海岛棉染色体组特异重复序列的筛选及亚克隆分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以海岛棉基因组为材料,从海岛棉Pima90-53 BAC文库中筛选棉属染色体组特异重复序列。通过荧光原位杂交验证筛选出来的重复序列在四倍体海岛棉,二倍体亚洲棉、草棉、阿非利加棉、雷蒙德氏棉染色体上的分布情况;将筛选出来的BAC重复序列构建亚克隆,对其亚克隆的序列进行了分析。主要研究结果如下:
     1.从Pima90-53 BAC文库中共筛选了19,200个克隆,以海岛棉有丝分裂中期染色体为靶DNA,将通过菌落原位杂交筛选出来的信号较强的BAC单克隆作为探针进行荧光原位杂交。根据荧光信号在海岛棉染色体上的分布情况来看,筛选出来的BAC单克隆共有4种,其克隆编号分别为:428K20、412A11、334E15、216B18。
     2.原位杂交结果表明:428K20在海岛棉所有染色体上均产生了杂交信号,其中在较大染色体(A亚组)上除染色体两端外其余部分均产生了强烈的杂交信号,而较小染色体(D亚组)上仅在着丝粒区域产生明显的杂交信号,428K20在亚洲棉所有染色体上除染色体两端其余部分均产生了很强的杂交信号,但其在雷蒙德氏棉上却没有产生信号;412A11只在海岛棉较大染色体(A亚组)两端产生杂交信号,在亚洲棉、草棉、阿非利加棉所有染色体两端均产生了明显的杂交信号,与428K20一样在雷蒙德氏棉上没有信号产生,因此可证实428k20与412A11均由A基因组特异的重复序列组成,但428K20还含有一种可转座的因子(序列)。Pima90-53有丝分裂中期染色体以334E15作为探针进行荧光原位杂交,其杂交信号分布情况为:在较大的染色体(A亚组)几乎整条染色体上都有信号分布,尤其在染色体中部信号较强,为典型的较大染色体(A亚组)特异的重复序列;Pima90-53有丝分裂中期染色体以216B18作为探针,几乎在所有的染色体上都有信号分布,其中有6个较强信号分布在6条染色体的短臂端部,根据杂交信号来看,该BAC克隆主要是含有45S rDNA重复序列和一种分布于整个海岛棉染色体的散布重复序列。
     3.只对其中的428K20和412A11分别构建了亚克隆文库。对亚克隆测序并进一步进行序列分析。序列比对结果显示:428K20含有陆地棉mGhCIR291、JESPR272、LIB5327-017-A1-N1-D12_P_S_Gh557类型微卫星相关序列、其大部分序列均为gypsy-类型反转座子(gypsy-like retrotransposon),而很可能正是这一类型gypsy反转座子,参加了由较大染色体(A亚组)向较小染色体(D亚组)的入侵过程;412A11则主要检测到了大量的预测基因、预测蛋白、表达mRNA及陆地棉-微型反向重复转座元件(miniature inverted repeat transposable element,MITE),根据A基因组染色体两端较强的杂交信号,推断A基因组染色体靠近端粒或亚端粒区域可能含有很多微型反向重复转座元件(miniature inverted repeat t ransposable element,MITE)。
In this study, the genome of G.barbadense was used to isolate specific repetitive sequence. Repeated sequence distribution in G.barbadense, G.arboreum, G.herbaceum, G.herbaceum var.africanum and G.raimondii were verified by FISH after constrction of subclones and sequence analysis.The main results were obtained as follows:
     1.19,200 BAC clones were screened from pima90-53 BAC library. Fluorescence in situ hybridization (FISH) was carried out on G..barbadense mitotic metaphase chromosomes by using the probes of specific repetitive sequence.According to the distribution of hybridization signal, we found four BAC monoclonal.The clone numbers are:428K20,412A1l,334E15,216B18.
     2. In situ hybridization results showed that 428K20 can produce strong signal in all the chromosomes of G.barbadense,428K20 produced a strong hybridization signal in besides the chromosome ends large chromosomes (A subgenome) of G.barbadense. However, hybridization signal could be found in the region near the centromere of small chromosomes (D subgenome).In G.arboreum, the signal distribution in accordance with large chromosomes (A subgenome)of G.barbadense but it can't produce hybridization signal in G.raimondii;422Al1 only was produced hybridization signal in large the chromosome(A subgenome) ends of G.barbaddense.It also could be produced hybridization signal in the chromosome ends of G.arboreum、G. herbaceum、Gherbaceum var.africanum. But it didn't produce hybridization signal in G.raimondii.It is therefore confirm that 428K20 and 412A11 are specific repetitive sequence of A genome,but 428K20 contains a transpositional element(sequence);334E15 produced hybridization signal in besides the chromosome ends large chromosomes(A subgenome)of G.barbadense,especially hybridization signal were very strong in the middle of large chromosome(A subgenome). Such BAC clones may be more relevant in the pima90-53 BAC library.It is a typical A subgenome specific repeat sequence;216B18 can produce hybridization signal in all the chromosome of G.Barbadense but six strong hybridization signal which are located at the ends of six chromosome. Such BAC clones may be also more relevant in the pima90-53 BAC library.According to hybridization signal,216B18 mainly contains 45S of repetitive sequence and a kind of interspersed repeat sequences which are distributed in all chromosomes of G.barbadense.
     3.428K20 and 412A11 was only constructed subclone library. The result of subcloning sequencing data indicated that 428K20 were contain mGhCIR291、 JESPR272、LIB5327-017-A1-N1-D12_P_S_Gh557 of micro-satellite sequences and gypsy-like retrotransposon in G..hirsutum,Gypsy-like retrotransponson may attended invasion from large chromosomes(A subgenome)to small chromosomes(D subgenome). While 412A11 was primarily predicted genes predicted protein, mRNA expression and miniature inverted repeat transposable element (MITE) of G..hirsutum. According to hybridization signal of A genome chromosomes, it is inferred that telomere or subtelomeric regions of A genome chromosomes may be contain miniature inverted repeat t ransposable element (MITE).
引文
1. 艾对元.基因组中重复序列的意义.《生命的化学》.2008,28(3):343-345.
    2. 白建荣,贾旭,王道文.小麦及其近缘种中基因组特异DNA重复序列的研究进展.遗传,2002,24(5):595-600.
    3. 别墅,王坤波,孔繁玲,等.棉花基因组重复序列研究进展.分子植物育种,2003,1(1):373-379.
    4. 陈丹.二倍体D组棉种染色体特异BAC克隆的筛选及其应用.硕士学位论文.华中农业大学,1-80.
    5. 陈凡国.野生一粒小麦BAC文库的构建、鉴定及着丝粒重复序列的克隆.山东大学博士学位论文.2002:1-103.
    6. 程华.BAC-FISH体系的构建及其初步应用.硕士学位论文.中国农业科学院,1-79.
    7. 董玉玮.荧光原位杂交技术研究现状.科技资讯,32:6-8.
    8. 洪义欢,钱凯,秦秋琳,等.东乡野生稻重复序列的克隆分析及染色体定位.扬州大学学报(农业与生命科学版).2006,27(3):57-61.
    9. 韩永华,宋运淳,金危危.玉米基因组重复序列的研究进展.玉米科学.2007,15(4):37-40.
    10.抗艳红,许寅生,龚学臣,等.真核生物重复序列的研究进展.河北北方学院学报(自然科学版).2006,22(2):23-26.
    11.刘成,杨足军,李光蓉,等.多年生簇毛麦基因组长末端重复序列片段的克隆、定位与应用.作物学报.2006,32(11):1642-1648.
    12.刘三宏.四倍体棉种起源与演化的FISH研究.硕士学位论文.中国农业科学院,2004,1-60.
    13.刘三宏,王坤波,宋国立.四倍体棉种的起源与演化.棉花学报.2003,15(5):304-308.
    14.凌建.基于端粒-FISH的棉花核型分析及高分辨率细胞学图的初步构建.博士学位论文.中国农业科学院,1-106.
    15.卢军,李乐玉,朱利泉.荧光原位杂交技术的研究进展及其在染色体识别应用中的展望.安徽农业科学,2008(3):911-913.
    16.宁顺斌,金危危,丁毅,宋运淳.基因组原位杂交比较玉米和水稻基因组同源性.科学通报,2000,22(45):2431-2434.
    17.孙海悦,张志宏.植物基因组中微型反向重复转座元件研究进展.西北植物学报.2007,27(12):2571-2576.
    18.唐益苗,马有志.植物反转录转座子及其在功能基因组学中的应用.植物资源遗传学报.2005,6(2):221-225
    19.唐宗祥,符书兰,任正隆,等.黑麦端部特异重复序列pSc200在新合成的不同小麦---黑麦双二倍体中的变异.中国农业科学.2008,41(11):3477-3481.
    20.唐宗祥.重复序列引起小麦染色体结构、基因组及性状的改变.博士学位论文.四川大学,2006,1-114.
    21.王春英,王坤波,王文奎,等.棉花gDNA体细胞染色体FISH技术.棉花学报,1999,11(2):79-83.
    22.王春英,王坤波,宋国立,等.棉花体细胞染色体rDNA-FISH技术.棉花学报,2001,13(2):75-77.
    23.吴嫚.冰草P基因组特异重复序列的筛选、克隆及SCAR标记的建立.硕士学位论文.西北农林科技大学,2007,1-71.
    24.吴琼.黄褐棉、达尔文棉的原位杂交研究及棉属D基因组着丝粒FISH探针筛选.博士学位论文.中国农业科学院,1-112.
    25.王石平,张启发.高等植物基因组中的反转录转座子.植物学报.1998,40(4):291-297.
    26.王世全,李平,翟文学,等.长片段水稻细菌人工染色体DNA的亚克隆文库的构建.四川农业大学学报.2000,18(3):197-200.
    27.王文生,王省芬,马峙英,等.棉花抗黄萎病相关基因筛选与亚克隆文库构建.华北农学报.2006,21(增刊):147-150.
    28.王文生.Pima90-53细菌人工染色体(BAC)文库构建及抗黄萎病相关基因筛选,硕士学位论文.河北农业大学,2006,1-59.
    29.王英,庄南生,黄东益.植物特异DNA序列应用研究进展.中国农学通报,2007,23(5):37-42.
    30.肖蕾,田园,吴昊.一种简便有效的菌落原位杂交法.生物化学与生物物理进展,1999,17(3):228-229.
    31.杨继.植物多倍体基因组的形成与进化.植物分类学报,2001,39(4):357-371[创刊50周年特刊].
    32.曾子贤,杨足君,刘成,等.小麦AB基因组中一个重复序列的分离、定位与应用.农业生物技术学报,2008,16(6):959-964.
    33.战爱斌,胡景杰,胡晓丽.富集文库—菌落原位杂交法筛选栉孔扇贝的微卫星标记.水产学报,2008,32(3):353-360.
    34.周建平,杨足君,冯娟,等.黑麦特异DNA重复序列的分离与鉴定.西南农业学报.2005,18(5):598-602.
    35.赵婷婷.荧光原位杂交技术的发展与应用.生命科学仪器,2008(6):38-41.
    36.张学勇,李大勇.小麦及其近亲基因组中的DNA重复序列研究进展.中国农业科学.2000,33(5):1-7.
    37.张志敏,熊国梅,王慧娟,等.简单重复序列的筛选与应用.《生命的化学》.2004,24(3):254-256.
    38. Adams S.P, Hartman T.P, Lim K.Y. et al. Loss and recovery of Arabidopsis-type telomere repeats equences 5'-(TTTAGGG)n-3'in the evolution of a major radiation of flowering plants. Proc RSoc Lond B Biol Sci,2001,268:1541-1546.
    39. Applequist W.L, Cronn R.C and Wendel. J. F. Comparative development of fiber in wild and cultivated cotton. Evol. Devel.2001,3:1-15.
    40. Arumuganathan K, Earle ED, Estimation of nuclear DNA contents of plants by flow cytometry. Plant Mol Biol Rep,1991,9:229-241.
    41. Bannister A.J, Zegerman P, Partridge J.F.et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.Nature,2001,410(6824):120-124.
    42. Beasley J.O. Hybridization. cytology, and polyploidy of Gossypium, Chronica Botanica,1941,6,394-395.
    43. Beasley J.O. The origin of American tetraploid Gossypium species. Am. Nat.1940, 74,285-286.
    44. Bennett, M.D. Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. In:Dover GA.. Flavell RB(eds) Genome evolution. Academic Press.London.1982,20:239-262
    45. Brubaker C.L, Paterson A.H, Wendel J F. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome,1999b,2:84-203.
    46. Brubaker, C.L. and J.F. Wendel. Reevaluating the origin of domesticated cotton (Gossypium hirsutum:Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). American Journal of Botany,1994,81:1309-1326.
    47. Chang S.B, Anderson L.K, Sherman J.D, Royer S and Stack S.M. Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome. Genetics,2007,176:2131-2138.
    48. Chen Z, Jeffrey, Brian E. Scheffler, Elizabeth D et al, Toward Sequencing Cotton (Gossypium) Genomes, Plant Physiol,2007,145:1304-1310.
    49. Cheng Z.K, Presting G.G and Buell C.R et al, High-Resolution Pachytene Chromosome Mapping of Bacterial Artificial Chromosomes Anchored by Genetic Markers Reveals the Centromere Location and the Distribution of Genetic Recombination Along Chromosome 10 of Rice Genetics.2001,157:1749-1757.
    50. Cheng Z, Buell C.R, Wing R.A, Gu M, and Jiang J. Toward a cytological characterization of the rice genome. Genome Res,2001,11:2133-2141.
    51. Cheng Z, Buell C.R, Wing R.A, and Jiang J. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res,2002, 10:379-387.
    52. Cheng Z, Dong F, Langdon T, Ouyang S, Buell C.B, Gu M.H, Blattner FR, and Jiang JFunctional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell,2002,14:1691-1704.
    53. Cherry J.P, Katterman F.R.H, and Endrizzi J.E. Seed esterases, leucine aminopeptidases and catalases of species of the genus Gossypium. Theor. Appl. Genet. 1972,42:218-226.
    54. Chuang J, Wang R, Harper L, and Zacheus W. High-Resolution Single-Copy Gene Fluorescence in Situ Hybridization and Its Use in the Construction of a Cytogenetic Map of Chromosome9.The Plant Cell,2006,36:1025-1034.
    55. Coghlan J.P, Aldred P, Haralambridis J, et al. Hybridization histochemistry. Anal. Biochem,1985,149:1-28.
    56. CoxA.V, Bennett S.T, ParokonnyA..S. et al. Comparison of plant telomere locations using a PCR-generated synthetic probe., A.Bot,1993,72:239-247.
    57. Crane C.F, Hanson R.E, Raska W.A, et al. Development and use of chromosomally unbalanced cytogenetic stocks for physical chromosome mapping in cotton (Gossypium hirsutum L.)Plant Genome Ⅱ Conference Abstract, Town & Country Conference Center, San Diego, CA, January,1994.
    58. Crane C.F, Price H.J, Stelly D.M&Czeshin, D.G. An Identification of a homeologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromo-somes of cotton (Gossypium hirsutum). Genome,993,36:1015-1022.
    59. Cronn R.C, Small R.L, Haselborn T, et al. Rapid diversification of the cotton genus (Gossypium:Malvaceae) revaled by analysis of sixteen nuclear and chloroplast genes. American J Botany,2002,9:707-725.
    60. Cronn R.C, Small R.L, Wendel J.F. Duplicated genes evolve independently following polyploid formation in cotton. Proceedings of the National Academy Sciences, USA, 1999,96:14406-14411.
    61. Cronn R.C, Zhao X.P, Paterson A.H, et al. Polymorphism and concerted evolution in a tandemly repeated gene family:5S ribosomal DNA in diploid and allopolyploid cottons. Molecular Evolution,1996,42:685-705.
    62. Cronn, R.C. and J.F. Wendel. Cryptic trysts, genomic mergers, and plant speciation. New Phytologist,2004,161:133-142.
    63. Cronn, R.C. and Adams K.L. Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques,2003,34: 726-734.
    64. Cronn, R.C., Small R.L., Haselkorn T, and Wendel J.F. Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution,2003,57(11), 2475-2489.
    65. Li D.Y and Zhang X.Y. Physical Localization of the 18S-5.8S-26S rDNA and sequence analysis of ITS regions in Thinopyrum ponticum (Poaceae:T riticeae): implications for concerted evolution. Annals of Botany,2002,90:445-452.
    66. DeJoode D. R., and Wendel J. F. Genetic diversity and origin of the Hawaiian Islands cotton Gossypium tomentosum. Am. J. Bot.1992,79:1311-1319.
    67. De Jong J.H, Fransz P, and Zabel P High resolution FISH in plants-techniques and applications. Trends Plant Sci,1999,4:258-263.
    68. Engh v.d and T.B. J. Estimating genomic is distance from DNA sequence location in cell nuclei by a random walk model. Science,1992,257:1410-1412.
    69. Edwards G.A and Endrizzi J.E. Cell size, nuclear size and DNA content relationships in gossypium, Can. J. Genet. Cytol.,1976,17:181-186.
    70. Fajkus J, Sykorova E, Andrew R. Telomeres in evolution and evolution of telomeres, Chromosome Research,2005,13:469-479.
    71. Feng Q, Zhang Y.J, Hao P, Wang S.Y, Fu G, Huang Y.C, et al. Sequence and analysis of rice chromosome 4. Nature,2002,420:316-320.
    72. Fransz P.F, Armstrong S, Alonso-Blanco C, F. TC, Torres-Ruiz RA, and J. G. Cytogenetics for the model system Arabidopsis thaliana. Plant J,1998,13:867-876.
    73. Fransz P.F, Armstrong S, Alonso-Blanco C, Fischer T.C, Torres-Ruiz RA, Jones G Cytogenetics for the model system Arabidopsis thaliana. Plant J,1998,13:867-876.
    74. Franz P.F, Armstrong S, de Jong J.H, Parnell L.D, van Druneu C, Dean C, Zabel P, Bisseling T, Jones GH. Integrated cytogenetic map of chromo-some arm 4S of A. thaliana:structural organization of heterochromatic knob and centromere region, Cell, 2000100:367-376.
    75. Fryxell P.A. A revised taxonomic interpretation of Gossypium L (Malvaceae). Rheedea,1992,2:108-165.
    76. Fuchs J, Brandes A., Schubert I. Telomere sequence localization and karyotype evolution in higher plants, Plant Syst.Evol,1995,196:227-241.
    77. Ganal M.W, Lapaitan N.L, Tanksley S.D. Macrostructure of the tomato telomeres, Plant Cell,1991,3:87-94.
    78. Gao W, Chen Z.J, Yu J.Z, Kohel R.J, Womack J.E, Stelly D.M. Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome. Mol Genet Genomics,2006,275:105-113.
    79. Gillam I.C, and Tener G.M. N4-(6-aminohexyl) cytidine and deoxycytidine nucleotides can be used to label DNA. Anal. Biochem,1986,157:199-207.
    80. Hanson R. E, Zwick M.S, Choi S.D, et al.Fluorescent in situ hybridization of a bacterial artificial chromosome. Genome,1995,38:646-651.
    81. Hanson R.E, Islam-Farid M.N, Percival E.A, et al.Distribution of 5s and 18s-28s rDNA loci in a tetraploid cotton (Gossypium hirsutum L.)and putative diploid ancestors. Chromosoma,1996,105:55-61.
    82. Hanson R.E, Sung-Sick Woo, Michael Zwick, et al.Chromosomal localization of bacterial artificial chromosome inserts by fluorescent in situ DNA hybridization in cotton (Gossypium hirsutum L.). Plant Genome II Conference Abstract, Town & Country Conference Center, San Diego, CA, January,1994.
    83. Hanson R.E, Xin-ping Zhao, Paterson A.H, et al. FISH indicates a dispersed repetitive element highly represented in the Gossypium hirsutum L.D-subgenome is absent from its putative ancestral diploid donor (Gossypium raimondii U.).Plant Genome IV Conference Abstract, Town & Country Conference Center, San Diego,CA, January,1995.
    84. Hanson R.E. Evolution of interspersed repetitive elements in Gossypium (Malvaceae). American journal of botany,1998,85(10):1364-1368.
    85. Hanson R.E. Evolution of interspersed repetitive elements in Gossypium (Malvaceae). American journal of botany,1998,85(10):1364-1368.
    86. Harland, S. C. In "The Genetics of Cotton". Jonathan Cape,1939, London.
    87. Heslop-harrison J.S, Schwarzacher T, Leitch A R. In situ hybridization,1991,13~ 15
    88. Heslop-Harrison JS,Brandes A,Schwarzacher T.Tandemly repeated DNA sequences and centromeric chromosomal regions of Arabidopsis species.chromosome Research,2003,(11):241-253.
    89. Heslop-Harrison JS,Murata M,Ogura Y, Schwarzacher T,Motoyoshi F.Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes.Plant Cell,1999,(11):31-42.
    90. Hutchinson J. B. Intra-specific differentiation in Gossypium hirsutum. Heredity,1951, 5:161-193.
    91. Hutchinson J. B. New evidence on the origin of the Old World cottons. Heredity, 1954,8:225-241.
    92. Hutchinson J. B., Stephens S. G, and Dodds K. S. The seed hairs of Gossypium. Ann. Bot.1945,9:361-368.
    93. Hiroshi M., Wu J. Z., Hiroyuki K. et al. Sequencing and characterization of telomere and subtelomere regions on rice chromosomes 1S,2S,2L,6L, S,7L and 8S. The Plant Joural,2006,46:206-217.
    94. Hulbert S.H, Gill B.S, and W.D. C. Interphase fluorescence in situ hybridization mapping a physical mapping strategy for plant species with large complex genomes. Mol Genet,1990,252:497 — 502.
    95. Ijdo J.W., Wells R.A., Baldini A. et al., Improved telomere detection using a telomere repeat probe (TTTAGGG)n generated by PCR, Nucleic Acids Research,1991b,19:478
    96. Jackson S.A, Dong F.G, and Jiang J.M Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J,1999,17:581-587.
    97. Jhanwag S.C, Neel B.G, Hayward W, et al. Localization of the cellularoncogenes ABL, SIS and FES on human germ-line chromosomes. Cytogenet. Cell Genet 1984, 38:73-75.
    98. Jiang J.M, Gill B.S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome,2006,49:1057-1068.
    99. Keith L, Adams Jonathan F, Wendel. Exploring the genomic mysteries of polyploidy in cotton. Biological Journal of the Linnean Society,2004,82:573-581.
    100. Kessler, C. The digoxigenin system:anti-digoxigenin technology-a survey on the concept and realization of a novel bioanalytic indicator system. Mol. Cell. Probes, 19911,01:161-205.
    101. Kim J.S, Klein P.E, Klein R.R, Price H.J, Mullet J.E, Stelly D.M. Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics,2005,169:955-965.
    102. Liu Q, Brubaker C.L, Green A.G, et al. Evolution of the FAD2-1 fatty acid desaturase 5'UTR intron and the molecular systematics of Gossypium (Malvaceae). American J Botany,2001b,88:92-102.
    103. Liu B. and Wendel J.F. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution,2003,29:365-379.
    104. McEachern M.J., Krauskopf A. and Blackburn, E.H. et al., Telomeres and their control, Annu. Rev. Genet.,2000,34,331-358.
    105. Ning S.B, Jin W.W, Wang L, et al. Comparative genomic research between maize and rice using genomic in situ hybridization. Chin Sci Bull,2001,4b:656-658
    106. Pontes O, Lawrence R.J, Neves N, et al. Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis. Proc Natl. Acad. Sci. USA.,2003,100: 11418-11423.
    107. Raina S.N, Rani V. GISH technology in plant genome research. Methods Cell Sci, 2001,23:83-104
    108. Rong J, Bowers J.E, Schulze S.R, et al. Comparative genomics of Gossypium and Arabidopsis:unraveling the consequences of both ancient and recent polyploidy. Genome Res,2005,15:1198-1210
    109. Rong J, et al. A 3347-Locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics,2004,166:389-417.
    110. Saha S, Raska D.A, Stelly D.M. Upland cotton (Gossypium hirsutum L.) ×Hawaiian cotton (G. tomentosum Nutt. ex. Seem) F1 hybrid hypoaneuploid chromosome substitution series. J Cotton Sci,2006,10:146-154
    111. Senchina, D.S., I. Alvarez, R.C. Cronn, B. Liu, J. Rong, R.D. Noyes, A.H. Paterson, R.A. Wing, T.A. Wilkins, and J.F. Wendel. Rate variation among nuclear genes and the age of polyploidy in Gossypium. Mol. Biol. Evol.2003,20(4):633-643.
    112. Small, R. L., and Wendel, J. F. Phylogeny, duplication, and intraspecific variation of A sequences in New World diploid cottons (Gossypium L. Malvaceae). Mol. Phyl. Evol,2000,16:73-84.
    113. Small R.S., Cronn R.C., and Wendel J. F. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany,2004,17:145-170.
    114. Wendel JF. New World Tetraploid Cottons Contain Old World Cytoplasm. Proceedings of the National Academy Sciences, USA,1989,86:4132-4236.
    115. Wendel JF, Weedenn F, Visualization and interpretation of plant isozymes.-In Solitis DE., Solitis PS., (Eds):Isozymes in plant biology,1989,5-45. Portland, OR:Dioscorides Press.
    116. Wendel JF, Percy RG. Allozyme diversity and introgression in the Galapagos endemic Gossypium darwinii and its relationship to continental G. barbadense. Biochem. Syst.Ecol.1990,18:517-528.
    117. Wendel JF, Albert VA. Phylogenetics of the cotton genus (Gossypium L.): Character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Systematic Botany,1992,17: 115-143.
    118. Wendel JF, Rowley R, Stewart JM. Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Plant Syst.Evol,1994,192:49-59.
    119. Wendel JF. Cotton. In:Evolution of Crop Plants (N. Simmonds and J. Smartt, eds.), 1995, pp.358-366. Longman, London.
    120. Wendel JF, Schnabel A, and Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl Acad. Sci. USA, 1995,92:280-284.
    121. Wendel JF, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phyl. Evol,1995,4:298-313.
    122. Wendel J F. Genome evolution in polyploids plant. Molecular Biology,2000,42: 225-249.
    123.Wendel JF, Wessler SR. Retrotransposon-mediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA.,2000,97:6250-6252.
    124. Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton. Advances in Agronomy.2002,78:139-180.
    125. Wendel, JF. Genome evolution in polyploids. Plant Molecular Biology,2000,42: 225-249.
    126. Wendel JF,Brobaker CL,Seelanan T.The origin and evolution of Gossypium.Physiology of cotton,2010,pp 1-18.
    127. Zhao XP, Ji YF, Ding X, et al. Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium). Plant Mol.Bio,1998,38:1031-1042.
    128. Zhao XP, Wing RA, Paterson AH. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium L.). Genome,1995,38:1177-1188.
    129. Zhao XP, Si Y, Hanson RE, et al. Dispersed repetitive DNA has spread to new genome since polyploid formation in cotton.Genome Research,1998,8(5):479-492.
    130. Zhong XB, Fransz PF. High resolution mapping on pachytene chromosome and extended DNA fibers by fluorescene in situ hybridization. Plant Molecular Biology Reporter,1996,14:232-242.
    131. Zhong XB. Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescence in situ hybridization (FISH). Chromosome Res,1996,4(1):24-28.