基于土—结构相互作用的地铁车站抗震的动力有限元响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着地下结构建设规模的不断扩大,地下结构的抗震设计及其安全性越来越成为工程界所关心的重要课题。土-地下结构动力相互作用问题是成为地下结构抗震设计研究的重要内容。本文根据土-结构动力相互作用的基本理论,利用ANSYS软件建立了土-地下结构相互作用的有限元模型,取得的主要成果如下:
     1、分别对自由场地和土-地下结构动力相互作用体系进行了水平地震、竖向地震和水平-竖向地震耦合作用下的时程反应分析,对不同工况的计算结果进行了对比研究。
     2、根据现行规范对上海某地铁车站在各项荷载进行基本组合的条件下进行静力分析,得出在静力条件下,地铁车站的中柱受到的弯矩和剪力很小,主要承受轴力,弯矩和剪力的最大值发生在车站底板与侧墙的结合处。并与结构在地震过程中产生的结构内力做对比。
     3、对该车站所处地质环境进行地震的自由场分析,得出EI-Centro波、迁安波、阪神波在基岩水平方向输入时,虽然引起的地表加速度峰值相同,但在基底输入的加速度峰值和引起的地表位移峰值并不相同。证明了位移反应不仅与输入地震波的峰值有关,还与其频率组成有关。
     4、对地铁车站分别进行了水平地震波和水平-竖直耦合地震波反应分析,得出耦合作用增加了体系的最大反应。因此,在进行地震反应分析时,只考虑水平剪切破坏的做法,对工程抗震是不够安全的,应充分考虑耦合地震的作用。
     5、在地下结构的动力反应分析中,顶板中部的变形和受力较大,两侧壁角隅处的应力高度集中,变形也较大。因此在设计和施工过程中,应对上述部位予以重视。
     6、增大车站主体结构的密度和刚度对土-结构体系的自振频率改变很小,对抵抗地震作用下结构的位移效果也很小,反而结构应力增加很多。土-结构体系的自振频率主要受结构周围土体控制,土体弹性模量较大时,结构在地震作用下的位移和应力会明显减小。
Recently, with the expanding of underground structure construction, anti-seismic design of the underground structure as well as its security assessment become an topic that is attracting more and more concern, thus making soil and underground structure dynamic interaction an important part of such a design. Under the framework of soil-underground structure dynamic interaction theories, this paper has established a finite element model of soil-underground structure interaction with the help of ANSYS software, and has made the following achievements:
     1 Time-history response analysis has been conducted on free field and soil-underground structure dynamic interaction respectively under the effect of horizontal seism, vertical seism and the coupling of horizontal-vertical seism.
     2 According to current specifications, a static analysis has been carried out on the basic combinations of various loads for a subway station in Shanghai. And the analysis shows that under static condition, the central pillar of the subway station is bearing mainly the axial force, and is under small bending moment and shearing force, the maximal force of the latter occurs at the joint of the station floor and the flank walls. The result is compared with internal force that the structure produces during seismic process.
     3 Analysis on the seismic free field for the geological environment of the subway station shows that, when EI-Centro wave, Qian'an region wave and kobe wave are input along the horizontal direction of bed rocks, though the peak values of surface acceleration are the same, the acceleration peak values of the base and the surface displacement peak values are different. This proves that displacement response is not only related with the peak value of seismic wave that is input, but also with the combination of frequencies.
     4 Horizontal seismic wave response analysis and horizontal-vertical coupling seismic wave response analysis on the subway station are conducted respectively, and the result shows that coupling has increased the maximum response of the system. Therefore, when doing seismic response analysis, considering only horizontal shear failure will not ensure anti-seismic security of project, and coupling seismic function shall be taken into full consideration.
     5 In the underground structure dynamic response analysis, central part of the roof is under great force and has a large degree of distortion, so do the corners of the flank walls for the high concentration of forces. Therefore, aforementioned parts shall be given special attention to in design and construction.
     6 Increasing density and rigidity of station body structure has little influence on changes of natural frequency of vibration of the soil-structure system as well as structure displacement under anti-seismic effect, but structure stress grows a lot. Natural frequency of vibration of the soil-structure system is mainly determined by structure surrounding soils, and displacement and stress of the structure under seismic effect dwindle markedly with the increase of the elastic modulus of the soils.
引文
[1]于翔,陈启亮,赵跃堂等,地下结构抗震研究方法及其现状[J].解放军理工大学学报,2000,第5期
    [2]孙钧,候学渊,地下结构(上、下册)[M].北京:科学出版社,1987.
    [3]福季耶娃著.地震区地下结构支护的计算[M].徐显毅译.北京::煤炭出版社,1986.
    [4]Thomas R K. Earthquake design criteria for subways[J]. Journal of the Structural Division, Procreedings of ASCE.1969(6):1213-1231.
    [5]高田至郎.地下生命线的耐震设计[J].隧道译丛,1991(7):44-51.
    [6]周德培.地铁抗震设计准则[J].世界隧道,1995(2):36-45.
    [7]川岛一彦.地下构筑物口耐震设计[M].日本:鹿岛出版会,1994.
    [8]林皋.地下结构的抗震设计[J].土木工程学报,1996,29(1):15-24.
    [9]邵根大.强地震作用下铁路隧道衬砌耐震性的研究[R].铁道部科学研究院特点建筑研究所研究报告,1990.
    [10]骆文海.强地震作用下铁路隧道衬砌耐震性的研究[R].铁道部科学研究院特点建筑研究所研究报告,1990.
    [11]宫必宁、赵大鹏地下结构与土动力相互作用试验研究[J]地下空间,2002,第4期
    [12]高峰,关宝树,深圳地铁地震反应分析.西南交通大学学报,2001,-第4期
    [13]姜忻良,宋丽梅,软土地层中地下隧道结构地震反应分析[J].地震工程与工程振动,1999,第1期
    [14]胡晓燕,周健,胡晓虎,地震引起的竖向应力对地铁隧道的影响[J].工程抗震,2000,第2期
    [15]国胜兵,赵毅等,地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间,2002,第4期
    [16]林皋.地下结构抗震问题[C].第四届全国地震工程会议,1994.
    [17]John C M S, Zahrah T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology.1987,21:65-197.
    [18]Shukla D K, Rizzo P C, Stephenson D E. Earthquake load analysis of tunnels and shafts[C]. Proceeding of the Seventh World Conference on Earthquake Enginnering. 1980,8:20-28
    [19]John P. W, Song C. Dynamic-stiffness matrix of unbounded soil by finite-element multicell cloning [J]. Earthquake Engineering and Structural Dynamics, 1994,23:233-250.
    [20]Dasgupta G. A finite element formulation for unbo unded homogeneous continua[J]. Mech. ASME,1982,49:136-140.
    [21]徐文焕.地下结构抗震分析中若干若干问题的探讨[J].西南交通大学学报,1993(3):1-5.
    [22]林皋,地下结构抗震分析综述(上),世界地震工程,1990, (2):1-10
    [23]博嘉科技.有限元分析软件ANSYS融会与贯通.北京:中国水利水电出版社,2002.
    [24]ANSYSIne.ANSYS8.1 Doeumentation,2002
    [25]李小军,廖振鹏,张克绪,土体动力本构模型评述,世界地震工程,1993(4):15~18
    [26]吴世明等,土动力学,北京:中国建筑工业出版社,2000,271~306,75~106
    [27]李小军,廖振鹏,张克绪,土体动力本构模型评述,世界地震工程,1993(4):15~18
    [28]徐干成,谢定义,郑颖人,岩土材料弹塑性动本构模型研究概况,岩土力学,1993,14(3):81~88
    [29]刘汉龙,余湘娟,土动力学与岩土地震工程研究进展,河海大学学报,1999,27(1):6-9
    [30]周健,白冰,徐建平,土动力学理论与计算,北京:中国建筑工业出版社,2001,91-108,
    [31]王杰贤,动力地基与基础,北京:科学出版社,2001,41~61
    [32]Mroz Z., On the description of anisotropic hardening, J.Mech.and Physics of Solids,1967,15:163~175
    [33]Dafalias Y.F.and Popov E.P., A model of nonlinearly hardening materials for complex loadings, Acta.Mechanics,1975,21:173~192
    [34]谢定义,土动力学,陕西:西安交通大学出版社,1988
    [35]Thomas R.K. Earthquake design criteria for subways [J]. Journal of the Structural Division, Proceedings of ASCE.1969(6):1213~1231.
    [36]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木程学报,1998,31(3):55-64
    [37]王勖成等.有限元法基本原理和数值方法[M].北京:清华大学出版社1997.
    [38]李田.结构时程动力分析中的阻尼取值研究.土木工程学报,1997,30(3):68-73
    [39]周锡元,王广军,苏经宇.场地·地基·设计地震[M].北京:地震出版社,1991.
    [40]Idriss IM, Seed H B. Seismic response of horizontal soil layers[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1968,94 (4):1002103.
    [41]Wolf J P,著.吴世明,译.土-结构动力相互作用[M].北京:地震出版社,1989.
    [42]Davis R. Effects of weathering on site response [J]. Earthquake Engineering and Structure Dynamics,1995,24 (2):3012309.
    [43]Zhao J X. Estimating modal parameters for a simple soft-soil site having a linear distribution of shear wave velocity with depth[J].Earthquake Engineering and Structure Dynamics,1996,25 (2):1632178.
    [44]石玉成,蔡红卫,徐晖平.场地地震反应分析中的不确定性及其处理方法[J].西北地震学报,1999,21(3):2422247.
    [45]奕茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式[J].岩土工程学报,2003,25(6):7472749.
    [46]徐永林.软土覆盖层地震面波的地震动反应及台湾8级地震对上海高层建筑影响的估计[J].西北地震学报,2004,26(4):3092314.
    [47]郭晓,张元生,莘海亮,等.祁连山中东段地区非弹性衰减系数-震源参数和场地响应研究[J].西北地震学报,2007,29(4):3192325.
    [48]林皋,地下结构抗震分析综述(下)[J].世界地震工程,1990年3期
    [49]蔡宏英,周健,李相裕,深厚覆盖软土地层多向地震动力反应[J].同济大学学报,2000,第2期
    [50]GB50009-2001.建筑结构荷载规范.中国建筑工业出版社2001
    [51]GB5011-2001.建筑抗震设计规范.中国建筑工业出版社2001
    [52]GB50225-2005.人民防空工程设计规范.中国计划出版社.2005
    [53]GB50157-2003.地铁设计规范.中国计划出版社.2003
    [54]马险峰.神户市地铁车站的震害及修复[J].铁道工程学报,1998(增刊):18-23
    [55]曹炳政罗奇峰马硕刘晶波神户大开地铁车站的地震反应分析[J]地震工程与工程振动,2002,第4期
    [56]杨春田,日本阪神地震地铁工程的震害分析[J].工程抗震,1996,第2期
    [57]于翔,钱七虎,赵跃堂,郭志昆,地铁工程结构破坏的竖向地震力影响分析[J]解放军理工大学学报(自然科学版),2001,第3期
    [58]李山有,廖振鹏,周正华.大型结构地震反应数值模拟中的波动输入.地震工程与工程振动,2001.6(2):1-5.
    [59]宗福开.波传播问题中有限元离散的频散特性及离散化准则[J].爆炸与冲击,1984,8(4):16~23.
    [60]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [61]王松涛,曹资,现代抗震设计方法[M].北京:中国建筑工业出版社,1997:58~80.
    [62]高峰,关宝树.隧道地震反应分析中几种边界条件的比较.甘肃科学学报,2004,16(1):109~112.
    [63]林皋,梁青槐.地下结构的抗震设计.土木工程学报.1996,29(1):15~24.
    [64]Dowding C.H.and Rozen A, Damage to Rock Tunnels from Earthquake Shaking, Journal of the Geotechnical Engineering Division, ASCE, Vol.104, No.GT2, PP175-191,1978.
    [65]刘晶波,杜义欣,闫秋实,粘弹性人工边界及地震动输入在通用有限元软件中的实现,防灾减灾工程学报,2007,27:37-42