氮化铝基导电陶瓷高压燃烧合成工艺与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电陶瓷是集金属电学性质和陶瓷结构特性于一体的高性能功能材料,具有一般金属所不能比拟的物理化学性质。本文以Al+N2 AlN反应为基础,添加一定量的TiB_2或TiN导电相,在100MPa高压氮气下,采用燃烧合成工艺制备了AlN基复相导电陶瓷。通过调节导电相、绝缘相的比例,获得不同导电率的高温导电陶瓷。由于体系各组分均具有很高的熔点,因而该体系导电陶瓷具有优良的高温性能,同时具有极好的耐腐蚀和耐磨损特性。
     本文首先着重研究了AlN-TiB_2导电陶瓷燃烧合成机理、导电性能和抗氧化性能。研究表明,随着导电相TiB_2含量的增加,产物的致密度、抗弯强度、硬度和断裂韧性均呈现先增加后降低的趋势,在TiB_2含量为45%时出现峰值。这是由于在燃烧合成反应区熔融的Al在TiB_2表面漫流,发生强烈的液相烧结,同时在外部压力作用下实现致密化。Al与TiB_2的比例过高或过低均不利于液相烧结的进行。同时,随着导电相TiB_2体积含量的增加,产物的电阻率下降。TiB_2体积含量为30~60%时,AlN-TiB_2体系具有良好的导电性,电阻率位于1800~150μ?·cm之间。
     其次,本文采用原位合成的方式(B4C+Si BN+SiC)引入BN相,利用TiN和TiB_2相近的物理性能,同时为了降低反应的复杂性(TiB_2+N2 TiN+BN),以TiN替代TiB_2,燃烧合成制备具有良好力学性能和导电性能的AlN-TiN-BN复合导电陶瓷。热力学分析表明,在100MPa反应压力下,燃烧温度较低时, TiN为稳定相;当燃烧温度较高时,将发生TiN+B4C TiC+TiB_2+N2的反应,产物的X射线衍射分析验证了上述的分析。导电相TiN含量对力学性能和电阻率的影响与AlN-TiB_2体系类似。另外,随着AlN-TiN-BN体系中原位生成的BN含量的增加,产物的致密度和强度下降,但产物的抗热震性显著提高。当BN含量为30%、40%时,产物的残余强度随热震温差的增加未发生明显的变化,抗热震性能优良。
     最后,为改善AlN-TiB_2复相导电陶瓷的力学性能,在AlN-TiB_2体系中加入SiC,研究AlN-SiC固溶强化对产物性能的影响。研究表明,在燃烧合成高温下,产物中AlN-SiC完全固溶。随着SiC含量的增加,一方面固溶强化作用增强;另一方面随着SiC含量的增加,Al含量下降,致密化过程减弱,在正反两方面因素作用下,产物的致密度、抗弯强度呈现先增加后降低的规律,在SiC含量为35%时出现峰值。
     对AlN-SiC-TiB_2体系的燃烧合成产物进行了热处理,研究了热处理温度(600-1200oC)和保温时间(1-10h)对产物性能和微观结构的影响。随热处理温度的升高和保温时间的延长,陶瓷试样的力学性能得到显著提高,得到了抗弯强度达517.8MPa、断裂韧性5.79MPa?m1/2、洛氏硬度94.1、致密度达95%的AlN-SiC-TiB_2陶瓷。研究了热处理产物的表面背散射相和透射相,结果表明:存在明显的AlN-SiC分相现象并在AlN基体和TiB_2颗粒的界面处观察到大量的纳米尺寸的TiB_2晶体析出相。热处理工艺增韧增强机理主要有:一是热处理工艺减弱或消除了存在于燃烧合成试样中的热应力;二是热处理后,固溶体的分相析出的富SiC相固溶体起到了颗粒弥散强化的作用;三是AlN-SiC基体中析出的TiB_2纳米晶粒,使晶格畸变降低,内应力得以释放,提高了产物的力学性能。
     另外,还研究了AlN-TiB_2体系和AlN-SiC-TiB_2体系的恒温氧化行为,两者的氧化增重与时间的关系均符合抛物线规律,后者的氧化速率和氧化层厚度远低于前者,抗氧化性能明显优于前者。两者的低温氧化产物以金红石结构的TiO2为主,AlN-TiB_2体系的高温氧化产物为Al2TiO5,氧化产物Al4B2O9、Al18B4O33的形成使得AlN-TiB_2陶瓷具有良好的自愈合性,因而AlN-TiB_2陶瓷具有良好的抗氧化性;而AlN-SiC-TiB_2体系的高温氧化产物以高强、低模量、低热膨胀系数的长棒状莫来石Al6Si2O13晶相为主,使其具有优异的抗高温氧化性能。
The conductive ceramics is a kind of high-performance functional material, which combines the electrical properties of metal and structural properties. Therefore it has many advantages over common metal in certain physicochemical properties. In this paper, based on the reaction Al+N2 AlN, with the proportional additive of TiB_2 or TiN conductive phase, AlN-based conductive ceramic has been fabricated by the technology of combustion synthesis under the 100Mpa nitrogen atmosphere. Through adjusting the ratio of conductive phase and insulating phase, high temperature conductive ceramic with different conductivity can be obtained. Because each composition in this new composite ceramic has a high melting point, this sort of conductive ceramic system has some special features like good high temperature properties, excellent corrosion resistance and anti-wear property.
     Firstly, much more focuses have been paid on the combustion synthetic mechanism, conductive property and anti-oxidation property of AlN-TiB_2 composite conductive ceramics. Some researches show that: with the increase of the content of TiB_2, material properties just like relative density, Rockwell hardness, flexural strength and fracture toughness have the similar tendency of first increment and later decrement. And when the TiB_2 content is up to 45%, all mechanical properties have reached the peak value. This regularity can be explained by the densification mechanism. In the combustion synthesis reaction region, the melting Al will overflow on the surface of TiB_2 and strong liquid sintering will happen. At the same time densification can realize under the action of external pressure. Also with the increase of volume content of TiB_2 conductive phase, the electrical resistivity of samples decreases. When the volume content of TiB_2 is between 30% and 60%, the AlN-TiB_2 system has a good conductive property and the conductivity is around 1800~150μ?·cm.
     Secondly, the method of in situ synthesis is used to introduce the BN phase (B4C+Si BN+SiC). Meanwhile in order to reduce the complication of reaction TiB_2+N2 TiN+BN, TiN is used to replace the TiB_2 and a new composite ceramic AlN-TiN system is obtained. The results of thermodynamic analysis show that when the reaction occurs under high pressure (100Mpa) and low combustion temperature, TiN is a steady phase. While under high combustion temperature, the reaction of TiN+B4C TiC+TiB_2+N2 will happen. In fact the XRD results also validate the above analysis. And the influence of TiN content on the mechanical property and electrical resistivity of samples is similar to the AlN-TiB_2 ceramic system. With the increase of BN content, the relative density and strength of sample decrease, however the thermal shock resistance has been greatly improved. When the BN content is 30% or 40%, the residual strength of sample change little with the increase of heat shock temperature difference and it shows an excellent property of thermal shock resistance.
     Finally, SiC powders are introduced into the AlN-TiB_2 system to getting AlN-SiC-TiB_2 composite ceramic system and the solution strengthening effect of AlN-SiC to the sample property is studied. Research results show that AlN-SiC in the sample is fully solid solution under the high temperature during the combustion process. With the increase of SiC content, on the one hand, the solid solution effect increase, while on the other hand due to the decrease of Al content, the densification procedure is weakened. So with these cons and pros, the relative density and flexural strength both have a regularity of first increase and later decrease. Especially, when the SiC content is 35%, all the properties reach the peak value.
     Heat treatments are carried to improve the properties such as mechanical property and microstructure of AlN-SiC-TiB_2 sample after 600-1200℃for 1-10h. Obviously, with the temperature increasing and the prolongation of holding time, the mechanical properties have been greatly improved. AlN-SiC-TiB_2 composite ceramic has been fabricated by the optimum technology, whose relative density is 95%, flexural strength is high to 517.8MPa, fracture toughness is 5.79MPa?m1/2 and the Rockwell hardness is 94.1. Another studying in XRD and SEM show that: there is obvious phase separation is observed and this phenomena is becoming more and more intensified with the increase of heat treatment temperature and holding time. More importantly, the TEM results indicate that there is a lot of nano-scale TiB_2 crystal precipitated phase in the interface of AlN and TiB_2 particles.
     Accordingly, three different kinds of toughening and reinforcing mechanism of AlN-SiC-TiB_2 system have been discussed. The first one is that heat treatment technology has reduced the thermal stress in the combustion samples, the second one is after heat treatment the rich SiC from the phase separation of solid solution phase will have a function of particles dispersion strengthening. The third one is the uniform distribution of nano-scale TiB_2 which is precipitated between the AlN and TiB_2 particles phase interface, so a kind of composition gradient effect is formed between two phases to highlight the fracture toughness of samples.
     In addtion, the oxidation behavior under the constant temperature of AlN-TiB_2 and AlN-SiC-TiB_2 composite ceramics is studied. The oxidation experiment results show that: the relationship between oxidation weight gain and oxidation time satisfies the parabolic law. The oxidation rate and the scale thickness of AlN-SiC- TiB_2 system increase at a slow rate with the increase of oxidation temperature, and its oxidation resistance have advantage over the AlN-TiB_2 system. The low temperature oxidation products of both system are mainly rutile structure TiO2. In addition the formation of Al4B2O9、Al18B4O33 makes the AlN-TiB_2 ceramic has a good property of self-sealing and the high temperature oxide of AlN-TiB_2 is Al2TiO5. The high temperature oxidation products of AlN-SiC-TiB_2 system are Al6Si2O13 with long rods, which have specific properties such as high strength, low modulus and low thermal expansion coefficient. Therefore both composite ceramics have good anti-oxidation property.
引文
1 L. M. Sheppard. Aluminum Nitride-a Versatile but Challenging Material. Am. Cera. Bull. 1990,69(11):180~181
    2金志浩,高积强,乔冠军.工程陶瓷材料.西安交通大学出版社. 2000:233~238
    3樱井良文,小泉光惠等.新型陶瓷——材料及其应用.中国建筑工业出版社. 1983:126~148
    4 A. G. Merzhanov. SHS Research and Development Handbook. Chernogolovka. Russian Academy of Sciences. 1999: 231~235.
    5 K. C. Patil, S. T. Aruna, S. Ekambaram. Combustion synthesis. Curr Opin Solid State Mater Sci 1997, (2):158~65
    6 F. Maglia, U. Anselmi-Tamurini, N. Bertolino, C. Milanese, Z. A. Munir. Synthesis of Cr–Si Intermetallic Compounds by Field-activated Combustion Synthesis. J Mater Res 2000, (15):1098~1099
    7 J. J. Moore, H. J. Feng. Combustion Synthesis of Advanced Materials: part I Reaction Parameters. Prog Mater Sci 1995, (39):273~343
    8张少卿.自蔓延高温合成-无机材料制造所技术.材料工程. 1993, (7):41~44
    9王为民,傅正义.材料合成新技术-自蔓延高温合成.材料导报. 1993, (5): 47~50
    10 J. B. Holt, Z. A. Munir. Combustion Synthesis of Titanium Carbide: Theroy and Experiment. J of Mater. Sci. 1986, (21): 251~257
    11 A. Iskakova. Synthesis and Study of Physics-chemical Properties and of Catalyst on the Base of and Catalyst Actives Concentrates. Slags and ashes, Abs Lst Inter sym SHS Alma-ata. 1991,(10): 23~28
    12 N. E. Christensen, I. Gorczyca. Calculated Structural Phase Transitions of Aluminum Nitride under Pressure. Solid State Commun. 1977, 23: 815~819
    13卡恩等.《材料科学与技术丛书》(第7卷)《陶瓷》.科学出版社,1998
    14周和平等.氮化铝陶瓷的研究与应用,硅酸盐学报. 1998, 26(4):517~522
    15王岱峰等.高导热AlN陶瓷研究进展.材料导报. 1998, 12(1): 29~31
    16 K. Komeya, H. Inoue, A. Tsuge, Y. K. Shi. Effect of Various Additives on Sintering of Aluminum Nitride. J. Am. Ceram. Soc. 1981, 89(6): 330~336
    17 A. Virkar, T. Jackson, R. Cutler. Thermodynamic and Kinetic Effects of Oxygen Removal on the Thermal Conductivity of Aluminum Nitride. J. Am. Ceram. Soc. 1989, 72(11): 2031~2032
    18 T. B. Jackson, A. V. Virkar, K. L. More, R. B. Dinwiddie, R. A. Cutler. High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect Thermodynamic Kinetic and Microstructural factors. J. Am. Ceram. Soc. 1997, 80(6):1421~1436
    19周和平,周劲松等.添加CaF2-Y2O3的AlN陶瓷中的显微结构及热导性质.无机材料学报. 1995, 10(4):439~443
    20 J. R. Groza, H. R. Subhash, Y. Kazuo. Plasma Activated Sintering of Addtive-free AlN Powder to Near-theoretical Density. J. Mater. Res. 1992, 7(10): 2643~2648
    21徐耕夫等.氮化铝陶瓷的微波烧结研究.硅酸盐学报. 1997, 25(1): 89~94
    22 F. D. Miyashiro. Characterization of the Microstructure of Sintered AlN by Transmission Electron Microscopy. IEEE Trans. Compon. Hybrids. And Manuf. Technol. 1990, 13(2):313~319
    23内田泰.散热性好的AlN封装瞄准消费领域.电子材料. 1993, (5):6~11
    24 V. I. Matkovich, J. Economy. Boron and refractory borides. New York: Springer-Verlag, 1977: 78
    25何福成,朱正和编.结构化学.人民教育出版社. 1979
    26张金咏. TiB2及其金属复合材料的制备、结构与性能.武汉工业大学硕士学位论文. 1999:35~38
    27 A. D. Hoke. Microstructural Properties of Combustion Synthesized and Dynamically Consolidated Titanium Boride and Titanium Carbide. J. Am. Cceram. Soc. 1995, 178(2):275~278
    28张国军,鲁默. BN-TiB2导电陶瓷的导电性与耐腐蚀性.仪表材料. 1990,
    21(1): 50~56
    29罗学涛,谢小林,袁润章.热压烧结TiB2陶瓷的显微结构和力学性能研究.无机材料学报. 2000, 15(30):541~545
    30沈鸿才编.结构陶瓷及应用.国防工业出版社. 1988:134~141
    31 K. Grjotheim,J. Thonstad. Aluminium. 1973, (49):803
    32龚江宏.陶瓷材料断裂力学.清华大学出版社. 1999:226
    33陈昌明,张立同.硼化物陶瓷及其应用.兵器材料科学与工程. 1996, 20(2):18
    34向新,秦岩. TiB2及其复合材料的研究进展.陶瓷学报. 1999, 20(2):112~117
    35王玉成,傅正义. TiB2-BN复相导电陶瓷的研究进展.武汉工业大学学报. 2000, 22(5):35~37
    36沈峰,黄向东,李强,刘旭俐.复相陶瓷蒸发舟的研究进展.中国陶瓷, 2006, 42(2):15~18
    37 M. K. Bannister, M. V. Swain. A Preliminary Investigation of the Corrosion of aTiB2-BN-AlN Composite during Alumimium Evaporation. Ceramic International. 1989,15:375~382
    38张国军. BN-AlN-TiB2导电复相陶瓷的熔铝腐蚀机理及其提高耐蚀性途径.功能材料. 1992,23(3):175~177
    39张国军.反应热压法制备BN-AlN-TiB2导电复相陶瓷.中国陶瓷. 1996, 24(2):175~189
    40曾照强,陈英杰,吴崇隽,胡晓清,苗赫濯.反应热压法制备TiB2/AlN复合陶瓷.金属学报. 1999, 35(6):659~662
    41 L. H. Li, H. E. Kim, E. S. Kang. Sintering and Mechanical Properties of Titanium Diboride with Aluminum Nitride as a Sintering Aid. Journal of the European Ceramic Society. 2002, (22):973~977
    42 I. A. Podchernyaeva, A. D. Panasyuk, V. P. Katashinskii et al. Structure and Properties of TiB2-AlN Coatings Made by Spark and Laser Methods. Powder Metallurgy and Metal Ceramics. 2000, (39):11~12
    43 G. F. Xu. Microwave Sintering and Properties of AlN/TiB2 Composite. J. Mater. Res. 2003, 18(1):66~76
    44 X. Y. Zhang, Shou-Hong Tan, Dong-Liang Jiang. AlN-TiB2 composites fa bricated by spark plasma sintering. Ceramics Internationl. 2005, (31):267~270
    45王玉成. TiB2-BN复相陶瓷的制备及性能研究.武汉理工大学博士论文. 2002
    46 Z. Y. Fu, H. Wang, W. M. Wang, R. Z. Yuan. Composites Fabricated by self-propagating High-temperature Synthesis. Journal of Materials Process Technology. 2003, 137(1-3):30~34
    47郑永挺. AlN陶瓷燃烧合成的研究.哈尔滨工业大学博士论文. 2000
    48 X. J. Zhang, Y. T. Zheng, J. C. Han. Low-pressure Jection Molding and SHS-HIP without Envelope of AlN-TiB2 ceramic slender tube with blind hole. Materials and Design. 2005, (26):410~416
    49 W. Rafaniello, M.R. Plichta and A.V. Virkar. J. Am. Ceram. Soc. 1983, (66):272-276
    50 A. Zangvil, R.Ruh. Phase Relationship in the Silicon Carbide-Aluminum N itride System. J.Am .C eram.Soc.1988, (71):884~890.
    51 G. Ervin. Silicon Carbide-Aluminum Nitride Refractory Composites, U.S. P atent No.3,492,153, North American Rockwell Corp.,Jan.27 ,1970.
    52 W. Rafaniello, K. Cho and A.V. Virkar. Fabrication and Characterization of SiC-AlN Alloys. J.Mater.Sci. 1981, 16(12): 3479-3488
    53 R. Ruh and A. Zangvil. Compostition and Properties of Hot-Pressed SiC-AlN Solid Solution. J.Am. Ceram. Soc. 1982, 65(5): 260-265
    54 R .R uh, A .Zangvil, J. Barlowe. Elastic Properties of SiC, AIN, and Their SolidSolutions and Particulate Composites. Am.Ceram.Soc.Bull. 1985(64): 13 68-1373.
    55 R. R. Lee, W. C. Wei. Fabrication, Microstructure, and Properties of SiC-AIN Ceramic Alloys. Ceram.E ng.S ci.P roc.1990(11):1094-1121
    56 M. Landon and F. Thevenot. The SiC-AlN System: Influence of Elaboration Routes on the Solid Solution Formation and Its Mechanical Properties. Ceram. Int. 17, 97-110, 1991
    57 W. Rafaniello, M. R. Plichta, A. V. Virkar. Investigation of phase stability in the system SiC-AlN. J. Am.Ceram. Soc. 1983, 66(4): 272~276
    58 R. R. Lee, W. C. Wei. Fabrication, Microstructure and Pproperties of SiC-AlN Ceramic Alloys. Ceram. Eng.Sci. Proc. 1990, 11(7-8):1094~1121
    59 J. Chen, Q. Tian, A.V. Virkar. Phase Separation in the SiC-AIN Psudobinary System: The Role of Coherency Strain Energy. J. Am. Ceram. So c. 1992, (75): 809~821
    60 S. Y. Kuo, A. V. Virkar, W. Rafaniello. Modulated Structures in the SiC-AlN Ceramics. J. Am. Ceram. Soc. 1987, (70): 125~128.
    61 S. Y. Kuo, A. V. Virkar. Morphology of Phase Separation in AlN-Al2OC and SiC-AlN Ceramics. J. Am. Ceram. Soc.1990, (73): 1640~1646.
    62 W. Rafaniello, M. R. Plichta, A.V. Virkar. Investigation of Phase Stability in the System SiC-AlN. J.Am. Ceram. Soc. 1983, 66(4):272~276
    63 I. B. Culter, P. D. Miller. Solid Solution and Process for Producing a Solid Solution. US Patent 4141, 27 February, 1979
    64 I. B. Cutler, P. D. Miller, W. Rafaniello, H. K. Park, D. P. Thomopson, K. H. Jack. New Materials in the Si-C-Al-O-N and Related Systems. Nature 1978, (275):434-435
    65 Y. Sugahara, K. I. Sugimoto, H. Takagi, K. Kuroda, C. Kato. The formation of SiC-AlN Solid Solution by Carbothermal Reduction Process of Montmorillonite. J. Mater. Sic. Letter. 1986, (7):795~797
    66 M. Mitomo, M. Tsutsumi, Y. Kishi. Preparation of a Composites Powder of the System SiC-AlN. J. Mater.Sci.Lett. 1988, (7):1151~1153
    67潘裕柏,谭寿洪,江东亮. SiC-AlN-Y2O3复相陶瓷的制备与性能.无机材料学报. 1995,10(2)
    68陈克新.自蔓延高温合成氮化铝基陶瓷的研究.北京科技大学博士学位论文. 1997:86-109
    69 A. G. Merzhanov. The Chemistry of Self-Propagating High-Temperature Synthesis. Journal of Materials Chemistry. 2004,14(12):1779~1786
    70 Z. Y. Fu, H. Wang, W. M. Wang, R. Z. Yuan. Composites Fabricated by Self-Propagating High-Temperature Synthesis. Journal of Materials Processing Technology. 2003, 137(1-3):30~34
    71 R. A. Culter, K. M. Rigtrup, A. V. Virkar. Synthesis, Sintering, Microstructure and Mechanical Properties of Ceramics Made by Exothermic Reactions. J. Am. Ceram. Soc. 1992, 75(1):36~43
    72 A. G. Merzhanov, Z. A. Munir et al. Combustion and Plasma Synthesis of High Temperature Materials. New York Vch Publishers. 1990:204~251
    73 Z. A. Munir. Synthesis of High–temperature Material by Self-Propagating Combustion Methods. Ceramic Bulletin. 1988, 67(2):277~358
    74 J. J. Moore, H. J. Feng. Combustion Synthesis of Advanced Materials: Part I.Reaction Parameters. Progress in Materials Science. 1995, (39):243~273
    75 J. Subrahmanyam, M. Vijayakumar. Review Self-propagating high-temperature synthesis. Journal of Materials Science. 1992, (7):6249~6273
    76张玉龙.先进复合材料制造技术手册.机械工业出社. 2003(第一版):568~684
    77郑仕远,李荣缇.自蔓延燃烧法材料合成技术.山东陶瓷. 1999, 22(4):3~12
    78 A. G. Merzhanov. Self-propagating High-temperature Synthesis: Twenty Years of Search and Findings. In: Z. A. Munir, J. B. Holt. Combustion and Plasma Synthesis of High-Temperature Materials. NewYork:VCH Publisher. 1990:1~53
    79 Z. A. Munir. Self-Propagation Exothermic Reaction: The Synthesis of High Temperature Materials by Combustion. Materials Science Reports. 1989, 21(3):277~365
    80 U. Yamada, Y. Miyamoto. SHS and Ceramic Compaction of Multiphase Ceramics. International Journal of Self-Propagating High-Temperature Synthesis. 1992,1(2):275~283
    81 M. Koizumi. Synthesis, Sintering, Microstructive and Mechanical Properties of Ceranics Made by Exothemic Reaction. Ceramic Transactions. 1993,(34):3~10
    82殷声,赖和怡.自蔓延高温合成法(SHS)的发展.粉末冶金技术. 1992, 10(3):223~227
    83傅正义. SHS技术研究进展.复合材料学报. 2000, 17(1):5~10
    84梁叔全,郑子樵,潭澄宇,尹登峰,胡文彬. Al-TiO2自蔓延高温合成结构宏观动力学分析.材料科学与工艺. 1993, 1(1):34~38
    85邹正光,傅正义,袁润章.自蔓延高温合成材料中耗散结构及研究意义.武汉工业大学学报. 1998, (20):4~8
    86张喜田,许兴利. Ni-Al-Fe体系热爆反应活化能和反应级数的测定.无机材料学报. 1998, (13):247~250
    87许兴利,韩杰才.大活化能二元无气SHS过程的一维波速解.材料科学与工艺. 1998, (6):66~68
    88林瑞春.多孔介质传热质引论.北京:科学出版社. 1995:48~52
    89 A. Iskakova. Synthesis and Study of Physico-chemical Properties and Crystalyst on the Base of Catalystic Actives Concentrates, Slags and Ashes. Abs Lst Inter Sym SHS Alma-ata. 1991, 23-28(9):10~15
    90 J. Wrong. Time Resolved X-ray Diffraction Study of Solid Combustion Reaction. Science. 1990, (249):1406~1409
    91 G. G. Cladum. Self-propagating High-temperature Synthesis of Catalysts and Carriers. Inter. J. SHS. 1994, 13(1):51~58
    92 Z. A. Munir, N. Sata. SHS Diagram:theoretical analysis and experimental observations. Inter. J. SHS. 1992, 1(3):235~238
    93 W. C. Lee. Self-propagating High-temperature Synthesis of TiC Powders. Inter. J. SHS. 1992, 1(3):135~141
    94傅正义. SHS技术研究进展—纪念SHS技术诞生三十周年.复合材料学报. 2000, 17(1):5~10
    95 H. C. Yi, T. C. Woodger, J. J. Moore et al. The Effect of Gravity on the Combustion Synthesis of Metal-Ceramic Composites. Metall. Mater. Tran. 1998, 29B(8):889~897
    96铃木良和,下川腾义,植田芳信.微小重力场下利用燃烧合成方法制备Ti-Ni化合物的研究.粉体粉末冶金. 1997, 44(6):523~529
    97 A. Feng, Z. Z. Munir. The Effect of an Electric Field on Self-sustaining Combustion Synthesis: PartⅠModeling Studies. Metal. Mater. Tran. 1995, 26B(6):581~586
    98 A. Feng, Z. Z. Munir. The Effect of an Electric Field on Self-sustaining Combustion Synthesis: PartⅡField-Assisted Synthesis ofβ-SiC. Studies. Metal. Mater. Tran. 1995, 26B(6):587~593
    99 S. Gedevanishvili, Z. A. Munir. The Influence of an Electric Field on the Mechanism of Combustion Synthesis of Tngsten Silicides. J. Mater. Res. 1995, 10(10):2642~2647
    100 F. Charlot, E. Gaffet et al. Mechanically Activated Synthesis Studies by X-ray Diffraction in the Fe-Al System. Mater. Sci. Eng. 1999, A262:279~288
    101 V. Gauthier, C. Josse, F. Bernard et al. Synthesis of Niobium Aluminum Using Mechanically Activated Self-propagating High-temperature Synthesis and Mechnically Activated Annealing Process. Mater. Sci. Eng. 1999, A265:117~128
    102 J. A. Pojman et al. Convective Instabilities in Traveling Fronts of Additon Polymerization. J. Phys. Chem. 1992, (96):7466~7472
    103 I. P. Nagy, J. A. Pojman. Thermochromic Composite Prepared via a Propagating Polymerization Front. J. Am. Chem. Soc. 1995, (117):3611~3612
    104李如生.非平衡态热力学和耗散结构.北京:清华大学出版社. 1986
    105 T. Pieczonka, A. Molinari, S. Gialanella, J. Kazior. Dimensional changes occurring during reactive sintering of Ni-Al-Mo elemental powder mixtures. Powder Metallurgy. 1997, 40(4):289~293
    106果世驹.粉末烧结理论.冶金工业出版社. 1998(第一版):301~353
    107 J. Subrahmanyam, M. Vijayakumar. Review:Self-propagating High-temperature Synthesis. Journal of Materials Science. 1992, (27):6249~6273
    108殷声,赖和怡.自蔓延高温合成技术和材料.冶金工业出版社. 1995(第一版):21-26
    109葛红林. SHS工艺及其在材料中的应用.海钢铁研究所. 1993:94~98
    110 E. A. Levashov, I. P. Borovinskaya, A.V. Yaatsenko. SHS- New Technological Approach Materials with Graded Structure. 4th. Int. Symp. on FGM. Tsububa, Japan. 1996:283~288
    111 M. Ohyanagi, T. Tsujikami, M. Koizumi. Graded Dispersion of Diamond in TiB2-Based Cermet by SHS/Dynamic Pseudo Isostatic Compaction(DPIC). 4th .Int. Symp.on FGM. Tsububa, Ja pan. 1996:289~294
    112张幸红,韩杰才,赫晓东,杜善义. TiC-Ni梯度功能材料的SHS研究.无机材料学报, 1999, 14(02):228~232
    113徐强,张幸红,赫晓东,韩杰才. TiB/Ti复合材料自蔓延高温燃烧合成的研究.材料科学与工艺. 2001, 9(4):347~351
    114江国健,庄汉锐,李文兰,邬凤英,张宝林.高压氮气中自蔓延燃烧合成氮化铝.无机材料学报. 1998, 13(01):105~108
    115郑永挺,韩杰才,赫晓东.无包封燃烧合成气相热等静压AlN-TiB2陶瓷研究.硅酸盐学报. 2001, 29(2):137~142
    116郑永挺,韩杰才,杜善义.燃烧合成AlN-TiC陶瓷及致密化机理分析.无机材料学报. 2000, 15(04):625~630
    117郑永挺,王华彬,韩杰才,杜善义,赫晓东. AlN陶瓷自蔓延高温合成.中国有色金属学报. 1999, 9(3):76~80
    118梁英教,车荫昌.无机物热力学数据手册.沈阳:东北工业大学出版社. 1996:60~383
    119张清纯.陶瓷材料的力学性能.北京:科学出版社. 1989: 274~309
    120 ScottKirkpatrick. Rev.of Mod.Phy. 1973, 45(4):574~588
    121刘伯谦,吕太.逾渗理论应用导论[M].北京:科学出版社.1997
    122 V. A. Bunin, A. V. Karpov, M. Yu. Senkovenko. Fabrication, Structure, and Properties of TiB2–AlN Ceramics. Inorganic Materials. 2002, 38(7):746~749
    123 S. V. Schneider, M. Desmaison-Brut, Y. G. Gogotsi, J. Desmaison. Oxidation Behavior of a Hot Isostatically Pressed TiB2-AlN Composite. Key Eng. Mater. 1996, 113:49~58
    124 V. A. Lavrenko, A. D. Panasyuk, V. P. Smirnov. High-temperature Oxidation of AlN-ZrB2 Ceramics. Key Eng. Mater. 1996, 132-136:1625~1628
    125 V.A. Lavrenko, J. Desmaison, A.D. Panasyuk, M. Desmaison-Brut. Oxidation Resistance of AlN–(TiB2–TiSi2) Ceramics in Air up to 1450°C. J. Eur. Ceram. Soc. 23 (2003) 357–369
    126 M. G. Barandika, J. J. Echeberria, F. Castro. Oxidation Resistane of Two TiB2-Based Cermets. Materials Research Bulletin. 1999, 34(7):1001~1011
    127 V. A. Lavenko, A. F. Alexeev. Oxidation of Sintered Aluminum Nitride. Ceram. Int. 1983, 9:81~86
    128 M. Tajika., H. Matsubara, W. Rafaniello. Microstructures and Properties in Aluminium Nitride-titanium Nitride Composite Ceramics. Mater. Lett. 1999, 41: 139~144
    129 Y. G. Tkachenko, D. Z. Yirchenko, G. S. Oleinik, O. A. Shevchenko, S. A. Satanin. Self-reinforced Naterials Based on Aluminium Nitride. Sov. Powder Metall. 1992, 31:785~789
    130 P. Doerner, L. J. Ganuckler, H. Krieg, H. L. Lukas, G. Petzow, J. Weiss. Calphad. 1979, 3(4):241~257
    131 G. M. Raynaud, R. A. Rapp. Oxid. Metals. 1984, 21(1/2):89~102
    132 I. D. Golber. Rev. Int. Hautes Temp. Refact. 1968, 5(3):181~194
    133 M. Tajika, H. Matsubara, W. Rafaniello. Microstructures and Properties in Aluminium Nitride-titanium Nitride Composite Ceramics. Mater. Lett. 1999, 41:139~144
    134 Y. G. Tkachenko, D. Z. Yirchenko, G. S. Oleinik, O. A. Shevchenko, S. A. Satanin. Self-reinforced Materials Based on Aluminium Nitride. Sov. Powder Metall. 1992, 31:785~789
    135 M. A. Kuzenkova, P. S. Kislyi, O. V. Pshenichaya. Structure and Properties of Composites Based on Ti, Zr and Al nitrides. Izv. Akad. Nauk SSSR, Neorg. Mater. 1976, 12:430~434
    136 S. Nakahata, T. Matsuura, K. Sogabe, A. Yamakawa. Analysis of Ti Compound Particle Distribution in AlN-matrix Composites. Ceram. Trans. 2002, (44):221~231
    137 I. L. Tangen, Y. D. Yu, T. Grande, R. Hoie, M. A. Einarsrud. Preparation and Characterisation of Aluminium Nitride–titanium Nitride Composites.Journal of the European Ceramic Society. 2004, (24):2169~2179
    138 G. Zhang, Z. Jin, X. Yue. TiN-TiB2 Composites Prepared by Reactive Hot Pressing and Effects of Ni Addition. J Am Ceram Soc. 1995, 78(10): 2831~2833
    139 K. Wang, V. D. Krstic. Reaction Sintering of TiN-TiB2 Ceramics. Acta Materialia. 2003, (51): 1809~1819
    140 W. D. Kingery. Metal-ceramic interaction: Absolute Measurement of Metal-ceramic Interfacial Energy and Interfacial Adsorption of Silicon from Iron-silicon alloys. J. Am. Ceram. Soc. 1954, 37:42~25
    141 W. D. Kingery. Factors Affecting Thermal Stress Resistance of Ceramic Materials. J. Am. Ceram. Soc. 1955, 38:3~15
    142 D. P. H. Hasselman. Approximate Theory of Thermal Stress Resistance of Brittle Ceramics Involving Creep. J. Am. Ceram. Soc. 1969, 50: 454~457
    143 D. P. H. Hasselman. Griffith criterion of Thermal Shock Resistance of Single-Phase Versus Multiphase Brittle Ceramics. J. Am. Ceram, Soc. 1969,52: 288~289
    144 D. P. H. Hasselman. Unified Theory of Thermal Shock Fracture Initiation, Crack Propagation in Brittle Ceramics. J .A m.C eram.S oc. 1 969, 52: 600~604.
    145 R. F. Cook, et al. Crack Resistance by Interfacial Bridging. J. Mater. Res. 1987, 2(3):345~350
    146赵芳欣,张瑛洁,尹绍奎.原位生成铸造TiB2/Al2Si复合材料的微观特征及弹性模量.铸造. 1998 ,49(12) :13~16
    147申文.无机化学丛书,第八卷[M] .北京:科学出版社,1998
    148 M. Kamara, K. Uenishi, K. F. Kobayashi. Nano-structured Intermetallic Compound TiAl Obtained by Crystallization of Echanically Alloyed Amorphous TiAl and its Subsequent Grain Growth. J Mater Sci. 2000, (35): 2879~2905.
    149 V. A. Lavrenko, M. Desmaison-Brut, A.D. Panasyuk, J. Desmaison. J. Eur. Ceram. Soc. 1998, (18):2339~2344
    150 R. A. Andrievski, G. V. Kalinnikov, A. F. Potafeev, V. S. Urbanovich. Nanostructured Materials. 1995, (6):353~356
    151 G. Magnani, L. Beaulardi. J. Eur. Ceram. Soc. 2006, (26):3407~3413
    152 V. A. Lavenko, A. F. Alexeev. Ceram. Int. 1983, (9): 81~86
    153 M. Landon, P. Goeuriot, F. Thevenot. J. Eur. Ceram. Soc. 1991, (8): 279~283
    154 Y. R. Xu, A. Zangvil. J. Amer. Ceram. Soc. 1995, (78): 2753~2762
    155 S. V. Schneider, M. Desmaison-Brut, Y. G. Gogotsi, Desmaison. J. Key. Eng. Mater. 1996, (113): 49~58
    156 A. D. Panasyuk, V. A. Lavrenko, S. F. Korablev. J. Key. Eng. Mater. 1997, 132-13: 1621~1624
    157 V. A. Lavrenko, J. Desmaison, A. D. Panasyuk, M. Desmaison-Brut, E. Fenard. J. Eur. Ceram. Soc. 2005, (25): 1781~1787