L R. Electronic speckle photography: analysis of analgorithm giving the displacement with subpixel accuracy [J]. Applied Optics,1993,32(13):2278-2284
    [169] Morgan J S, Slater D C, Timothy J G, et al. Centroid position measurements andsubpixel sensitivity variations with the MAMA detector [J]. Applied optics,1989,28(6):1178-1192
    [170] Bailey D G. Sub-pixel estimation of local extrema [C]//Proceeding of Image and VisionComputing New Zealand.2003:414-419
    [171] Oriat L, Lantz E. Subpixel detection of the center of an object using a spectral phasealgorithm on the image [J]. Pattern recognition,1998,31(6):761-771
    [172] Bell A J, Sejnowski T J. An information-maximization approach to blind separation andblind deconvolution [J]. Neural computation,1995,7(6):1129-1159
    [173] Haykin S S. Blind deconvolution [M]. Englewood Cliffs: PTR Prentice Hall,1994
    [174] Stockham Jr T G, Cannon T M, Ingebretsen R B. Blind deconvolution through digitalsignal processing [J]. Proceedings of the IEEE,1975,63(4):678-692
    [175] Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolutionalgorithms [C]//Computer Vision and Pattern Recognition,2009. CVPR2009. IEEEConference on. IEEE,2009:1964-1971
    [176] Cichocki A, Amari S. Adaptive blind signal and image processing [M]. Chichester: JohnWiley,2002
    [177] Cadzow J A. Blind deconvolution via cumulant extrema [J]. Signal ProcessingMagazine, IEEE,1996,13(3):24-42
    [178] Douglas S C, Cichocki A, Amari S I. Multichannel blind separation and deconvolutionof sources with arbitrary distributions [C]//Neural Networks for Signal Processing
    [1997] VII. Proceedings of the1997IEEE Workshop. IEEE,1997:436-445
    [179] Wiggins R A. Minimum entropy deconvolution [J]. Geoexploration,1978,16(1):21-35
    [180] Cichocki A, Amari S. Adaptive blind signal and image processing [M]. Chichester: JohnWiley,2002
    [181] Comon P, Jutten C. Handbook of Blind Source Separation: Independent componentanalysis and applications [M]. Academic press,2010
    [182] Hyv rinen A, Karhunen J, Oja E. Independent component analysis [M]. John Wiley&Sons,2004
    [183] Tong L, Xu G, Kailath T. Blind identification and equalization based on second-orderstatistics: A time domain approach [J]. Information Theory, IEEE Transactions on,1994,40(2):340-349
    [184] Delfosse N, Loubaton P. Adaptive blind separation of independent sources: a deflationapproach [J]. Signal processing,1995,45(1):59-83
    [185] Nikias C L, Raghuveer M R. Bispectrum estimation: A digital signal processingframework [J]. Proceedings of the IEEE,1987,75(7):869-891
    [186] Cardoso J F. Blind signal separation: statistical principles [J]. Proceedings of the IEEE,1998,86(10):2009-2025
    [187] Ding Z. Matrix outer-product decomposition method for blind multiple channelidentification [J]. Signal Processing, IEEE Transactions on,1997,45(12):3053-3061
    [188] Inouye Y, Hirano K. Cumulant-based blind identification of linear multi-input-multi-output systems driven by colored inputs [J]. Signal Processing, IEEE Transactions on,1997,45(6):1543-1552
    [189] Chi C Y, Chen C Y, Chen C H, et al. Batch processing algorithms for blind equalizationusing higher-order statistics [J]. Signal Processing Magazine, IEEE,2003,20(1):25-49
    [190] Cadzow J. A. Signal enhancement-a composite property mapping algorithm [J].Acoustics, Speech and Signal Processing, IEEE Transactions on,1988,36(1):49-62
    [191] Bloemendal B, Van De Laar J, Sommen P. A single stage approach to blind sourceextraction based on second order statistics [J]. Signal Processing,2013,93(2):432-444
    [192] Bell A J, Sejnowski T J. An information-maximization approach to blind separation andblind deconvolution [J]. Neural computation,1995,7(6):1129-1159
    [193] Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis inrolling element bearings using minimum entropy deconvolution combined with spectralkurtosis [J]. Mechanical Systems and Signal Processing,2007,21(6):2616-2633
    [194] Endo H, Randall R B. Enhancement of autoregressive model based gear tooth faultdetection technique by the use of minimum entropy deconvolution filter [J]. MechanicalSystems and Signal Processing,2007,21(2):906-919
    [195] McDonald G L, Zhao Q, Zuo M J. Maximum correlated Kurtosis deconvolution andapplication on gear tooth chip fault detection [J]. Mechanical Systems and SignalProcessing,2012,33:237-255