Laves相TiCr_2微粒增强Ti基合金的制备及其组织、性能和力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过非自耗磁控电弧熔铸和700℃×20h高温退火,制备出了Cr含量为18~30%的含Laves相γ-TiCr_2过共析Ti-Cr合金。研究发现,铸态过共析Ti-Cr合金的组织为单相β-Ti:这种铸态合金在700℃保温退火时,金属间化合物γ-TiCr2沿晶界析出,并形成连续分布,在随后的空冷过程中,合金内部会发生β-Ti→α-Ti+γ-TiCr_2共析分解,共析组织在合金基体中呈放射状分散析出。合金含Cr量越高,析出的γ-TiCr_2数量越多、尺寸越粗大,合金的硬度也越高。
     评价了含Laves相γ-TiCr_2 Ti-Cr合金在650~780℃温度范围内的抗氧化性能,并研究了微量Y对其高温抗氧化性能的影响。研究发现,含Cr量对含Laves相γ-TiCr_2过共析Ti-Cr合金的高温抗氧化性能有显著影响。当Cr<26%时,合金的高温抗氧化性能明显比纯Ti差,而含Cr>26%时,在合金表面氧化膜的内氧化层中,能够生成较高体积分数的Cr_2TiO_5和Cr_2O_5Cr复合型氧化物,有效地提高了氧化膜阻碍O原子向合金内部扩散的能力,使得高温抗氧化能力显著提高,合金单位面积氧化增重仅为同样条件下纯Ti的1/2~1/3。在上述研究结果的基础上,作者提出了一种含Laves相γ-TiCr_2过共析Ti-Cr合金的氧化过程模型。
     研究发现,在Cr<26%的含Laves相γ-TiCr_2过共析Ti-Cr合金中加入微量Y,有效地细化了氧化物的晶粒度、改善了氧化膜的致密性及其与基体金属的附着力,并促使在内氧化层中生成Cr_2TiO_5和Cr_(0.284)Ti_(0.714)O_(1.857)复合型氧化物,提高了氧化膜对O原子扩散的阻碍能力,从而能够有效地提高合金的高温抗氧化性能。合金含Cr量越低、氧化温度越低时,微量Y的效果越明显,并且其作用与加入量成正比;但是,当Cr≥21%后,则只存在一最佳Y加入量。对于Cr≥26%的含Laves相γ-TiCr_2 Ti-Cr合金,加入微量Y不能起到改善高温抗氧化性能的作用。
     抗氧化性能和微量Y的作用研究结果均表明,含Laves相γ-TiCr_2过共析Ti-Cr合金对氧化温度十分敏感,在650~780℃的温度范围内,氧化温度每提高50~60℃,合金的单位面积氧化增重成倍增加。
     为了制备出过饱和固溶纳米(或纳米晶)Ti-Cr复合粉末,本文研究了过共析Ti-Cr合金的机械合金化(Mechanical Alloying)规律。研究发现,在球磨初期的2h内,会发生Ti的(011)主衍射峰强度迅速降低、(010)第二衍射峰强度提高并成为了最强峰和Cr的衍射峰强度提高的现象;当球磨时间达到30~40h时,Ti开始非晶化:在球磨速度为200r/min、球料比取15:1和使用20mm球径的淬火钢球的条件下,当球磨
    
    时间达到80h时,可制得粒度在10Onm以下的均匀纳米粉末,但是,即使MA的时
    间超过100h,也没有发现Laves相TICr:在固相直接合成。对粉末晶粒度、晶格微
    应变和合金化程度的分析计算发现,MA的前10h是粉末晶粒细化、晶格应变和合
    金化进行得最迅速的时期,经过该阶段的球磨后,Cr的晶粒度可以达到20nm:进
    一步延长球磨时间,对获得过饱和固溶的合金粉末是十分必要的。30一4Oh是通过
    MA制备纳米晶或者非晶过饱固溶Ti一Cr合金粉末的合理球磨时间。
     在球磨速度和过程控制剂对过共析Ti一Cr合金MA的影响研究中发现,球磨速
    度、过程控制剂及其加入量对MA的效率、粉末的粒度和团聚程度、因为磨损带入
    杂质Fe的量和来源有显著影响。在其它条件相同的情况下,球磨速度越高,MA的
    效率越高,粉末的粒度也越小;不使用过程控制剂时,MA的效率最高,得到的粉
    末粒度最小,但是,团聚现象最为严重;使用酒精作为过程控制剂,能够有效地减
    少球磨带入的杂质量,但是硬脂酸不适合用做过共析Ti一C:合金MA的过程控制剂;
    试验确定的合理球磨速度范围为150一20Or/min。
     本文以MA过饱和固溶纳米晶Ti一Cr复合粉末为原料,进行了原位TICr:颗粒增
    强Ti基合金热压合成工艺和高温退火工艺的优化研究。试验结果表明,在860一1300
    ℃的温度范围内,通过热压均能够制备出原位TICrZ颗粒增强的近全致密Ti基合金。
    但是,热压温度越高,合金的晶粒尺寸越粗大、增C也越严重;按照优化得到的热
    压工艺:860’C又45min,能够制备出增强相粒度和基体晶粒度均小于200nm的TICrZ
    微粒增强微晶Ti基合金,增强相TICr:在基体中分布均匀。
     高温退火研究发现,TICr:微粒增强微晶Ti基合金具有良好的组织热稳定性。
    高温退火有利于合金中物相的充分析出,并使合金的成分和组织均匀化,此时,原
    料粉末中的杂质Fe偏聚在6一TICr:中,形成Ti、C:和Fe平均原子比为l:1 .2:0.45
    的合金化金属间化合物。优化得到的高温退火工艺为:700℃x(10一12)h。
     力学性能测量结果表明,TICr:微粒增强微晶Ti基合金的室温强度性能超过
    IMI834,抗拉强度可达1210.3MPa,抗压强度可达2287.2 MPa;抗压断裂延性应变可达
    21.7%,比熔铸+高温退火工艺制备的含Laves相Y一TICr:Ti一Cr合金提高一倍,比纯金
    属间化合物TICr:提高一个数量级;其600一700℃的高温压缩力学性能明显优于采用
    反应热压法RHP(Reaetive Hot Pressing)制备的原位(石B+TIC)增强钦基复合材料。
Alloys with Laves phase y-TiC^ and chromium content from 18% to 30% were fabricated by means of non-consumable electrode arc melting and an anneal 700癈x20h. It was found that the as-cast hypereutectoid Ti-Cr alloys were solely composed of p-Ti and the Laves phase y-TiCr2 would precipitate along the grain boundary to form a net when they were annealed at 700 癈 and then an eutectoid transformation p-Ti梐-Ti+y-TiCr2 would happened in the matrix to form eutectoid bulks in a radiative shape during air cooling from 700癈 to room temperature. The higher the chromium content was, the more the quantity and the larger the size of y-TiCr2 and the
    I
    higher the hardness of the alloy were.
    The high temperature oxidation behaviors of the Ti-Cr alloys with Laves phase y-TiCr2 in the range of 6500C~780癈 and the influence of yttrium addition from 0.0125 to 0.0500% on the high temperature oxidation resistance of the alloys were investigated, respectively. The results on oxidation behaviors revealed that chromium content had significance to the oxidation resistance of the alloys. The scaling rates of the alloys with less than 26%Cr were higher than that measured for pure titanium, but for the alloys with more than 26%Cr their scaling rate was lower by 1~2 times, under the same oxidizing conditions, which was contributed to the formation of both chromium oxides and multiple titanium-chromium oxides that all could effectively block the diffusion of oxygen atoms in the internal oxidation layer. On the basis of above results an oxidation model of hypereutectoid Ti-Cr alloys with Laves phase y-TiCi'2 was proposed.
    Yttrium addition had a significant impact on the high temperature oxidation resistance of hypereutectoid Ti-Cr alloys with Laves phase y-TiCr2 and chromium content lower than 26%Cr. In the range of this study, the lower the Cr content and the oxidation temperature and the more Y addition in the alloys with chromium content below 21%, the more effectively the high temperature oxidation resistance could be improved, which was contributed to the fining of the grains of the oxides in the scale and the improvement of the scale's adherence to the matrix of the alloy as well as the formation of multiple titanium-chromium oxides, such as C^TiO.s and Cro284Tio.7i4Oi 857, in the internal layer. However, for the alloys with chromium content above 21%, there was an optimal chromium addition. Yttrium addition in alloys with chromium content higher than 26% showed no effect in improving the high temperature oxidation resistance.
    
    
    The results on both oxidation behaviors of the alloys and yttrium's influence revealed that oxidation temperature significantly affected the scaling rates of the hypereutectoid Ti-Cr alloys, and the mass gain was increased by times with a temperature change from 650癈 to 700 癈 or from 700 癈 to 780癈 for the same exposure duration.
    In order to fabricate super-saturation Ti-Cr alloyed powders with nano-grains the mechanical alloying of both Ti-20%Cr and Ti-30%Cr alloys with elemental titanium and chromium powders as raw materials was investigated. It was found that the intensity of the first strongest (Oil) peak of titanium in the XRD pattern rapidly decreased during the first 2 hour ball milling, but that of the second strongest (010) peak increased, which then became the first strongest peak, as those of the peaks of chromium did at the same time. The amorphization of titanium powders gradually took place as ball milling time reached 30 to 40 hours and with a milling rate 200r/min, a milling-ball : powder weight ratio 15 : 1 and 10 mm in radius steel balls as milling balls, nano-powders could be obtained as the milling time approached to 80 hours. However no Laves phase had been ever founded during even such a long time ball milling as 100 hours. Theoretic calculation figured out that It was in the first 10 hour ball milling period that the efficiency of grain fining, crystal lattice deformation and alloying appeared highest and chromium powders with a grain size less than 20 nm could be fabricated, but succes
引文
[1] 萧今声,许国栋.提高高温钛合金性能的途径.中国有色金属学报,1997,7(4):97~105
    [2] Kelly A. Composites in context. Composite Sci Technol, 1985, 23(7): 171,199~2007
    [3] Das G and Froes F H. Fundamental studies of titanium-based metal matrix composites. Sixth World Conference on Titanium, 1988:907~912
    [4] Sun C T and Chen J L. Journal of Composite Materials, 1990, 24(10): 1029~1059
    [5] Baumann S F. Metall Trans A, 1990, 21A(6): 1559~1059
    [6] Das G. Metall Trans A, 1990, 21A(6): 1595~1602
    [7] Nardone V C and Prewo K M. Script Metall, 1986, 75(2): 20~43
    [8] Christman T, Needleman, Nutt S, et al. Mater Sci Eng, 1989, 107A(5): 49~57
    [9] Arsenault R J, Wan L and Feng C R. Acta Metall Mater, 1991,15(3): 39~47
    [10] 张力宁,王俊.颗粒增强金属复合材料强化机制的探讨.东南大学学报,1995,125(4):77~82
    [11] Kosothijin R.航空材料学报,1997,17(3):2~5
    [12] 曾泉浦,王彰默,毛小南等.颗粒强化钛基复合材料的研究.稀有金属材料与工程,1991,20(6):33~38
    [13] Collings E W. The physical Metallurgy of Titanium alloys, ASM, Metals Park, OH 44073, 1984
    [14] 钛合金金相学.北京:国防工业出版社,1986
    [15] 有色金属及其热处理编写组.有色金属及其热处理.北京:国防工业出版社,1980
    [16] Konityer D G and Loretto M H. Micro-structural study of Ti-based TiC metal matrix composites. Sixth World Conference on Titanium, 1988. 1057~1062
    [17] Abkowity S and Weihrauch P. Advanced Materials and Processes, 1989, 35(7).31~34
    [18] Jiang J Q, Lim T S, Kim Y J, et al. Mater Sci Tech, 1996, 12(4): 362
    
    
    [19] Fan Z, Chandrasekaran L, Wardclose C M, et al. Key Engineering Materials, 1997,127(6): 423
    [20] 草道英武等编.钛合金及其应用.程敏等译.北京:冶金工业出版社,1988.
    [21] Ranganath S. Areview on particulate-reinforced titanium matrix composite. J Mater Sci, 1997, 32(3): 1~16
    [22] 罗国珍.钛基复合材料的研究和发展.稀有金属材料与工程,1997,26(2):1~7
    [23] 平修二.金属材料的高温强度理论设计.郭延玮等译.北京:科学出版社,1983.
    [24] Makoto Tomita. MITI program on high-temperature intermetallics. Trans Non-ferrous Met China, 1999, 9(Suppl. 1): 346~354
    [25] 张永刚,韩雅芳,陈国良等.金属间化合物结构材料.北京:国防工业出版社,2001.
    [26] 曹阳,李国俊.金属间化合物高温结构材料的研究动向.材料导报,1994,12(4):14~18
    [27] Fleischer R L. Intermetallic compounds for strong high temperaure materials: status and potential, Metall Trans, 1991, 22A(7): 231~263
    [28] Lipsitt H A. The deformation and fracture of RiAI at elevated temperature. Metall Trans, 1975, 6A(3): 1991~1999
    [29] Nobuki M, Hashimoto K and Tsujimoto T. Deformation of TiA1 intermetallic compound at elevated temperature. Joural of the Japan Institute of Metals, 1986,50(7): 840~849
    [30] Kasahara K, Hashimoto K and Doi H. Oxidation behavior of intermetallic compounds TiAl at high temperature. Joural of the Japan Institute of Metals, 1989, 53(1): 58~67
    [31] 王俊,孙宝德,周尧和等.颗粒增强金属基复合材料的发展概况.铸造技术,1998,32(3):37~41
    [32] Badia F A and Rohatgi P K. Trans AFS, 1969,77(8): 402~405
    [33] Gopakumar K. J Mater Sci, 1980, 15(11): 1588~1592
    [34] Krishnan B P. J Mater Sci, 1981, 16(5): 1209~1213
    [35] Pogodin G I. Ultrasonics, 1971, 105A(1): 1~5
    
    
    [36] 王俊,陈锋,孙宝德.高能超声波在制备颗粒增强金属基复合材料中的作用.上海交通大学学报,1999,43(7):813~816
    [37] Konityer D G and Loretto M H. Acta Metall, 1989, 37(2): 397~406
    [38] Rawers J C, Wrzesinski W R, Roub E K, et al. Mater Sci Tech, 1990, 67(6): 187~198
    [39] Loretto M H and Konitzer D G. The effect of matrix reinforcement reaction on fracture in Ti-6A1-4V-base composites. Metallurgical Trans. A, 1990, 21A(6):1579~1587
    [40] Kennedy J and Geschwind G. "Titanium Science and Technology", Penum, NY, 1973:2299-2310
    [41] Stanley Abkowitzi et al. Advanced powder metal titanium alloy matrix composite reinforced with ceramic and intermetallic particles. Titanium'92 Science and Technology, 1992, 3:2511~2519
    [42] 吴人洁.金属基复合材料的现状与展望,金属学报,1997,33(1):78~84
    [43] Westwood A R C. Metall Trans. 1988, 19A(12): 749~756
    [44] Christodoulou L, Parrish P A and Crowe C R. "High temperature/high performance composites", Mater Res Soc Symp Proc. 1988, 120(4): 29~41
    [45] Ranganath S. "Process for producing particulate reinforced titanium matrix composites". Indian No. 1181/DEL/94, Patent filed 22 September 1994.
    [46] 李四清,刘瑞民,马济民等.钕化物颗粒增强钛基复合材料的组织和性能.航空材料学报,1997,17(3):51~56
    [47] Sampath S, Khatri S and Shtessel E, et al. Processing and fabrication of advanced materials for high temperature applications. Warrendale, PA: TMS, 1993.
    [48] Dunmead S D, Readey D W and Semler C E. 98773, Lawrence Livemore National laboratory, 1988
    [49] Holt J B, Rep. UCRL-53258, Lawrence Livemore National laboratory, 1982
    [50] Miyamoto A N, Hirao K and Koizumi M. Proceedings of the international symposium on fundamental reseach strategy in development of new materials for efficient energy conversion, Osaka, 1987
    [51] Tabachenko A N, Panteleeva T A and Itin V I. Combust Explos Shock Waves,
    
    1992, 20(9): 2387~2399
    [52] Wrzesinskl W R, Rawers J C. Self-propagating high-temperature synthesis of TiA1-SiC and TiAI-Al_2O_3 intermetallic composites. J Mater Sci Letter, 1990, 4(9): 432~435
    [53] 曲选辉,黄伯云,雷长明等.TiAl+TiB_2复合材料制备过程及其热稳定性的研究.金属学报,1993,29B(5):236~239
    [54] Shingu P H, Isdihara K. Japan Soc Powder Metall, 1990, 37(2): 670~678
    [55] Zee R, Yongm C, Lin Yet al. Mater Sci, 1991, 26(14): 3853~3862
    [56] Hyman M E, Mccullough C, Valencia J J, et al. J Mater Sci, 1991, 26(10): 3853~3860
    [57] 吕维洁,张小农,张荻等.原位合成TiB和TiC增强钛基复合材料.材料工程,1999,27(8):9~11
    [58] Lin Y, Zee R H and Chin B A. Metall Trans, 1991, 22A(5): 859~867
    [59] Ranganath S, Vijayakumar M and Subrahrnanyam J. Combustion assisted synthesis of Ti-TiB-TiC composite via the casting route. Mater Sci & Eng A, 1992, 149 (2): 253~257
    [60] Kumar K S, Whittenberger J D. Mater Sci Techn, 1992, 121(8): 219~229
    [61] Soboyejo W O, Lederich R J and Sastry S M L. High Performance Composites for the 1990s. Warrendale, PA: TMS, 1991.
    [62] Soboyejo W O, Lederich R J and Sastry S M L. Acta Metall Mater, 1994, 42(7): 2579~2592
    [63] Ranganath S, Aswath P B and Soboyejo W O. Scripta Mater, 1996, 35(4): 239~248
    [64] Dubey S, Soboyejo W O and Srivatsan T S. Appl Compos Mater, 1997, 61(4): 361~370
    [65] Beniamin J S. Metall Trans, 1970, 119(1): 2943
    [66] Beniamin J S. Sci. Am, 1976, 234(11):40~48
    [67] Fischer J J and Weber J H. Advanced Materials and Processes, 1990, 72(10):43~69
    [68] Sundaresan R and Froes F H. Metal Powder report, 1989, 139(3): 195~200
    [69] Ronald T M F. Advanced Materials and Processes, 1989, 71(5): 29~33
    
    
    [70] 落合钟一.粉体粉末冶金,1994,41(2):170~176
    [71] Fan Z, et al. Script Metall, 1995, 32(6): 833~840
    [72] 王开阳,王金国,陈国良.机械合金化制备γ-TiAl+Ti_2AlN纳米复合材料.北京科技大学学报,1995,17(1):46~49
    [73] 稀有金属快报,2000,23(1):13~14
    [74] Lu Y X, Bi J, Li D X, et al. Proceedings of the Second International Symposium on Composite and Structures, Beijing: Peking University Press, 1992.
    [75] Wang L, Niinomi M, Hagiwara M, et al. Mater Sci Eng, 1999, A263(6): 319~326
    [76] Sahay S S, Ravichandran K S, Atri R, et al. J Mater Res, 1999, 165(14): 4214~4221
    [77] Ma Z Y, Tjong S C and Geng L, Scripta Mater, 2000, 42(12): 367~375
    [78] Hu D and Lorett M H. Script Mater, 1994, 31(5): 543~553
    [79] 张二林,曾松岩,李庆春.雾化喷射沉积制备颗粒增强型金属复合材料.材料工程,1995,23(11):11~16
    [80] Bryant J D, Kampe S L, Sadler P, et al. Effect of phase morphology on the mechanical behavior of two titanium aluminide composites. Metall Trans A, 1991, 22A(9): 2009~2019
    [81] 张延杰,曾泉浦,毛小南等.TiC颗粒强化钛基复合材料的强度评估.稀有金属材料与工程,1999,28(5):265~268
    [82] 吕维沽,张小农,张荻等.原位合成TiB和TiC增强钛基复合材料的微观结构与力学性能.中国有色金属学报,2000,10(2):163~169
    [83] Kampe S L, Clarke J A and Christodoulou L. Intermetallic Martrix Composites, 1990, 194(3): 225~234
    [84] Kumar K S, Gree J A, Jr Larsen D E, et al. Advanced Materials Processes, 1995,76(4): 35~43
    [85] 曾泉浦,毛小南,张延杰.热处理对TP-650钛基复合材料组织与性能的影响.稀有金属材料与工程,1997,26(4):18~21
    [86] Lu W J, Zhang X N, Wu R J, et al. Acta Metall Sinica, 1999, 35:536~542
    [87] Zhang X, Lu W, Zhang D, et al. Scripta Mater, 1999, 41:39~48
    [88] Li D X, Ping D H, Lu Y X, et al. Mater Lett, 1993, 16:322~331
    
    
    [89] Raganath S, Roy T, Mishra, et al. Mater Sci Technol, 1996, 125(12): 219~227
    [90] Tjong S C and Ma Z Y. Mater Sci Eng, 2000, 29:65~75
    [91] 孙国雄,廖恒成,潘冶.颗粒增强金属基复合材料的制备技术和界面反应与控制.特种铸造及有色合金,1998,37(4):12~17
    [92] Konitzer D G and Loretto M H. Acta Metall, 1989, 37(2): 397~406
    [93] Martineau P, Pailler R, Lahaye M, et al. J Mater Sci, 1984, 19:2749~2770
    [94] Rhodes C and Spurling R. In recent advances in composites in the United States and Japan. Philadelphia' PA: ASTM STP 864, 1985:585~599
    [95] Lancin M, Bour J S and Thibault-Desseaux J. In high temperature/high performance composites. MRS Symp Proc, Pittsburgh, PA: 1988. 120~128
    [96] 蒋为吉,金城,曾泉浦.颗粒增强钛基复合材料界面碳浓度分布研究.复合材料学报,1996,13(2):38~41
    [97] 宋桂明,周玉,王玉金等.金属基复合材料理论模型进展.材料导报,1998,12(6):58~60
    [98] Agarwal B D and Bansal R K. Fiber Sci Yech, 1979, 83(12): 149~156
    [99] Zybert J J. Composites, 1980, 47(11): 175~183
    [100] 陈浩然,张占平.复合材料学报,199l,8(1):1~6
    [101] Jonson T P, Brooks J W and Loretto M H. Scripta Metall Mater, 1992, 22(11):785~792
    [102] Chen J, Geng Z and Chin B A. High temperature ordered intermetallic alloys Ⅲ. Mater Res Soc Symp Proc, 1989, 133(10): 447~456
    [103] Abkowitz S and Weihrauch P. Adv Mater Proc, 1989, 136(9): 31~38
    [104] Shang J K and Ritchie R O. Scripta Metall Mater, 1990, 24(1): 1691~1707
    [105] 张延杰,曾泉浦,毛小南等.TiC颗粒强化钛基复合材料的高温拉伸特性.稀有金属材料与工程,2001,30(2):85~88
    [106] 张力宁,王俊.颗粒增强金属基复合材料强化机制的探讨.东南大学学报,1995,25(4):77~82
    [107] 秦蜀懿,张国定.改善颗粒增强金属基复合材料塑性和韧性的途径与机制.中国有色金属学报,2000,10(5):621~629
    [108] Zhu S J, Lu Y X, Wang Z G, et al. Proceedings of the Ninth International
    
    Conference on Composite Materials(ICCM/9), University of Zaragona and woodhead Publishing Limited, 1993
    [109] 何玉定.Laves相TiCr_2及其合金的研究.中南工业大学,1998
    [110] Tateyama M and Liu C T. Mater Sci Eng, 1991, A132(4): 61~66,
    [111] BaniaPJ. JOM, 1988, 40(3): 20~31
    [112] Livingston J D. Laves-phase superalloys?. Phys Stat Sol, 1992, 131(9): 415~423
    [113] Sauthoff G. Laves phase alloys for high temperature applications. Trans Nonferrous Met Soc China, 1999, 9(suppl): 326~334
    [114] 王金有,葛志明,周彦邦等.航空用钛合金.上海:上海科学技术出版社,1985
    [115] Kimura Y. Deformation of Hf-V-Nb Laves phase alloys. Trans Nonferrous Met Soc China, 1999, 9(suppl): 386~390
    [116] Eylon D. High-temperature titanium alloys-a review. JOM, 1984, 36(11): 55~62
    [117] Chaze A M and Coddet C. Influence of chromium on the oxidation of titanium between 550℃ and 700℃. Oxidation of Metals, 1984, 76(4): 205~231
    [118] Stringer J. Mater Sci Eng, 1989, A120(5): 129~137
    [119] 齐慧滨,袁海顺,何业东等.微量钇合金化及Y_2O_3-Al_2O_3复合涂层对M38合金高温氧化的影响.金属学报,1996,32(4):397~403
    [120] 肖继美.腐蚀概论-材料的腐蚀及其控制技术.北京:化学工业出版社,1990
    [121] 杨德钧,沈卓身.金属腐蚀学.北京:冶金工业出版社,1999
    [122] 朱日彰,何业东.高温腐蚀及耐高温腐蚀材料.上海:上海科学技术出版社,1995
    [123] 赵永庆等.阻燃钛合金.稀有金属材料与工程,1996,25(10):1~6
    [124] Tateyama M. and Liu C T. Microstructure and mechanical properties of Laves phase alloys based on CrzNb. Mater Sci Eng, 1991, A132(7): 61~66
    [125] 任山.Ti-Fe机械合金化中氢致非晶化的研究.金属学报,1998,34(4):373~377
    [126] Mli J C, Oriani R and Darken L S Z. Phys Chem Neue Folge, 1996, 49(3):271~279
    [127] Lu K. Nano Mater, 1993, 17(2): 3~12
    
    
    [128] Williamson G K and Hall W H. Acta Met, 1953, 19(1): 22~30
    [129] Bhaduri A. Studies on mechanically alloyed 7071 aluminum alloy-SiCp composites. Materials Science Forum, 1992, 88-90(6): 205~212
    [130] Forrester J S and Schaffer G B. The chemical kinetics of mechanical alloying. Metal Mater Trans A, 1995, 26A(5): 725~730
    [131] 王成国,吴军,刘玉先等.过程控制剂对Fe-C-Ti粉末机械合金化的影响.粉末冶金技术,1997,18(4):258~261
    [132] Brun P Le, Froyen L and Delaey. The modeling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-site observations. Sci Eng, 1993, A161(9): 75~82
    [133] EI-Eskandarany M, Sherif Sumiyama Kenji, Aoki Kiyoshi, et al. Calorimetric and morphological study of mechanically alloyed and mechanically disordered Al-50At% transition metal alloy powders. Powders and Powder Metallurgy, 1992, 39(10): 836~841
    [134] 杨君友.机械合金化过程中粉末的形变及其能量转化.金属学报,1998,34(10):1061~1067
    [135] Smith P R and Froes F H. Developments in titanium metal matrix composites. JOM, 1984, 34(3): 19~25
    [136] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [137] 何玉定,曲选辉,黄伯云.Laves相铬化物的研究.高妇术通讯,1996,9(12):27~30
    [138] Mackenzie J K. Proc Phys Soc, 1949, 62(13): 883~891
    [139] Murray P. Trans Brit Ceram Soc, 1954, 53(9): 474~503
    [140] Coble R J. J Appl Physics, 1961, 32(2): 793~801
    [141] Coble R J. J Amer Ceram Soc, 1963, 46(6): 431~438
    [142] 贾成厂,李汶霞,郭志猛等.陶瓷基复合材料导论.北京:冶金工业出版社,1998
    [143] Nardone V C and Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Mater, 1987, 21 (1): 43~50
    [144] 张延杰,曾泉浦,毛小南等.颗粒增强MMCs中小粒子的强化作用.稀有金
    
    属材料与工程,1999,28(1):14~17
    [145] Embury J D. Metall Trans A, 1985,16A(11): 191~2001