几类新连续混沌系统的基本动力学特性、控制与同步
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着混沌控制和反控制研究的日益深入,出现了各种新的混沌吸引子和混沌控制方法,由于混沌反控制在离散系统中的研究已经较为完善,但是在连续系统中的研究还远未达到成熟,如何实现利用反馈控制方法产生新的连续混沌吸引子,以及对连续混沌系统提出更有效的控制策略仍是人们普遍关注的问题之一。本课题目的是用混沌反控制的思想和方法构造出几类新的连续混沌系统,为混沌理论与实际应用研究提供更多的连续混沌模型。另外,研究了混沌控制和同步的一些控制策略,并结合大量的混沌系统进行了数值验证,为混沌控制与同步方法的实现做了一些很有意义的尝试。新的混沌吸引子的发现,将有助于我们加强对混沌现象的认识,丰富了混沌模型。同时,新的控制与同步方法将充实混沌控制与同步已有的方法。针对这些问题,本文做了以下几个方面的研究工作。
     首先,给出了本课题研究的目的和意义,指明了本课题的主要研究内容和创新点。
     其次,对混沌控制与同步作了综述性介绍。介绍了混沌学的发展;并着重介绍了连续混沌系统的研究现状和混沌控制与同步的研究现状。
     接着,利用混沌反控制方法构造了五类新的连续混沌系统,分析了它们基本的动力学特性。构造的五类新连续混沌系统它们分别有如下特点:第一类连续混沌系统是通过反馈控制Lorenz系统得到的一个混沌系统,结果分析表明它仍属于Lorenz系统族;第二类连续混沌系统是通过反馈控制Lorenz系统族得到的3个混沌系统,结果分析表明它们不再属于Lorenz系统族;第三类连续混沌系统的表达式仅具有5项,它比已存在的具有6项及6项以上的三维混沌系统的表达式更简单;第四类连续混沌系统的表达式仅含有一个参数,但在这个参数变化时能产生多种涡卷形式的混沌吸引子;第五类连续混沌系统能产生4-涡卷混沌吸引子,但和已存在的2-涡卷或者4-涡卷混沌吸引子相比,第五类连续混沌系统产生的新吸引子是由瞬时混沌2-涡卷和混沌2-涡卷吸引子组成的。
     紧接着,讨论了混沌系统的控制问题。首先,提出错位控制的一般方法,将系统的混沌轨迹控制到系统的平衡点和极限环;其次,提出降维控制的方法,将系统的混沌轨迹控制到系统的任意点和任意周期。该章以实例对所提的两种控制方法用数值仿真验证其有效性。当然,这两种控制方法可适用于讨论其它混沌系统的控制问题,从而说明了该分析方法的普适性。
     再接着,讨论了混沌系统的同步问题。首先,提出一般混合错位投影同步方法,该方法包括完全错位同步、错位反同步、错位投影同步。并且所讨论的混沌系统可以是不同的混沌系统甚至是不同维数的混沌系统;其次,提出混沌系统的异双边匹配自适应同步方法,该方法包含了文献中已有的等同双边匹配自适应同步方法;接着,在讨论混沌系统的延迟同步中提出了混沌系统的自适应同步策略,在混沌系统同步的过程中,不仅混沌系统的参数可以被识别,而且延迟时间也能被识别;紧接着,讨论了混沌系统的混合同步,该方法包含了已有的全维同步和部分维同步,并且通过设计控制器,在同一个混沌系统中可以同时存在控制与同步现象;再接着,提出了混沌系统的自适应比例函数投影同步,该方法包含了文献中已有的函数投影同步和一般投影同步,在混沌系统同步的过程中,不仅参数可以被识别,而且比例函数也能被识别;最后给出了混沌系统同步性质的一个注记,讨论了混沌同步中的一个现象。在讨论混沌系统的同步问题中,用大量的实例对所提的同步方法验证其有效性。当然,这一部分所讨论的同步方法同样可适用于讨论其它低维或者高维混沌系统的同步问题,从而说明了这些分析方法的普适性。
     最后,基于混沌系统提出了一个新的复杂动力学网络模型,由于该动力学网络模型增加了节点间的联系,因此它能较好的模拟现实复杂网络。基于LaSalle's不变集原理,给出了这个新动力学网络的模型几个自适应同步准则。
With the chaos control and anti-control increasing, and the emergence of new chaotic attractors and chaos control methods, chaos anti-control study in the discrete system has been better researched. But the research in a continuous system is far from reach maturity. How to generate the new continuous chaotic attractor using feedback control method, and present more effective control strategy for the continuous chaotic system, which is one of the issues of common concern. Purpose of this subject apply anti-control of thoughts and methods to construct several new continue chaotic system, which provide more continuous chaotic model for the practical application of chaos theory. In addition, studies of chaotic control and synchronization of some control strategies, combined with a large number of chaotic systems, numerical simulations are given to show the effectiveness of this method. The new chaotic attractors will help us enhance the understanding of chaos. Meanwhile, the new control and synchronization method will enrich the existing chaos control and synchronization methods. The paper made the following aspects of the research.
     First, after introducing the motive and the significance of chaos control and synchronization, then, we gave out the main contents and the innovations of this study.
     Second, chaos control and synchronization were summarized in this paper. We introduced the definition and characteristics of chaos, chaos control and synchronization features, and focused on research situation of the control and synchronization.
     Next, we gain five new chaotic systems by using the method of chaotification, and some basic dynamical properties are studied. The five new chaotic systems possess the following features. The first new chaotic system is gained by feedback controlling Lorenz chaotic system, according to the definition of generalized Lorenz system, and the system still belong to generalized Lorenz systems. The second new chaotic system is gained by feedback controlling Lorenz systems, according to the definition of generalized Lorenz system, and the system does not belong to generalized Lorenz systems. The third new chaotic system has five terms, in comparison with those of the existing six-term or seven-term chaotic attractors, the new attractor is simpler and fewer terms. The fourth new chaotic system is a single parameter chaotic system, which can generate a complex 4-scroll chaotic attractor, a 3-scroll chaotic attractor, and two 2- scroll chaotic attractors with variation of single parameter. The fifth new chaotic system is four-scroll chaotic attractor in three-dimensional autonomous system, in comparison with those of the existing four-scroll chaotic attractors, the novel chaotic attractor can generate four scrolls two of which are transient chaotic and the other two of which are chaotic.
     Then, we discuss control of the new chaotic system. Firstly, we present hybrid dislocated control method for stabilizing chaos to unstable equilibrium and limit cycle. Secondly, the control method of dimension reduced is presented. And the trajectories of a chaotic system can be controlled to approach arbitrary points or arbitrary target periodic orbits by the control method of dimension reduced.
     Furthermore, we discuss synchronization of the new chaotic system. First, we present hybrid general hybrid projective dislocated synchronization, which includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. The drive and response systems discussed in this paper can be strictly different dynamical systems (including different dimensional systems). Second, we investigate the different bidirectionally coupled chaotic systems, which includes identical bidirectionally coupled synchronization. Third, we investigate the problem of adaptive lag synchronization and parameters adaptive lag identification of chaotic systems. In comparison with those of the existing parameters identification schemes, the unknown parameters are identified by adaptive lag laws and the delay-time is also identified. Fourth, we investigate hybrid synchronization, in comparison with those of the existing synchronization methods, the hybrid synchronization includes full-order, reduced-order synchronization and the modified projective synchronization. What's more, the control, complete synchronization and anti-synchronization can coexist in the same system. Fifth, we investigate the problem of adaptive synchronization of chaotic systems with adaptive scaling function. In comparison with those of the existing scaling function synchronization, the scaling function is also identified. Sixth, we discuss a note on synchronization quality of chaotic system.
     Finally, we investigate the synchronization of a general complex dynamical network with non-derivative and derivative coupling. Based on LaSalle's invariance principle, adaptive synchronization criteria are obtained.
引文
[1]关新平,范正平,陈彩莲.混沌控制及其在保密通信中的应用[M].北京:国防工业出版社,1993.
    [2]方锦清,赵耿,罗晓曙.混沌保密通信应用研究的进展[J].广西师范大学学报(自然科学版).2002,20(1):6-18.
    [3]覃团发,唐秋玲,姚海涛.实时数字语音混沌保密通信系统[J].计算技术与自动化,2000,19(1):58-61.
    [4]王光瑞,于煦龄,陈式刚.混沌的控制、同步和利用[M].北京:国防工业出版社,2001.
    [5]顾葆华.混沌系统的几种同步控制方法及其应用研究[D],南京理工大学,2009.
    [6]李少远等.智能控制的新进展[J].控制与决策.2000,5:13-23.
    [7]E. Lorenz. Deterministicnon-periodic flow [J]. J. Atmos. Sci.,1963,20:130-141.
    [8]Hao B. Chaos [M]. Singapore:World Scientific,1984.
    [9]Hao B. Chaos Ⅱ [M]. Singapore:World Seieniific,1990.
    [10]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [11]W. Fleming. Future directions in control theory:a mathematical perspeetive. SIAM Pub.,1988,50-51.
    [12]Li T, Yorke J. Period three implies chaos [J]. Amer. Math. Monthly.,1975,82: 985-992.
    [13]邹恩,李详飞,陈建国.混沌控制及其优化应用[M].长沙:国防科技大学出版社,2002.
    [14]J. Gong. Coherent control, quantum chaos, and decoherence in moleeula [D]. Canada, University of Toronto,2001.
    [15]Chen G, Lai D. Feedback control of Lyapunove exponents for dynamical systems [J]. Int. J. Bifurcation and Chaos,1996,6:1341-1349.
    [16]Wang X, Chen G. Chaotifying a stable LTI system by tiny feedback control [J]. IEEE Trans. On Circuits and Systems,2000,47:410-415.
    [17]陈关荣,汪小帆.动力系统的混沌化:理论、方法与应用[M].上海交通大学出版社,2006.
    [18]卢俊国.混沌同步与反控制的若干问题研究[D].上海交通大学,2003.
    [19]Chen G, Dong X. From chaos to order:methodologies, Perspectives and applications [M]. Singapore:World Scientific,1998.
    [20]O. Rossler. An equation for continuous chaos [J]. Physical Letters A,1976,57: 397-398.
    [21]L. Chua, M. Komuro, Matsumoto T. The double scroll family. Part I:rigorous proof of chaos [J]. IEEE Trans. On circuits and systems-Ⅰ,1986,33:1072-1096.
    [22]甘春标,郭乙木.拟可积哈密顿系统中噪声诱发的混沌运动[J].力学学报,2000,32(5):613-620.
    [23]A. Vanecek, S. Celikovsky Control systems:From linear analysis to synthesis of chaos [M]. London:Prentice Hall,1996.
    [24]Chen G, T. Ueta.Yet another chaotic attractor [J]. Int. J. Bifurcation and Chaos, 1999,9:1465-1466.
    [25]Wang X, Chen G. Chaotifying a stable LTI system by tiny feedback control [J]. IEEE Trans. On Circuits and Systems,2000,47:410-415.
    [26]Tang K, Man K, Zhong G. Generating chaos via x|x| [J]. IEEE Trans. On Circuits and Systems-Ⅰ,2001,48 (5):636-641.
    [27]Lu J, Chen G, Cheng D. Bridge the gap between the Lorenz system and the Chen system [J]. Int. J. Bifurcation and Chaos,2002,12 (12):2917-2926.
    [28]Lu J, Chen G, Yu X. Dynamical behaviors of a unified chaotic system [J]. Dynamical of continuous, Discrete and Impulsive Systems Series B,2003, SuP: 115-124.
    [29]S. Codreanu. Desynchronization and chaotification of nonlinear dynamical systems [J]. Chaos, Solitons and Fractals,2002,13:839-843.
    [30]Liu C, Liu T, Liu L. A new chaotic attractor [J]. Chaos, Solitons and Fractals, 2004,22:1031-1038.
    [31]S. Celikovsky, Chen G. On the generalized Lorenz canonical form [J]. Chaos, Solitons and Fractals,2005,26:1271-1276.
    [32]Li Y, Chen Q K. Wallace. Controlling a unified chaotic system to hyperchaotic [J]. IEEE Trans.on Circuit and Systems-II,2005,52(4):204-207.
    [33]Chen A, Lu J, Lu J, Yu S. Generating hyperchaotic Lu attractor via state feedback Control [J]. Physica A,2006,364 (15):103-110.
    [34]Zheng Z, Lu J, Chen G. Generating two simultaneously chaotic attractors with a switching piecewise-linear controller [J]. Chaos, Solitons and Fractals,2004,20: 277-288.
    [35]Lu J, Chen G. Generating multi-scroll chaotic attractors:Theories, methods and applications [J]. Int. J. of Bifurcation and Chaos,2006,16 (4):775-858.
    [36]Yu S, Tang W, Lu J, Chen G. Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems [J]. Int. J. of Bifurcation and Chaos, 2010,20(1):in press.
    [37]Liu W, Chen G. A new chaotic system and its generation [J]. Int. J. Bifurcation and Chaos,2006.12:261-267.
    [38]Lu J, Chen G, Cheng D. A new chaotic system and beyond:the generalized Lorenz-like system [J]. Int. J. of Bifurcation and Chaos,2004,5:1507-1537.
    [39]Li D. A three-scroll chaotic attractor [J]. Physics Letters A,2008,372 387-393
    [40]S. Dadras, H. Momeni. A novel three-dimensional autonomous chaotic system generating two, three and four-scroll attractors [J]. Physics Letters A,2009,373: 3637-3642.
    [41]Qi G, Chen G, M. Wyk, B. Wyk, Zhang Y. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system [J].Chaos, Solitons and Fractals, 2008,38:705-721.
    [42]Chen Z, Yang Y, Yuan Zh. A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system [J]. Chaos, Solitons and Fractals,2008,38:1187-1196.
    [43]J. Sprott. Some simple chaotic flows [J]. Physical Review. Letters,1994,50 (2): R647-R650.
    [44]J. Sprott. Simplest dissipative chaotic flow [J]. Physics Letters A,1997,228: 271-274.
    [45]B. Munmuangsaen, B. Srisuchinwong. A new five-term simple chaotic attractor [J]. Physics Letters A,2009,373:4038-4043.
    [46]Dong G, Du R, Tian L, Jia Q. A novel 3D autonomous system with different multilayer chaotic attractors [J]. Physics Letters A,2009,373:3838-3845.
    [47]李尚南.一类金融混沌系统的同步控制研究[D],重庆大学,2008.
    [48]Chen G, Dong X. On feedback control of chaotic continuous-time systems [J]. IEEE Trans. On Circuits and Systems,1993,40 (9):591-602.
    [49]E. Ott, C. Grebogi, J. Yorke. Controlling chaos [J]. Physical Review Letters,1990, 64(11):1196-1199.
    [50]Chen G, Dong X. Controlling Chua's system [J]. J. Circuits, Systems and Computations,1993,3:139-148.
    [51]J. Gallego. Nonlinear regulation of a Lorenz system by feedback linearization techniques [J]. Dynamic Control,1994,4:277-298.
    [52]V. Naumenko, S. Turovets. Chaos control in external cavity laser diodes using electronic impulsive delayed feedback [J]. Int. J. Bifuracation and Chaos,1996,6: 1791-1799.
    [53]Qiu S. A cell model of chaotic attractor [C].Proeeedings IEEEIS CAS'97, HongKong,1997.
    [54]Chen L. Predictive fuzzy control of uncertain chaotic systems [D]. USA, University of Houston,1998.
    [55]方天华.超混沌同步的非线性控制法[J].原子能科学技术,1998,32(2):184-187.
    [56]张晓辉,沈柯.高周期混沌轨道的构造方法和应用[J],物理学报,1999,48(12):2186-2190.
    [57]张思进,陆启韶,王士敏.碰摩转子映射系统的延迟反馈混沌控制[J].固体力学学报,2001,22(3):89-94.
    [58]Luo X, Fang Q. A method of controlling spatiotemporal chaos in coupled map lattices [J].Chinese physics,2000,9 (5):333-336.
    [59]罗晓曙.非线性系统中的混沌控制与同步及其应用研究[D],北京:中国科学技术大学,2003.
    [60]Luo X, Wang B, Jiang F. Using random Proportional pulse feedback of system variables to control chaos and hyperchaos[J]. Chinese physics,2001,10(1):17-20.
    [61]薛月菊,冯汝鹏.连续时间祸合系统中时空混沌的自适应模糊控制[J].物理学报,2001,50(3):440-444.
    [62]李智,韩崇昭.一类含参数不确定性混沌系统的自适应控制[J].物理学报,2001,50(5):847-850.
    [63]李伟,陈式刚.用周期拍方法控制非线性耗散系统和保守系统的混沌[J],物理学报,2001,50(10):1862-18701.
    [64]Yu Y, Zhang S. Adaptive baekstepping control of the uncertain Lii system [J]. Chinese Pysics,2002,12 (11):1249-1253.
    [65]Guan X, Hua C, Duan G., Comments on "Robust stabilization of a class of time-delay nonlinear systems" [J].IEEE Trans.on Automatic Control,2003,48 (5): 907-908.
    [66]Yang L, Liu Z, Mao J. Controlling hyperchaos [J], Physical Review Letters,2004, 84:67.
    [67]Lu Z, L. Shieh, Chen G, P. Coleman. Simplex sliding mode control for nonlinear uncertain systems via chaos optimization [J]. Chaos, Solitons and Fractals,2005, 23 (3):747-755.
    [68]Liu X, K. Teo, Zhang H, Chen G. Switching control of linear systems for generating chaos [J]. Chaos, Solitons and Fractals,2006,30 (3):725-733
    [69]Wu Z, Xie J, Fang Y, Xu Z. Controlling chaos with periodic parametric perturbations in Lorenz system [J]. Chaos, Solitons and Fractals,2007,32 (1): 104-112.
    [70]Wang F, Liu C. Synchronization of unified chaotic system based on passive control [J]. Physica D,2007,225 (1):55-60.
    [71]P. Rech. Chaos control in a discrete time system through asymmetric coupling [J]. Physics Letters A,2008,372 (24):4434-4437.
    [72]Hung Y, Liao T, Yan J. Adaptive variable structure control for chaos suppression of unified chaotic systems [J]. Applied Mathematics and Computation,2009,209 (15):391-398.
    [73]H. Salarieh, A. Alasty. Control of stochastic chaos using sliding mode method [J]. Journal of Computational and Applied Mathematics,2009,225 (1):135-145.
    [74]陈凤翔.混沌控制与同步的鲁棒控制器研究[D],上海交通大学,2008.
    [75]单梁.混沌系统的若干同步方法研究[D],南京理工大学,2009.
    [76]陈关荣,吕金虎. Lorenz系统族的动力学分析、控制与同步[M].科学出版社,2003.
    [77]L. Pecora, T. Carroll, Synchronization in chaotic systems [J], Physical Review. Letters,1990,64,821-824.
    [78]Sun Y, Cao J, Wang Z. Exponential synchronization of stochastic perturbed chaotic delayed neural networks [J]. Neurocomputing,2007,70 (13-15): 2477-2485.
    [79]Li R. Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14(6):2757-2764.
    [80]Shi X, Wang Z. Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters [J]. Applied Mathematics and Computation,2009, 215(5):1711-1717.
    [81]M. sawalha, M. Noorani. Adaptive reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15 (10):3022-3034.
    [82]Wang H, Han Z, Xie Q, Zhang W. Finite-time chaos synchronization of unified chaotic system with uncertain parameters [J]. Communications in Nonlinear Science and Numerical Simulation,2009,14 (5):2239-2247.
    [83]H. Salarieh, M. Shahrokhi. Multi-synchronization of chaos via linear output feedback strategy [J]. Journal of Computational and Applied Mathematics, 2009,223 (2):842-852.
    [84]Liu X. Impulsive synchronization of chaotic systems subject to time delay [J]. Nonlinear Analysis,2009,71 (12):1320-1327.
    [85]S. Ha, T. Ha, J.Kim. On the complete synchronization of the Kuramoto phase model [J].Physica D,2010,239 (17):1692-1700.
    [86]Wang J, Chen A. Partial synchronization in coupled chemical chaotic oscillators [J].Journal of Computational and Applied Mathematics,2010,233(8):1897-1904.
    [87]Choon Ki Ahn. Fuzzy delayed output feedback synchronization for time-delayed chaotic systems [J]. Nonlinear Analysis,2010,4 (1):16-24.
    [88]H. Kebriaei, M. Yazdanpanah. Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15 (2):430-441.
    [89]K. Sudheer, M. Sabir. Switched modified function projective synchronization of hyperchaotic Qi system with uncertain parameters [J]. Communications in Nonlinear Science and Numerical Simulation,2010,15 (2):4058-4064.
    [90]Zhang W, Huang J, Wei P. Weak synchronization of chaotic neural networks with parameter mismatch via periodically intermittent control [J]. Applied Mathematical Modelling,2011,35 (2):612-620.
    [91]Xu Y, Zhou W, Fang J. Hybrid dislocated control and general hybrid projective dislocated synchronization for the modified Lu chaotic system [J]. Chaos, Solitons and Fractals,2009,42 (3):1305-1315.
    [92]S. Samko, A. Kilbas, O. Marichev. Fractional integrals and derivatives:theory and applications [M]. Yverdon:Gordon and Breach; 1993.
    [93]A. Kilbas, H. Srivastava, J. Trujillo. Theory and applications of fractional differential equations [M]. Amsterdam:Elsevier; 2006.
    [94]Wang X, He Y. Projective synchronization of fractional order chaotic system based on linear separation [J]. Physics Letters A,2008,372:435-441.
    [95]Li C, Liao X, Yu J. Synchronization of fractional order chaotic systems [J]. Physical Review Letters,2003,68:067203.
    [96]舒永录,张万欣,张勇.一个新混沌系统的有界性和同步[J].重庆理工大学学报(自然科学),2010,1:114-117.
    [97]T. Ueta, Chen G. Bifurcation analysis of Chen's equation [J]. Int. J. of Bifurcation and Chaos,2000,10:1917-1931.
    [98]Wang X, Chen G. Chaotification via arbitrarily small feedback controls:Theory, method and applications [J]. Int. J. of Bifurcation and Chaos,2000,10:549-570.
    [99]W. Ditto, S. Rauseo, M. Spano. Expermental control of chaos [J]. Physical Review Letters,1990,65:3211-3214.
    [100]J. Starrett. Control of chaos by occasional bang-bang [J]. Phys Rev E Stat Nonlin Soft Matter Phys,2003,036203:67-68.
    [101]P. Alsing, D. Gavriel, I. Kovan. Using neural networks for controlling chaos [J]. Chaos Non-linear Dynamics:Methods and Commercialization,1994,20 (37): 126-138.
    [102]Wei D, Luo X, Fang J. Controlling chaos in permanentmagnet synchronous motor based on the differential geometry method [J]. Acta Physica Sinica 2006, 55:54-59.
    [103]Wang Y, Guan Zh, Wang H. Feedback an adaptive control for the synchronization of Lu system via a single variable [J]. Physics Letters A,2003, 312:34-40.
    [104]Her-Terng Yau. Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control [J]. Mechanical Systems and Signal Processing, 2008,22:408-418.
    [105]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [106]Luo R. Impulsive control and synchronization of a new chaotic system [J]. Physics Letters A,2008,372:648-53.
    [107]Her-Terng Yau, Cheng-Shion Shi eh. Chaos synchronization using fuzzy logic controller [J]. Nonlinear Analysis,2008,9:1800-1810.
    [108]I. Zelinka, R. Senkerik, E. Navratil. Investigation on evolutionary optimization of chaos control Chaos[J]. Chaos, Solitons and Fractals,2009,40:111-129.
    [109]史岩,齐晓慧.基于降维观测器的系统控制律重构研究[J].控制工程,2006 13(3):212-217.
    [110]钟戈,张庆灵.基于降维观测器的网络控制系统的容错控制[J].控制工程,2008,12(5):306-309.
    [111]陶朝海,陆君安,罗燕.一类混沌系统的降维控制[J].系统工程与电子技术,2005,27(8):1459-1461.
    [112]Lii J, Zhou T, Zhang S. Chaos synchronization between linearly coupled chaotic systems [J]. Chaos, Solitons and Fractals,2002,14:529-541.
    [113]Hu M, Xu Z. Adaptive feedback controller for projective synchronization [J]. Nonlinear Analysis,2008,9:1253-1260.
    [114]Zhou J, Lu J, Wu X. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems Chaos [J]. Chaos, Solitons and Fractals,2007,31:230-235.
    [115]G. Grassi, S. Mascolo. Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal [J]. IEEE Trans. Circuits Syst,1997,144:1011-1013.
    [116]Sun Y, Cao J. Adaptive synchronization between two different noise perturbed chaotic systems with fully unknown parameters [J]. Physica A,2007,376: 253-265.
    [117]Liu X. Impulsive synchronization of chaotic systems subject to time delay [J]. Nonlinear Analysis,2009,71:1320-1327.
    [118]Zhou J, Wen C, Wang W. Adaptive backstepping control of uncertain systems with unknown input time-delay [J]. Automatica,2009,45:1415-1422.
    [119]A. Tarai, S. Poria, P. Chatterjee. Synchronization of generalised linearly bidirectionally coupled.unified chaotic system [J]. Chaos, Solitons and Fractals 2009,40:885-892.
    [120]Zhou J, Lu J, Wu X. Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems [J]. Chaos, Solitons and Fractals, 2007,31:230-235.
    [121]F. Austin, Sun W, Lu X. Estimation of unknown parameters and adaptive synchronization of hyperchaotic systems [J]. Commun. Nonlinear Sci. Numer. Simul, 2009,14:4264-4272.
    [122]Li C, Liao X. Lag synchronization of Rossler system and Chua circuit via a scalar signal [J]. Physics Letters A,2004,329:301-308.
    [123]Yu W, Cao J. Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification [J]. PhysicaA,2007,375:467-482.
    [124]Wang Q, Lu Q, Duan Z. Adaptive lag synchronization in coupled chaotic systems with unidirectional delay feedback [J]. Int. J. of Non-Linear Mechanics,2010,45:640-646.
    [125]Sun Y, Cao J. Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation [J]. Physics Letters A,364,2007:277-285.
    [126]Zhu F. Full-order and reduced-order observer-based synchronization for chaotic systems with unknown disturbances and parameters [J]. Physics Letters A 2008,372:223-232.
    [127]U. Vincent, Guo R. A simple adaptive control for full and reduced-order synchronization of uncertain time-varying chaotic systems [J]. Commun. Nonlinear Sci. Numer. Simul,2009,14:3925-3932.
    [128]Li Y, Tang W, Lu G. Generating hyperchaos via state feedback control [J]. Int. J. of Bifurcation and Chaos,2005,10:3367-3375.
    [129]Guo R. A simple adaptive controller for chaos and hyperchaos synchronization [J]. Physics Letters A,2008,372:5593-5597.
    [130]P. Moore, W. Horsthemke. Localized patterns in homogeneous networks of diffusively coupled reactors [J]. Physica D,2005,206:121-144.
    [131]Chen G, Zhou J, Liu.Z. Global synchronization of coupled delayed neural networks and applications to chaotic models [J]. Int. J. of Bifurcation and Chaos,2004,14:2229-2240.
    [132]Zeng Z, Wang J. Completely stability of cellular neural networks with time-varying delays [J]. IEEE Trans. Circuits Syst.-I,2006,53 (4):944-955.
    [133]Ning D, Lu J, Han X. Dual synchronization based on two different chaotic systems:Lorenz systems and Rossler systems [J]. Journal of Computational and Applied Mathematics,2007,206 (2):1046-1050.
    [134]H. Salarieh, M. Shahrokhi. Multi-synchronization of chaos via linear output feedback strategy [J]. Journal of Computational and Applied Mathematics, 2009,223 (2):842-852.
    [135]张荣.复杂动力学网络与混沌系统的控制与同步[D],江南大学,2008.
    [136]Zhou J, Chen T. Synchronization in general complex delayed dynamical networks [J]. IEEE Trans Circuits Syst-I,2006,53 (3):733-744.
    [137]Cao J, Li P, Wang W. Global synchronization in arrays of delayed neural networks with constant and delayed coupling [J]. Physics Letters A,2006,353: 318-325.
    [138]Lu W, Chen T. Synchronization of coupled connected neural networks with delays [J]. IEEE Trans Circuits Syst-I,2004,51 (12):2491-2503.
    [139]Lu W, Chen T. New approach to synchronization analysis of linearly coupled ordinary differential systems [J].Physica D,2006,213:214-230.
    [140]Wang X, Chen G. Synchronization in small-world dynamical networks [J]. Int. J. of Bifurcation and Chaos 2002,12:187-192.
    [141]Wu C, L. Chua. Synchronization in an array of linearly coupled dynamical systems [J]. IEEE Trans Circuits Syst-I,1995,42 (8):430-447.
    [142]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [143]Zhang Q, Lu J, Lu J. C. Tse. Adaptive feedback synchronization of a general complex dynamical network with delayed nodes [J]. IEEE Transactions on Circuits and Systems II,2008,55 (2):183-187.
    [144]Liu H, Lu J, Lu J, J. David. Structure identification of uncertain general complex dynamical networks with time delay [J]. Automatica,2009,45 (4):1799-1807.
    [145]Sun W, Chen S, Guo W. Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling [J]. Physics Letter A, 2008,372:6340-6346.