原位颗粒增强镁基复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入 21 世纪以来,资源和环境已成为人类可持续发展的首要问题。因此,
    目前世界工业发展的趋势是节省能源、资源和绿色生产。镁合金作为最轻的
    工程结构金属材料,具有许多优异的独特性能,如比强度高、比刚度高、导
    电导热性好,兼有良好的阻尼减震和电磁屏蔽性能,易于加工成形,良好的
    再生回用等优点,在汽车、通讯设备、航空等领域中得到了广泛的应用。因
    此,镁基材料被认为是本世纪最有开发前途和应用潜力的“绿色工程材料”。
    但是,镁合金存在弹性模量小、高温强度和抗蠕变性低、耐磨性差等严
    重的不足,而且仅仅通过合金化技术又不能加以解决,因此大大限制了镁合
    金的进一步发展及其工业应用。如何解决这一问题自然成为镁合金研究领域
    的瓶颈问题。
    众所周知,镁基复合材料具有低的温度膨胀系数、高的杨氏模量和耐磨
    性等优点。因此,从材料的内在属性出发,作者认为,解决镁合金性能方面
    存在的不足的最佳途径之一就是走复合材料的道路。按照增强体的形态特征,
    镁基复合材料主要有纤维、晶须和颗粒增强三种。连续纤维增强镁基复合材
    料沿纤维方向强化效果显著,引起人们的广泛兴趣,但是制备工艺复杂,而
    且产品难以回收再用;晶须增强镁基复合材料强度高、工艺性能优良、可进
    行二次加工,而且材料可以回收再用,但是其成本很高,大大限制了其应用
    范围。颗粒增强镁基复合材料具有制备工艺简单、成本低廉以及各向同性的
    性能,已成为镁基复合材料的研究热点之一。
    目前,颗粒增强镁基复合材料主要是通过外加方式制备的,即增强体在
    制备复合材料之前需单独合成,然后通过混料方式引入镁基体或者通过搅拌
    方式直接加入镁熔体中。在这种情况下,增强体的尺寸受其原材料尺寸的影
    响,往往在几微米至几十微米级,很少小于 1.0 微米。其它的不足,如增强体
    和基体之间的界面反应以及由于增强体表面易受污染从而导致与基体之间的
    润湿性差等问题也是困扰材料科学工作者的重大难题。
    金属基复合材料(MMCs)的性能受增强体的类型、尺寸、分布、体积
    分数以及增强体和基体界面的本质特征所控制。当尺寸细小和大体积分数且
    热力学上稳定的增强体均匀分布在基体中时可以获得某些独特的性能。为了
     - I -
    
    
    摘 要
    满足以上要求,近年来人们开发了一种新的复合材料—原位(In situ)MMCs,
    即增强体是在复合材料制备过程中通过两种或多种元素或化合物之间的化学
    反应生成的。与传统上的外加 MMCs 的制备技术相比,原位 MMCs 具有以下
    优点:①增强体在基体中热力学是稳定的,有利于高温服役工况;②增强体
    与基体的界面干净,润湿性好,故界面结合强度高;③增强体尺寸细小,分
    布均匀,增强效果明显提高。因此,从工业应用前景的长远利益来看,原位
    陶瓷颗粒增强方式是镁基复合材料的理想选择和最佳落脚点之一。
     然而,目前的原位 MMCs 制备技术主要集中在 Al 基、Ti 基和 Fe 基之上;
    适用于镁基体的制备技术及相应的增强体极其有限。对于金属结构材料中的
    质量最轻、比强度极高的镁及其合金,由于其熔点低,极易氧化燃烧,增强
    颗粒难以引入,给原位镁基复合材料的研究和开发带来了极大的困难。
     本文通过实验研究,针对镁合金的自身特点,首次采用镁熔体内 SHS 反
    应法,成功地制备了原位 TiC 和 TiB2颗粒增强镁基复合材料,在解决原位镁
    基复合材料制备过程中的关键科学问题即原位增强颗粒的引入与界面污染等
    方面取得了突破,开发了适合于镁基合金的增强体(TiC、TiB2)和相关制备
    技术;在此基础上,利用 Al-Ti-C-B、Al-Ti-B、Al-Ti-C-Mg、Al-Ti-B4C 等体
    系,采用镁熔体外(真空下和气氛保护下)的 SHS 反应合成了含有原位增强
    颗粒的中间相载体,并借助于搅拌铸造法将原位颗粒引入镁熔体中,成功地
    制备了 TiC、TiB2和 TiC+TiB2颗粒增强镁基复合材料。本文的主要研究工作
    如下:
     (1) 镁熔体内形成原位增强颗粒的 SHS 反应机理
     通过差热分析和淬熄实验,对 Al-Ti-C 和 Al-Ti-B 体系的 SHS 反应进行了
    深入研究,在此基础上给出了原位 TiC 和 TiB2颗粒增强镁基复合材料的形成
    机制,并建立了其形成模型。实验发现,在 Mg 熔体内 Al-Ti-C 体系的 SHS
    反应过程中,除了 Al、Ti 和 C 之间通过 Al-Ti 反应形成 TiAlx过渡相,然后
    TiAlx 进一步和 C 反应形成 TiC 以外,Ti 和 C 之间的直接反应也能够进行,
    并形成 TiC。研究表明,Al-Ti-B 体系中反应形成 TiB2 的可能途径有:
    AlB2(s)-TiAl3(s)、Ti(s)-AlB2(s)和 B(s)-TiAl3(s)之间的反应,其中,B(s)-TiAl3(s)之间
    的反应在热力学上最有利;此外,固溶态的[B]和[Ti]之间的反应也可以形成
    TiB2。
     (2) 镁基复合材料原位增强颗粒 SHS 反应动力学的影响因素
     对于形成原位增强颗粒的 SHS 反应动力学的影响因素进行了细致的实验
    研究,分别优化并给出了适合于镁熔体内 SHS 反应法和熔体外反应法两种制
    备技术的实验参数。研究发现,微米级粒度的 Al、Ti 和 C 粉体系,压坯的预
    热温度决定了熔体内能否发生 SHS 反应,当预热温度低于 400℃时反应难?
With the entrance to 21st century the resource and environment problems
    have become the principle problems in the sustainable development of human
    beings. Therefore in the long term, the trends of the industrial development all
    over the world can be reduced to the saving of energy and resource, and what is
    more, the pursuit of natural production. Magnesium alloys are kind of the lightest
    structural metal alloys, which have many excellent and unique properties, such as
    high specific strength and stiffness, high heat and electrical conductivity, good
    damping and shock absorption, excellent electromagnetic shielding capability and
    easy processing, as well as a good recovery capability, and therefore, increasing
    attention has been paid to magnesium and its alloys in automotive, communication
    apparatus and aerospace applications. Consequently, it is considered that
    magnesium alloys are the most worthy and exploitative “natural engineering
    materials” with greatly potential application in this century.
     However, the further development and commercial application of magnesium
    alloys have been limited because of its low elastic modulus, poor tensile strength
    and creep resisting especially at elevated temperatures, as well as low wear
    resistance. Moreover, these disadvantages can not be overcome only by using cost
    intensive magnesium alloys. As a result, it has become a bottleneck problem that
    how to solve these problems in the field of magnesium alloys.
     It is widely recognized that excellent properties such as a lower coefficient of
    thermal expansion, a higher Young’s modulus and a higher wear resistance etc. can
    be realized only by magnesium metal matrix composites (MMCs). As a
    consequence, the best routes are the selection of magnesium MMCs to solve the
    problems of magnesium and its alloys on the basis of the internal attribute of
    material system. According to the morphological feature of reinforcement,
     - VI -
    
    
    吉林大学博士学位论文
    magnesium MMCs can be grouped under three heads, i.e. fiber, whisker and
    particulate reinforced magnesium matrix composites. The strengthening effect of
    fibre reinforced composites is evident along the fiber direction, attracting more
    extensive interest; however, the fabrication processing is very complex and the
    production can not be reutilized. Although, the strength of whisker reinforced
    magnesium MMCs is very high and the production with excellent fabricating and
    reprocessing properties can be reutilized, the range of application of the composite
    has been limited due to a high cost starting material. Recently, the particulate
    reinforced magnesium matrix composites have been becoming one of the hotspot
    in the research field of magnesium MMCs due to its significant inherent simplicity
    and potential cost-effectiveness in scale-up manufacturing, as well as its isotropy
    properties.
     Presently, the particulate reinforced magnesium MMCs are mainly fabricated
    by ex situ manner, namely, the reinforcements are prepared separately prior to the
    composite fabrication, and then the reinforcements are mixed into the magnesium
    matrix by powder blends or directly added to the molten magnesium. In this case,
    the scale of the reinforcement is limited by the starting powder size, which is
    typically of the order of microns to tens of microns and rarely below 1.0 μm.
    Other main drawbacks that have to be overcome are the interfacial reactions
    between the reinforcements and the matrix, and poor wettability between the
    reinforcements and the matrix due to surface contamination of the reinforcements.
    It is a puzzle, therefore, for the materials science researchers to find a solution to
    the inherent problems that are associated with conventionally processed MMCs.
     It is well known that the properties of MMCs are controlled by the type, size
    and volume fraction of the reinforcement phase as well as the nature of the
    matrix-reinforcement interface. A unique or an optimum set of mechanical
    properties
引文
[1] S.C. Tjong, Z.Y. Ma, “Microstructural and mechanical characteristics of in
     situ metal matrix composites”, Materials Science and Engineering, 2000;
     R29: 49-113.
    [2] B.S.S. Daniel, V.S.R. Murthy, G.S. Murty, “Metal-ceraic composites via
     in-situ methods”, Journal of Materials Processing Technology, 1997; 68(2):
     132-155.
    [3] K. Das, T.K. Bandyopadhyay, S. Das, “A review on the various synthesis
     routes of TiC reinforced ferrous based composites”, Journal of Materials
     Science 2002; 37(18): 3881-3892.
    [4] S. Jayalakshmi, S.V. Kailas, S. Seshan, “Tensile behaviour of squeeze cast
     AM100 magnesium alloy and its Al2O3 fibre reinforced composites”,
     Composites, 2002; A33(8): 1135-1140.
    [5] H.E. Deve, “Compressive strength of continuous fiber reinforced
     aluminum matrix composites”, Acta Materialia, 1997; 45(12): 5041-5046.
    [6] A. Kumar, K.M. Knowles, “Microstructure-property relationships of SiC
     fibre-reinforced magnesium aluminosilicates-I. Micro-structural character-
     ization”, Acta Materialia, 1996; 44(7): 2901-2921.
    [7] M.Y. Zheng, K. Wu, C.K. Yao, “Effect of interfacial reaction on
     mechanical behavior of SiCw/AZ91 magnesium matrix composites”,
     Materials Science Engineering, 2001; A318(1-2): 50-56.
    [8] S.V. Kamat, J.P. Hirth, R. Mehrabian, “Mechanical properties of
     particulate-reinforced aluminum-matrix composites”, Acta Metallia, 1989;
     37(9): 2395-2402.
    [9] M. Svoboda, M. Pahutova, K. Kucharova, V. Sklenicka, T.G. Langdon,
     “The role of matrix microstructure in the creep behaviour of discontinuous
     fibre-reinforced AZ91 magnesium alloy”, Materials Science Engineering,
     2002; A324(1-2): 151-156.
    [10] G.F. Quan, “Mechanical behavior and microstructure of NiAl short fiber
     reinforced aluminum matrix composite”, Scripta Materialia, 1999; 41(7):
     779-783.
    [11] A. Luo, “Processing, microstructure, and mechanical behavior of cast
     magnesium metal matrix composites”, Metallurgical and Materials
     Transactions, 1995; 26A: 2445-2455.
    [12] W.L. Suk, I. Tsunemichi, N. Yoshinori, C. Takao, “High strain rate
     superplasticity of TiC particulate reinforced magnesium alloy composites
     - 151 -
    
    
    参考文献
     by vortex method”, Scripta Materialia, 1995; 32(11): 1713-1717.
    [13] M. Geni, M. Kikuchi, “Damage analysis of aluminum matrix composite
     considering non-uniform distribution of SiC particles”, Acta Materialia,
     1998; 46(9): 3125-3133.
    [14] M. Gupta, C. Lane, E.J. Lavernia, “Microstructure and properties of spray
     atomized and deposited Al-7Si/SiCp metal matrix composites”, Scripta
     Metallurgica, 1992; 26: 825-830.
    [15] Y. Cai, D. Taplin, M.J. Tan, W. Zhou, “Nucleation phenomenon in SiC
     particulate reinforced magnesium composite”, Scripta Materialia, 1999;
     41(9): 967-971.
    [16] Y. Cai, M.J. Tan, G.J. Shen, H.Q. Su, “Microstructure and heterogeneous
     nucleation phenomena in cast SiC particles reinforced magnesium
     composite”, Materials Science Engineering, 2000(1-2); A282: 232-239.
    [17] C. Badini, F. Marino, M. Montorsi, X.B. Guo, “Precipitation phenomena in
     B4C-reinforced magnesium-based composite”, Materials Science
     Engineering, 1992; A157: 53-61.
    [18] M.A. Matin, L. Lu, and M. Gupta, “Investigation of the reactions between
     boron and titanium compounds with magnesium”, Scripta Materialia,
     2001(4); 45: 479-486.
    [19] M.K. Premkumar, M.G. Chu, “Al-TiC particulate composite produced by a
     liquid state in situ process”, Materials Science and Engineering, 1995;
     A202(1-2): 172-178.
    [20] E.L. Zhang, S.Y. Zeng, B. Yang, Q.C. Li, M.Z. Ma, “A study on the kinetic
     process of reaction synthesis of TiC: Part Ⅰ. Experimental research and
     theoretical model,” Metallurgical and Materials Transactions, 1999; A30,
     1147-1151.
    [21] W.H. Jiang, G.H. Song, X.L. Han, C.L. He, H.C. Ru, “Synthesis of TiC/Al
     composites in liquid aluminum”, Materials Letters, 1997; 32(2-3): 63-65.
    [22] G. Bao, Z. Lin, “High strain rate deformation in particle reinforced metal
     matrix composites”, Acta Materialia, 1996; 44(3): 1011-1019.
    [23] X.M. Wang, J. Animesh, B. Rik “In situ fabrication of Al3Ti particle
     reinforced aluminium alloy metal-matrix composites”, Materials Science
     and Engineering, 2004; A364(1-2): 339-345.
    [24] J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, “Microstructural development of
     Al-15wt.%Mg2Si in situ composite with mischmetal addition”, Materials
     Science and Engineering, 2000; A281(1-2): 104-112.
    [25] L. Lu, K.K. Thong, M. Gupta, “Mg-based composite reinforced by Mg2Si”,
     Composites Science and Technology, 2003; 63(5): 627-632.
     - 152 -
    
    
    吉林大学博士学位论文
    [26] M. Mabuchi, K. Higashi, “Strengthening mechanisms of Mg-Si alloys”,
     Acta Materialia, 1996; 44(11): 4611-4618.
    [27] S.F. Hassan, M. Gupta, “Development of a novel magnesium-copper based
     composite with improved mechanical properties”, Materials Research
     Bulletin, 2002; 37(2): 377-389.
    [28] S.F. Hassan, M. Gupta, “Development of a novel magnesium-Ni composite
     with improved mechanical properties”, Journal of Alloys and Compounds,
     2002; 335(1-2): L10-L15.
    [29] S.F. Hassan, M. Gupta, “Development of ductile magnesium composite
     using titanium as reinforcement”, Journal of Alloys and Compounds,
     2002(1-2); 345: 246-251.
    [30] P. Perez, G. Garces, P. Adeva, “Mechanical properties of a Mg-10
     (vol.%)Ti composite”, Composites Science and Technology, 2004; 64(1):
     145-151.
    [31] K.L. Tee, L. Lu, M.O. Lai, “Synthesis of in situ Al-TiB2 composites using
     stir cast route”, Composite Structures, 1999; 47(1-4): 589-593.
    [32] M. Gupta, M.O. Lai, C.Y. Soo, “Effect of type of processing on the
     microstructural features and mechanical properties of Al-Cu/SiC metal
     matrix composites”, Materials Science and Engineering, 1996; A210(1-2):
     114-122.
    [33] X.C. Tong, H.S. Fang, “Al-TiC composite in situ processed by ingot
     metallurgy and rapid solidification technology: Part 1 Microstructural
     evolution”, Metallurgical and Materials Transactions, 1998; 29A: 875-891.
    [34] M.J. Koczak, M.K. Premkumar, “Emerging technologies for the in-situ
     productin MMCs”, JOM, 1993; January: 44-48.
    [35] S. Khatri, M. Koczak, “Formation of TiC in situ processed composites via
     solid-gas, solid-liquid and liquid-gas reaction in molten Al-Ti”, Materials
     Science and Engineering, 1993; A162: 153-162.
    [36] I. Gotman, M.J. Koczak, E. Shtessel, “Fabrication of Al matrix in situ
     composites via self-propagating synthesis”, Materials Science and
     Engineering, 1994; A187: 189-199.
    [37] I.H. Song, D.K. Kim, Y.D. Hahn, H.D. Kim, “The effect of a dilution agent
     on the dipping exothermic reaction process for fabricating a high-volume
     TiC-reinforced aluminum composite”, Scripta Materialia, 2003; 48(4):
     413-418.
    [38] H.Y. Wang, Q.C. Jiang, Y.Q. Zhao, F. Zhao, B.X. Ma, Y. Wang,
     “Fabrication of TiB2 and TiB2-TiC particulate reinforced magnesium
     matrix composites”, Materials Science and Engineering, 2004; A372(1-2):
     - 153 -
    
    
    参考文献
     109-114.
    [39] E.M. Nahed, M.A. Taha, A.E.W. Jarfors, H. Fredriksson, “On the reaction
     between aluminium, K2TiF6 and KBF4”, Journal of Alloys and Compounds,
     1999; 292(1-2): 221-229.
    [40] A. Jarfors, H. Fredriksson, L. Froyen, “On the thermodynamics and
     kinetics of carbides in the aluminium-rich corner of the Al-Ti-C diagram”,
     Materials Science and Engineering, 1991; A135: 119-123.
    [41] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori,
     “Microstructural characterization of TiC in in situ synthesized titanium
     matrix composites prepared by common casting technique”, Journal of
     Alloys and Compounds, 2001; 327(1-2): 248-252.
    [42] Y.J. Kim, H. Chung, S.J.L. Kang, “Processing and mechanical properties of
     Ti–6Al–4V/TiC in situ composite fabricated by gas-solid reaction”,
     Materials Science and Engineering, 2002; A333(1-2): 343-350.
    [43] X.N. Zhang, W.J. Lu, D. Zhang, R.J. Wu, B.J. Bian, P.W. Fang, “In situ
     technique for synthesizing (TiB+TiC)/Ti composites” Scripta Materialia,
     1999; 41(1): 39-46.
    [44] B. Hans, W. Birgit “Development of an abrasion resistant steel composite
     with in situ TiC particles”, Wear, 2001; 251(1-12): 1386-1395.
    [45] Y.S. Wang, X.Y. Zhang, G.T. Zeng, F.C. Li, “In situ production of Fe-VC
     and Fe-TiC surface composites by cast-sintering”, Composites, 2001;
     A32(2): 281-286.
    [46] Z. Mei, Y.W. Yan, K.Cui, “Effect of matrix composition on the
     microstructure of in situ synthesized TiC particulate reinforced iron-based
     composites”, Materials Letters, 2003; 57(21): 3175-3181.
    [47] J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu, M.S.
     Liu, “Preparation and properties of TiB2 nanoparticle reinforced copper
     matrix composites by in situ processing”, Materials Letters, 2002(6); 52:
     448-452.
    [48] Q. Xu, X.H. Zhang, J.C. Han, X.D. He, V.L. Kvanin, “Combustion
     synthesis and densification of titanium diboride-copper matrix composite”,
     Materials Letters, 2004; 57(28): 4439-4444.
    [49] Y.J. Kwon, M. Kobashi, T. Choh, N. Kanetake, “Fabrication and
     simultaneous bonding of metal matrix composite by combustion synthesis
     reaction”, Scripta Materialia, 2004; 50(5): 577-581.
    [50] X.H. Zhang, X.D. He, J.C. Han, W. Qu, V.L. Kvalin, “Combustion
     synthesis and densification of large-scale TiC-xNi cermets”, Materials
     Letters, 2002; 56(3): 183-187.
     - 154 -
    
    
    吉林大学博士学位论文
    [51] J.C. Han, X.H. Zhang, J.V. Wood, “In-situ combustion synthesis and
     densification of TiC-xNi cermets”, Materials Science and Engineering,
     2000; A280(2): 328-333.
    [52] B. Yang, F. Wang, J.S. Zhang, “Microstructural characterization of in situ
     TiC/Al and TiC/Al-20Si-5Fe-3Cu-1Mg composites prepared by spray
     deposition”, Acta Materialia, 2003; 51(17): 4977-4989.
    [53] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori,
     “Microstructural characterization of TiB in in situ synthesized titanium
     matrix composites prepared by common casting technique”, Journal of
     Alloys and Compounds, 2001; 327(1-2): 240-247.
    [54] Y.F. Han, X.F. Liu, X.F. Bian, “In situ TiB2 particulate reinforced near
     eutectic Al–Si alloy composites”, Composites, 2002; 33(3): 439-444.
    [55] L. Lu, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, “In situ TiB2 reinforced Al
     alloy composites”, Scripta Materialia, 2001; 45(9): 1017-1023.
    [56] R.F. Shyu, F.T. Weng, C.T. Ho, “In situ reacted titanium nitride-reinforced
     aluminum alloy composite”, Journal of Materials Processing Technology,
     2002; 122(2-3): 301-304.
    [57] P.C. Maity, P.N. Chakraborty, S.C. Panigrahi, “Al-Al2O3 in situ particle
     composites by reaction of CuO particles in molten pure Al”, Materials
     Letters, 1997; 30(2-3): 147-151.
    [58] Q. Dong, L.Q. Chen, M.J., Zhao, J. Bi, “Synthesis of TiCp reinforced
     magnesium matrix composites by in situ reactive infiltration process”,
     Materials Letters, 2004; 58(6): 920-926.
    [59] H.Z. Ye, X.Y. Liu, B. Luan, “In situ synthesis of AlN particles in Mg-Al
     alloy by Mg3N2 addition”, Materials Letters, 2004; 58(19): 2361-2364.
    [60] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, “In situ synthesis of TiC/Mg
     composites in molten magnesium”, Scripta Materialia, 2003; 48(9):
     1349-1354.
    [61] P. Sahoo, M.J. Koczak, “Microstructure-property relationships of in situ
     reacted TiC/Al-Cu metal matrix composites”, Materials Science and
     Engineering, 1991; A131: 69-76.
    [62] A.G. Merzhanov, “Self-propagating high-temperature synthesis: Twenty
     years of search and findings”, Combustion and Plasma Synthesis of
     High-temperature materials, edited by Z.A. Munir and J.B. Holt, VCH,
     Weinheim, New York, 1990; 1-53.
    [63] J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials: Part
     Ⅰ. Reaction parameters”, Progress in Materials Science, 1995; 39(4-5):
     243-273.
     - 155 -
    
    
    参考文献
    [64] J.J. Moore, H.J. Feng, “Combustion synthesis of advanced materials: Part
     Ⅱ. Classification, applications and modelling”, Progress in Materials
     Science, 1995; 39(4-5): 275-316.
    [65] H.C. Yi, J.J. Moore, “Review: Self-propagating high-temperature
     (combustion) synthesis (SHS) of powder compacted materials”, Journal of
     Materials Science, 1990; 25: 1159-1168.
    [66] Z.A. Munir, U. Anselmi-Tamburini, “Self-propagating exothermic
     reactions: the synthesis of high-temperature materials by combustion”,
     Materials Science Reports, 1989; 3: 277-365.
    [67] C. Wang, L. Gao, G. Li, Y. Wang, Y. Xia, S. Bysakh, C. Dong,
     “Laser-induced self-propagating reaction synthesis of amorphous-based
     composite Zr-Al-Ni-Cu alloys”, Journal of Materials Science, 2003; 38(7):
     1377-1381.
    [68] C. Wang, Y. Wang, Y. Xia, C. Dong, “Laser-induced self-propagating
     high-temperature synthesis of amorphous- and quasycrystal-containing
     composite materials”, Journal of Non-crystalline Solids”, 2004; 334-335:
     513-516.
    [69] L.L. Wang, Z.A. Munir, Y.M. Maximov, “Review: Thermite reactions: their
     utilization in the synthesis and processing of materials”, Journal of
     Materials Science”, 1993; 28: 3693-3708.
    [70] R.W. Rice, “Review: Microstructural aspects of fabricating bodies by
     self-propagating synthesis”, Journal of Materials Science, 1991; 26:
     6533-6541.
    [71] J.B. Holt, S.D. Dunmead, “Self-heating synthesis of materials”, Annual
     Review of Materials Science, 1991; 21: 305-334.
    [72] J. Subrahmanyam, M. Vijayakumar, “Review: Self-propagating high-
     temperature synthesis”, Journal of Materials Science, 1992; 27: 6249-6273.
    [73] A.O. Kunrath, I.E. Reimanis, J.J. Moore, “Combustion synthesis of
     TiC-Cr3C2 composites”, Journal of Alloys and Compounds, 2001(1-2); 329:
     131-135.
    [74] L. Klinger, I. Gotman and D. Horvitz, “In situ processing of TiB2/TiC
     ceramic composites by thermal explosion under pressure: experimental
     study and modeling”, Materials Science and Engineering, 2001; 302(1):
     92-99.
    [75] J.H. Lee, S.K. Ko, C.W. Won “Sintering behavior of Al2O3-TiC composite
     powder prepared by SHS process”, Materials Research Bulletin, 2001;
     36(5-6): 989-996.
    [76] D. Horvitz and I. Gotman, “Pressure-assisted SHS synthesis of
     - 156 -
    
    
    吉林大学博士学位论文
     MgAl2O4-TiAl in situ composites with interpenetrating networks”, Acta
     Materialia, 2002; 50(8): 1961-1971.
    [77] C. Curfs, I.G. Cano, G.B.M. Vaughan, X. Turrillas, Kvick, M. A. Rodríguez,
     “TiC-NiAl composites obtained by SHS: a time-resolved XRD study”,
     Journal of the European Ceramic Society, 2002; 22(7): 1039-1044.
    [78] Y. Kopit, “The ability of systems based on Ni, Al and Ti to be synthesized
     by self-propagating high-temperature synthesis (SHS)”, Intermetallics,
     2001; 9(5): 387-393.
    [79] D. Horvitz, I. Gotman, E. Y. Gutmanas and N. Claussen, “In situ
     processing of dense Al2O3-Ti aluminide interpenetrating phase composites”,
     Journal of the European Ceramic Society, 2002; 22(6): 947-954.
    [80] K. Uenishi and K. F. Kobayashi, “Processing of intermetallic compounds
     for structural applications at high temperature”, Intermetallics, 1996;
     4(Supp.1): S95-S101.
    [81] P. Perssona, A.E.W. Jarforsb, S. Savagec, “Self-propagating
     high-temperature synthesis and liquid-phase sintering of TiC/Fe
     composites”, Journal of Materials Processing Technology, 2002; 127(2):
     131-139.
    [82] N. Zarrinfar, P.H. Shipway, A.R. Kennedy, A. Saidi “Carbide stoichiometry
     in TiCx and Cu-TiCx produced by self-propagating high-temperature
     synthesis”, Scripta Materialia, 2002; 46(2): 121-126.
    [83] E. Taheri-Nassaj, S.H. Mirhosseini, “An in situ WC-Ni composite
     fabricated by the SHS method”, Journal of Materials Processing
     Technology, 2003; 142(2): 422-426.
    [84] Q.C. Jiang, X.L. Li, H.Y. Wang, “Fabrication of TiC particulate reinforced
     magnesium matrix composites”, Scripta Materialia, 2003; 48(6): 713-717.
    [85] P. Li, E.G. Kandalova, V.I. Nikitin, A.G. Makarenko, A.R. Luts, Y. Zhang,
     “Preparation of Al-TiC composites by self-propagating high-temperature
     synthesis”, Scripta Materialia, 2003; 49(7): 699-703.
    [86] K. L. Tee, L. Lü and M. O. Lai, “Improvement in mechanical properties of
     in-situ Al-TiB2 composite by incorporation of carbon”, Materials Science
     and Engineering, 2003; 339(1-2): 227-231.
    [87] L. Roberta, O. Roberto, G. Cao, “Chemically-activated combustion
     synthesis of TiC-Ti composites”, Materials Science and Engineering, 2004;
     A367(1-2): 185-197.
    [88] T. Yamamoto, A. Otsuki, K. Ishihara, P.H. Shingu, “Synthesis of near net
     shape high density TiB/Ti composite”, Materials Science and Engineering,
     1997; A239-240: 647-651.
     - 157 -
    
    
    参考文献
    [89] X. Zhang, Q. Xu, J. Han, V.L. Kvanin, “Self-propagating high temperature
     combustion synthesis of TiB/Ti composites”, Materials Science and
     Engineering, 2003; A348(1-2): 41-46.
    [90] Y. Choi, M.E. Mullins, K. Wijayatilleke, J.K. Lee, “Fabrication of metal
     matrix composites of TiC-Al through self-propagating synthesis reaction”,
     Metallurgical Transactions, 1992; A23: 2387-2392.
    [91] Q. Fan, H. Chai, Z. Jin, “Mechanism of combustion synthesis of TiC-Fe
     cermet”, Journal of Materials Science, 1999; 34(1): 115-122.
    [92] M.J. Capaldi, A. Saidi, J.V. Wood, “Reaction synthesis of TiC and Fe-TiC
     composites”, ISIJ international, 1997; 37(2): 188-193.
    [93] J. M. Brupbacher, L. Christodoulou, D. C. Nagle, “Process for Forming
     Metal Ceramic Composites”, 1987; US Patent No. 4,710,348.
    [94] J.M. Brupbacher, L. Christodoulou, and D.C. Nagle, “Rapid Solidification
     of Metal-Second Phase Composites”, 1989; US Patent No. 4,836,982.
    [95] A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, Y.R. Mahajan,
     “Microstructure-property correlation in Al/TiB2 (XD) composites”, Scripta
     Metallurgica Materialia, 1990; 24(5): 873-878.
    [96] R. Mitra, W.A. Chiou, J.R. Weertman, M.E. Fine, “Relaxation mechanisms
     at the interfaces in XDTM Al/TiCp metal matrix composites”, Scripta
     Metallurgica Materialia, 1991; 25: 2689-2694.
    [97] A.R.C. Westwood, “Materials for advanced studies and devices”,
     Metallurgical Transactions, 1988; A19: 749-758.
    [98] D.C.V. Aken, P.E. Krajewski, G.M. Vyletel, J.E. Allison, J.W. Jones,
     “Recrystallization and grain growth phenomena in a particle-reinforced
     aluminum composite”, Metallurgical and Materials Transactions, 1995;
     25A: 1395-1405.
    [99] G.M. Vyletel, J.E. Allison, and D.C. Van Aken, “The effect of matrix
     microstructure on cyclic response and fatigue behavior of
     particle-reinforced 2219 aluminum: Part I. Room temperature behavior”,
     Metallurgical and Materials Transactions, 1995; 26A: 3143-3154.
    [100] Y. Liu, B. Xu, W. Li, X. Cai, Z. Yang, “The effect of rare earth CeO2 on
     microstructure and properties of in situ TiC/Al-Si composite”, Materials
     Letters, 2004; 58(3-4): 432-436.
    [101] X. Xie, D. Zhang, J. Liu, “Thermal expansion properties of TiC particle
     reinforced ZA43 matrix composite”, Materials and Design, 2001; 22(3):
     157-162.
    [102] X. Gu, R.J. Hand, “The production of reinforced aluminium/alumina
     bodies by directed melt oxidation”, Journal of the European Ceramic
     - 158 -
    
    
    吉林大学博士学位论文
     Society, 1995; 15(9): 823-831.
    [103] X. Gu, R.J. Hand, “The use of lithium as a dopant in the directed melt
     oxidation of aluminium”, Journal of the European Ceramic Society, 1996;
     16(9): 929-935.
    [104] M.S. Newkirk, A.W. Urquhart, H.R. Zwicker, E. Breval, “Formation of
     lanxideTM ceramic composite materials”, Journal of Materials Research,
     1996; 1(1): 81-89.
    [105] A.S. Nagelberg, “Observations on the role of Mg and Si in the directed
     oxidation of Al-Mg-Si alloys”, Journal of Materials Research, 1992; 7(2):
     265-268.
    [106] M.K. Aghajanian, N.H. Macmillan, C.R. Kennedy, S.J. Luxzcz, R. Roy,
     “Properties and microstructures of lanxide Al2O3-Al ceramic composite
     materials”, Journal of Materials Science, 1989; 24: 658-670.
    [107] R. Shamsudin, R.J. Hand, “Al2O3/Al composites produced by directed melt
     oxidation using Zn containing external dopants”, Journal of Materials
     Science, 2001; 36(7): 1613-1619.
    [108] E. Breval, M.K. Aghajanian, S.J. Luszcz, “Microstructure and composition
     of alumina/aluminum composites made by directed oxidation of
     aluminum”, Journal of American Ceramic Society, 1990; 73(9):
     2610-2614.
    [109] K.B. Lee, H. Kwon, “Interfacial reactions in SiCP/Al composite fabricated
     by pressureless infiltration”, Scripta Materialia, 1997; 36(8): 847-852.
    [110] P.C. Maity, S.C. Panigrahi, P.N. Chakraborty, “Preparation of
     aluminium-alumina in-situ particle composite by addition of titania to
     aluminium melt”, Scripta Metallurgica Meterialia, 1993; 28: 549-552.
    [111] P.C. Maity, P.N. Chakraborty, S.C. Panigrahi, “Processing and properties of
     Al-Al2O3 (TiO2) in situ particle composite”, Journal of Materials
     Processing Technology, 1995; 53(3-4): 857-870.
    [112] P.C. Maity, S.C. Panigrahi, P.N. Chakraborty, “Mechanical properties of
     hot worked Al–5CuO particle composite”, Journal of Materials Processing
     Technology, 1999; 94(2-3): 179-182.
    [113] H. Nakata, T. Choh, N. Kanetake, “Fabrication and mechanical properties
     of in situ formed carbide particulate reinforced aluminum composite”,
     Journal of Materials Science, 1995; 30: 1719-1727.
    [114] A. Chrysanthou, G. Erbaccio, “Production of copper-matrix composites by
     in-situ processing”, Journal of Materials Science, 1995; 30: 6339-6344.
    [115] E.L. Zhang, S.Y. Zeng, B. Yang, Q.C. Li, M.Z. Ma, “A study on the kinetic
     process of reaction synthesis of TiC: Part Ⅱ. Theoretical analyses and
     - 159 -
    
    
    参考文献
     numerical calculation”, Metallurgical and Materials Transactions, 1999;
     30A, 1153-1162.
    [116] E.L. Zhang, B. Yang, S.Y. Zeng, Q.C. Li, “Formation mechanism of TiC in
     Al/TiC composites prepared by direct reaction synthesis”, Transactions of
     Nonferrous Metals Society of China, 1998; 8(1): 92-96.
    [117] E.L. Zhang, S.Y. Zeng, X.C. Zeng, Q.C. Li, “Reaction synthesis of Al/TiC
     composites and the effect of Al content”, Rare Metals, 1996; 15(1): 41-44.
    [118] W.C. Lee, S.L. Chung, “Ignition phenomena and reaction mechanisms of
     the self-propagating high-temperature synthesis reaction in the
     titanium-carbon-aluminum system”, Journal of American Ceramic Society,
     1997; 80(1): 53-61.
    [119] S.D. Dunmead, D.W. Readey, C.E. Semler, “Kinetics of combustion
     synthesis in the Ti-C and Ti-C-Ni systems”, Journal of American Ceramic
     Society, 1989; 72(12): 2318-2324.
    [120] S. Sarian, “Diffusion of carbon in TiC,” Journal of Applied Physics, 1968;
     39(7): 3305-3310.
    [121] S. Sarian, “Anomalous Diffusion of 14C in TiC0.67,” Journal of Applied
     Physics, 1968; 39(11): 5036-5041.
    [122] S. Sarian, “Diffusion of 44Ti in TiCx,” Journal of Applied Physics, 1969;
     40(9): 3515-3520.
    [123] Y. Choi, S.W. Rhee, “Effect of aluminium addition on the combustion
     reaction of titanium and carbon to form TiC”, Journal of Materials Science
     1993; 28: 6669-6675.
    [124] J.V. Wood, P. Davies, J.L.F. Kellie, “Properties of reactively cast
     aluminium-TiB2 alloys”, Materials Science and Technology, 1993; 9:
     833-840.
    [125] L. Lu, M.O. Lai, F.L. Chen, “Al-4wt.%Cu composite reinforced with
     in-situ TiB2 particles”, Acta Materialia, 1997; 45(10): 4297-4309.
    [126] Y. Chen, D.D.L. Chung, “In situ Al-TiB composite obtained by stir
     casting”, Journal of Materials Science, 1996; 31: 311-315.
    [127] Y. Chen, D.D.L. Chung, “Ductile and strong aluminium-matrix titanium
     aluminide composite formed in situ from aluminium, titanium dioxide and
     sodium hexafluoroaluminate”, Journal of Materials Science, 1995; 30:
     4609-4616.
    [128] D.C. Dunand, A. Mortensen, J.L. Sommer, “Synthesis of bulk and
     reinforced nickel aluminides by reactive Infiltration”, Metallurgical and
     Materials Transactions, 1993; 24A: 2161-2170.
    [129] E.T. Nassaj, M. Kobashi, T. Choh, “Fabrication and analysis of an in situ
     - 160 -
    
    
    吉林大学博士学位论文
     TiB2/Al composite by reactive spontaneous”, Scripta Materialia, 1996;
     34(8): 1257-1265.
    [130] E.T. Nassaj, M. Kobashi, T. Choh, “Fabrication and analysis of in situ
     formed boride/Al composites by reactive spontaneous infiltration”, Scripta
     Materialia, 1997; 37(5): 605-614.
    [131] D. Muscat, R.A.L. Drew, “Modeling the infiltration kinetics of molten
     aluminum into porous titanium carbide”, Metallurgical and Materials
     Transactions, 1994; 25A: 2357-2370.
    [132] M. Hanabe, P.B. Aswath, “Synthesis of in-situ reinforced Al composites
     from Al-Si-Mg-O precursors”, Acta Materialia, 1997; 45(10): 4067-4076.
    [133] B.S.S. Daniel, V.S.R. Murthy, “Nickel aluminide reinforced AlN/Al
     composites by pressureless infiltration”, Materials Letters, 1998; 37(6):
     334-339.
    [134] V.M. Kevorkijan, “The reactive infiltration of porous ceramic media by a
     molten aluminum alloy”, Composites Science and Technology, 1999; 59(5):
     683-686.
    [135] D. Tiberghien, J. Lapin, S. Ryelandt, F. Delannay, “Processed by reactive
     squeeze-infiltration of aluminium into a preform of steel fibres”, Materials
     Science and Engineering, 2002; A323(1-2): 427-435.
    [136] F. Wagner, D.E. Garcia, A. Krupp, N. Claussen, “Interpenetrating
     Al2O3-TiAl3 alloys produced by reactive infiltration”, Journal of the
     European Ceramic Society, 1999; 19(13-14): 2449-2453.
    [137] J. Pan, J.H. Li, H. Fukunaga, X.G. Ning, H.Q. Ye, Z.K. Yao, D.M. Yang,
     “Microstructural study of the interface reaction between titania whiskers
     and aluminum”, Composites Science and Technology, 1997; 57(3),
     319-325.
    [138] H.X. Peng, D.Z. Wang, L. Geng, C.K. Yao, “Evaluation of the
     microstructure of in-situ reaction processed Al3Ti-Al2O3-Al composite”,
     Scripta Materialia, 1997; 37(2): 199-204.
    [139] Q.F. Guan, Q.C. Jiang, YQ. Zhao, C.H. Liu, “In situ production of Fe-TiC
     composites by self-propagative high-temperature synthesis reaction in
     liquid iron alloy”, ISIJ International, 2002; 42(6): 673-675.
    [140] Y. Lin, R.H. Zee, B.A. Chin, “Formation of in situ reinforcements of TiC in
     Ti alloys”, Metallurgical Transactions, 1991; 22A: 859-865.
    [141] Y. Wang, X. Zhang, G. Zeng, F. Li, “Cast sinter technique for producing
     iron base surface composites”, Materials and Design, 2000; 21(5):
     447-452.
    [142] Y. Wang, X. Zhang, F. Li, G. Zeng, “Study on an Fe-TiC surface composite
     - 161 -
    
    
    参考文献
     produced in situ”, Materials and Design, 1999; 20(5): 233-236.
    [143] Y. Wang, F. Li, G. Zeng, D. Feng, “Structure and wear-resistance of an
     Fe-VC surface composite produced in situ”, Materials and Design, 1999;
     20(1): 19-22.
    [144] Y. Wang, Z. Sun, Y. Ding, F. Li, “In situ production of VC-SiO2-Fe surface
     composite by cast-sintering”, Materials and Design, 2004; 25(1): 69-72.
    [145] S. Ranganath, M. Vijayakumar, J. Subrahmanyam, “Combustion –assisted
     synthesis of Ti-TiB-TiC composite via the casting route”, Materials
     Science and Engineering, 1992; A149: 253-257.
    [146] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, T. Sakata, H. Mori,
     “Microstructure and tensile properties of in situ (TiB+TiC)/Ti6242
     (TiB:TiC=1:1) composites prepared by common casting technique,
     Materials Science and Engineering, 2001; A311(1-2): 142-150.
    [147] W.J. Lu, D. Zhang, X.N. Zhang, R.J. Wu, “Creep rupture life of in situ
     synthesized (TiB+TiC)/Ti matrix composites”, Scripta Materialia, 2001;
     44(10): 2449-2455.
    [148] H.T. Tsang, C.G. Chao, C.Y. Ma, “In situ fracture observation of a TiC/Ti
     MMC produced by combustion synthesis”, Scripta Materialia, 1996; 35(8):
     1007-1012.
    [149] H.T. Tsang, C.G. Chao, C.Y. Ma, “Effects of volume fraction of
     reinforcement on tensile and creep properties of in-situ TiB/Ti MMC”,
     Scripta Materialia, 1997; 37(9): 1359-1365.
    [150] J.S. Benjamin, “Dispersion strengthened superalloys by mechanical
     alloying”, Metallurgical Transactions, 1970; 1: 2943-2951.
    [151] A. Calka, A.P. Radlinski, “Formation of amorphous Fe-B alloys by
     mechanical alloying”, Applied Physics Letters, 1991; 58(2): 119-121.
    [152] N.Q. Wu, S. Lin, J.M. Wu, Z.Z. Li, “Mechanosynthesis mechanism of TiC
     powders”, Materials Science and Technology, 1998; 14: 287-291.
    [153] N.Q. Wu, J.M. Wu, Z.Z. Li, G.X. Wang, “Formation of nanocrystalline
     F.C.C. phase by mechanically driven crystallization”, Materials
     Transactions, JIM, 1997; 38(3): 255-259.
    [154] K.P. Rao, J.B. Zhou, “Characterization and mechanical properties of in situ
     synthesized Ti5Si3/TiAl composites”, Materials Science and Engineering,
     2003; A356(1-2): 208-218.
    [155] J. Naser, W. Riehemann, “Dispersion hardening of metals by nanoscaled
     ceramic powders”, Materials Science and Engineering, 1997; A234-236:
     467-469.
    [156] L. Lu, M.O. Lai, C.W. Ng, “Enhanced mechanical properties of an Al
     - 162 -
    
    
    吉林大学博士学位论文
     based metal matrix composite prepared using mechanical alloying”,
     Materials Science and Engineering, 1998; A252(2): 203-211.
    [157] K.P. Rao, Y.J. Du, “In situ formation of titanium silicides-reinforced
     TiAl-based composites”, Materials Science and Engineering, 2000;
     A277(1-2): 46-56.
    [158] F.Y.C. Boey, Z. Yuan, K.A. Khor, “Mechanical alloying for the effective
     dispersion of sub-micron SiCp reinforcements in Al-Li alloy composite”,
     Materials Science and Engineering, 1998; A252(2): 276-287.
    [159] D.C. Jia, Y. Zhou, “Mechanical properties and fracture behavior SiCw
     reinforced Al-12Ti alloy prepared by mechanical alloying technique”,
     Materials Science and Engineering, 1998; A252(1): 44-52.
    [160] Y.Q. Hu, H.F. Zhang, A.M. Wang, B.Z. Ding, Z.Q. Hu, “Preparation and
     hydriding/dehydriding properties of mechanically milled Mg-30wt.%
     TiMn1.5 composite”, Journal of Alloys and Compounds, 2003; 354(1-2):
     296-302.
    [161] R. Sankar, P. Singh, “Synthesis of 7075 Al/SiC particulate composite
     powders by mechanical alloying”, Materials Letters, 1998; 36(1-4):
     201-205.
    [162] Y. Ozcatalbas, “Investigation of the machinability behaviour of Al4C3
     reinforced Al-based composite produced by mechanical alloying
     technique”, Composites Science and Technology, 2003; 63(1): 53-61.
    [163] N.Q. Wu, J.M. Wu, G.X. Wang, Z.Z. Li, “Amorphization in the Al-C
     system by mechanical alloying”, Journal of Alloys and Compounds, 1997;
     260(1): 121-126.
    [164] H. Arik, “Production and characterization of in situ Al4C3 reinforced
     aluminum-based composite produced by mechanical alloying technique”,
     Materials and Design, 2004; 25(1): 31-40.
    [165] N.Q. Wu, G.X. Wang, W. Li, J.M. Wu, Z.Z. Li, “Mechanically driven
     synthesis of nanophase TiC/TiAl composite powder”, Materials Letters,
     1997; 32(4): 259-262.
    [166] L. Lu, M.O. Lai, Y.H. Toh, L. Froyen, “Structure and properties of
     Mg-Al-Ti-B alloys synthesized via mechanical alloying”, Materials
     Science and Engineering, 2002; A334(1-2): 163-172.
    [167] M.O. Lai, L.Lu, B.Y. Chung, “Formation of Mg-Al-Ti/MgO composite via
     reduction of TiO2”, Composite Structures, 2002; 57(1-4): 183-187.
    [168] M. S. El-Eskandarany, H.N. El-Bahnasawy, H.A. Ahmed, N.A. Eissa,
     “Mechanical solid-state reduction of haematite with magnesium”, Journal
     of Alloys and Compounds, 2001; 314(1-2): 286-295.
     - 163 -
    
    
    参考文献
    [169] J.Y. Dai, D.X. Li, H.Q. Ye, G.J. Zhang, Z.Z. Jin, “Characterization of
     TiB2-Ti (CN)-Ni ceramics by transmission and analytical
     electron-microscopy, Materials Letters, 1993; 16(6): 317-321.
    [170] L. Wang, M. Niinomi, S. Takahashi, M. Hagiwara, S. Emura, Y. Kawabei,
     S.J. Kim, “Relationship between fracture toughness and microstructure of
     Ti-6Al-2Sn-4Zr-2Mo alloy reinforced with TiB particles”, Materials
     Science and Engineering, 1999; A263(2): 319-325.
    [171] S.S. Sahay, K.S. Ravichandran, R. Atri, B. Chen, J. Rubin, “Evolution of
     microstructure and phases in in-situ processed Ti-TiB composites
     containing high volume fractions of TiB whiskers”, Journal of Material
     Research, 1999; 14(11): 4214-4223.
    [172] Z.Y. Ma, S.C. Tjong, L. Gen, “In-situ Ti-TiB metal-matrix composite
     prepared by a reactive pressing process”, Scripta Materialia, 2000; 42(4):
     367-373.
    [173] L. Farber, I. Gotman, E.Y. Gutmanas, A. Lawley, “Solid state synthesis of
     NiAl-Nb composites from fine elemental powders”, Materials Science and
     Engineering, 1998; A244(1): 97-102.
    [174] S.C. Tjong, K.F. Tam, S.Q. Wu, “Thermal cycling characteristics of in-situ
     Al-based composites prepared by reactive hot pressing”, Composites
     Science and Technology, 2003; 63(1): 89-97.
    [175] K. Satyaprasad, Y.R. Mahajan, V.V. Bhanuprasad, “Strengthening of Al/20
     v/o TiC composites by isothermal heat treatment”, Scripta Metallurgica
     Materialia, 1992; 26: 711-716.
    [176] A.R. Kennedy, D.P. Weston, M.I. Jones, C. Enel, “Reaction in Al-Ti-C
     powders and its relation to the formation and stability of TiC in Al at high
     temperatures”, Scripta Materialia, 2000; 42(12): 1187-1192.
    [177] A.R. Kennedy, D.P. Weston, M.I. Jones, “Reaction in Al-TiC metal matrix
     composites”, Materials Science and Engineering, 2001; A316(1-2): 32-38.
    [178] R. Mitra, M.E. Fine, J.R. Weertman, “Chemical reaction strengthening of
     Al/TiC metal matrix composites by isothermal heat treatment at 913 K”,
     Journal of Materials Research, 1993; 8(9): 2370-2379.
    [179] C.N. Chu, T.Oktay, N.Saka, N.P. Suh, “Dispersion-strengthened alloys by
     the mixalloying process”, ASME Transactions Journal of Engineering for
     Industry, 1991; 113: 481-485.
    [180] J.M. Han, Y.S. Han, S.Y. You, H.S. Kim, “Mechanical behaviour of a new
     dispersion-strengthened bronze”, Journal of Materials Science, 1997;
     32(24): 6613-6618.
    [181] Z. Liu, H. Fredriksson, “On the precipitation of TiC in liquid iron by
     - 164 -
    
    
    吉林大学博士学位论文
     reactions between different phase”, Metallurgical and Materials
     Transactions, 1997; A28: 471-483.
    [182] M.J. Koczak, K.S. Kumar, “In situ process for producing a composite
     containing refractory material”, 1989; US patent No. 4, 808, 372.
    [183] P. Sahoo, M.J. Koczak, “Analysis of in situ formation of titanium carbide
     in aluminium alloys”, Materials Science and Engineering, 1991; A44:
     37-44.
    [184] Q. Hou, R. Mutharasan, M. Koczak, “Feasibility of aluminium nitride
     formation in aluminum alloys”, Materials Science and Engineering, 1995;
     195: 121-129
    [185] Q. Zheng, R.G. Reddy, “Mechanism of in situ formation of AlN in Al melt
     using nitrogen gas”, Journal of Materials Science, 2004; 39(1): 141-149.
    [186] Y.J. Kim, H. Chung, S.J.L. Kang, “Processing and mechanical properties of
     Ti-6Al-4V/TiC in situ composite fabricated by gas-solid reaction”,
     Materials Science and Engineering, 2002; A333(1-2): 343-350.
    [187] Y.J. Kim, H. Chung, S.J.L. Kang, “In situ formation of titanium carbide in
     titanium powder compacts by gas-solid reaction”, Composites, 2001;
     A32(5): 731-738.
    [188] A. Calka, “Formation of titanium and zirconium nitrides by mechanical
     alloying”, Applied Physics Letters, 1991; 59(13): 1568-1569.
    [189] D. Wexler, A. Calka, A.Y. Mosbah, “Ti-TiN hardmetals prepared by in situ
     formation of TiN during rective ball milling of Ti in ammonia”, Journal of
     Alloys and Compounds, 2000; 309(1-2): 201-207.
    [190] D. Wexler, D. Parker, V. Palm, A. Calka, “Mechano-synthesis and
     compaction of titanium-titanium nitride composites”, Materials Science
     and Engineering, 2004; 375-377: 905-910.
    [191] M. Naranjo, J.A. Rodriguez, E.J. Herrera, “Sintering of Al/AlN composite
     powder obtained by gas-solid reaction milling”, Scripta Materialia, 2003;
     49: 65-69.
    [192] M. Shibuya, J.F. Despres, O. Odawara, “Characteristic sample temperature
     and pressure during processing of titanium nitride combustion synthesis
     with liquid nitrogen”, Journal of Materials Science, 1998; 33(10):
     2573-2576.
    [193] S. Milenkovic, A.A. Coelho, R. Caram, “Directional solidification
     processing of eutectic alloys in the Ni-Al-V system”, Journal of Crystal
     Growth, 2000; 211(1-4): 485-490.
    [194] T. Suzuki, H. Matsumoto, N. Nomura, S. Hanada, “Microstructures and
     fracture toughness of directionally solidified Mo-ZrC eutectic composites”,
     - 165 -
    
    
    参考文献
     Science and Technology of Advanced Materials, 2002; 3(2): 137-143.
    [195] C. Mayencourt, R. Schaller, “Development of a high-damping composite:
     Mg2Si/Mg”, Physica Status Solidi, 1997; A163: 357-368.
    [196] M. Mabuchi, K. Kubota, K. Higashi, “Elevated temperature mechanical
     properties of magnesium alloys containing Mg2Si”, Materials Science and
     Technology, 1996; 12: 35-39.
    [197] M. Mabuchi, K. Kubota, K. Higashi, “Tensile strength, ductility and
     fracture of magnesium-silicon alloys”, Journal of Materials Science, 1996;
     31: 1529-1535.
    [198] E.E. Schmid, K.V. Oldenburg, G. Frommeyer, “Microstructure and
     properties of as-cast intermitallic Mg2Si-Al alloys”, Z. Metallkde, 1990;
     81(H1): 809-815.
    [199] M. Mabuchi, K. Kubota, K. Higashi, “Effect of hot extrusion on
     mechanical properties of a Mg-Si-Al alloy”, Materials Letters, 1994;
     19(5-6): 247-250.
    [200] J. Zhang, Y, Wang, B. Yang, B.L. Zhou, “Effects of Si content on the
     microstructure and tensile strength of an in situ Al/Mg2Si composite”,
     Journal of Materials Research, 1999; 14(1): 68-74.
    [201] L. Liao, Y. Sun, G. Sun, “Restraining effect of strontium on the
     crystallization of Mg2Si phase during solidification in Al-Si-Mg casting
     alloys and mechanisms”, Materials Science and Engineering, 2003;
     A358(1-2): 164-170.
    [202] Y.G. Zhao, Q.D. Qin, Y.Q. Zhao, Y.H. Liang, Q.C. Jiang, “In situ
     Mg2Si/Al-Si composite modified by K2TiF6”, Materials Letters 2004;
     58(16): 2192-2194.
    [203] J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou, “Microstructural evolution of the
     in situ Al-15wt.% Mg2Si composite with extra Si contents”, Scripta
     Materialia, 2000; 42(11): 1101-1106.
    [204] M.G. Chu, M.K. Premkumar, “Mechanism of TiC formation in Al/TiC in
     situ metal-matrix composite”, Metallurgical Transactions, 1993; A24,
     2803-2805.
    [205] M.K. Premkumar, M.G. Chu, “Synthesis of TiC particulates and their
     segregation during solidification in in situ processed Al-TiC composites”,
     Metallurgical Transactions, 1993; A24, 2358-2362.
    [206] N. Frage, N. Frumin, L. Levin, M. Polak, M.P. Dariel, “High-temperature
     phase equilibria in the Al-rich corner of the Al-Ti-C system”, Metallurgical
     Transactions, 1998; A24, 1341-1345.
    [207] H.J. Brinkman, J. Duszcyzyk, L. Katgerman, “In-situ formation of TiB2 in
     - 166 -
    
    
    吉林大学博士学位论文
     a P/M aluminum matrix”, Scripta Materialia, 1997; 37(3): 293-297.
    [208] T. Nukami, M.C. Flemings, “In situ synthesis of TiC particulate-reinforced
     aluminum matrix composites”, Metallurgical and Materials Transactions,
     1995; A26, 1877-1884.
    [209] Z.Y. Ma, S.C. Tjiong, “In situ ceramic particle-reinforced aluminum matrix
     composites fabricated by reaction pressing in the TiO2 (Ti)-Al-B (B2O3)
     system”, Metallurgical and Materials Transactions, 1997; A28: 1931-1942.
    [210] Y. Taneoka, O. Odawara, “Combustion synthesis of the
     titanium-aluminium-boron system”, Journal of American Ceramic Society,
     1989; 72(6): 1047-1049.
    [211] H.J. Brinkman, J. Duszczyk, L. Katgerman, “Influence of matrix alloying
     elements on reactive synthesis of 2124 aluminium alloy metal matrix
     composites”, Materials Science and Technology, 1998; 14: 873-876.
    [212] K.L. Tee, L. Lu, M.O. Lai, “In-situ stir cast Al-TiB2 composite: matrix
     modification”, Z. Metallkd, 2000; 91(3): 251-257.
    [213] J. Fjellstedt, A.E.W. Jarfors, L. Svendsen, “Experimental analysis of the
     intermediary phases AlB2, AlB12 and TiB2 in the Al-B and Al-Ti-B
     systems”, Journal of Alloys and Compounds, 1999; 283(1-2): 192-197.
    [214] M. Johnsson, K. Jansson, “Study of Al1-xTixB2 particles extracted form
     Al-Ti-B alloys”, Z. Metallkd, 1998; 89(6): 394-398.
    [215] F. Zupanic, S. Spaic, A. Krizman, “Conribution to ternary system Al-Ti-B,
     Part 1: Study of diborides present in the aluminium corner”, Materials
     Science and Technology, 1998; 14: 601-607.
    [216] F. Zupanic, S. Spaic, A. Krizman, “Conribution to ternary system Al-Ti-B,
     Part 2: Study of alloys in Al-AlB2-TiB2 triangle”, Materials Science and
     Technology, 1998; 14: 1203-1212.
    [217] G.K. Sigworth, “The grain refining of aluminum and phase relationships in
     the Al-Ti-B system”, Metallurgical Transactins, 1984; A15: 277-282.
    [218] A. Abdel-Hamid, F. Durand, “Discussion of The grain refining of
     aluminum and phase relationships in th eAl-Ti-B system”, Metallurcical
     Transactions, 1986; 17A: 349-351.
    [219] A. Abdel-Hamid, S. Hamar-Thibault, F. Durand, “Nature et morphologie
     des cristaux riches en Ti et en B dans les alliages Al-Ti-B riches en Al”,
     Journal of Crystal Growth, 1984; 66: 195-204.
    [220] B.S. Lee, S. Kang, “Low-temperature processing of B4C-Al composites via
     infiltration technique”, Materials Chemistry and Physics, 2001; 67(1-3):
     249-255.
    [221] N. Frage, L. Levin, N. Frumin, M. Gelbstein, M.P. Dariel, “Manufacturing
     - 167 -
    
    
    参考文献
     B4C-(Al,Si) composite materials by metal alloy infiltration”, Journal of
     Materials Processing Technology, 2003; 143-144: 486-490.
    [222] H.M. Hu, E.J. Lavernia, W.C. Harrigan, J. Kajuch, S.R. Nutt,
     “Microstructural investigation on B4C/Al-7093 composite”, Materials
     Science and Engineering, 2001; 297(1-2): 94-104.
    [223] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis, L. Froyen,
     “Microstructure and interface characteristics of B4C, SiC and Al2O3
     reinforced Al matrix composites: a comparative study”, Journal of
     Materials Processing Technology, 2003; 142(3): 738-743.
    [224] A.M. Kanury, “A kinetic model for metal+nonmetal reactions”,
     Metallurcical Transactions, 1992; 23A: 2349-2356.
    [225] W.C. Lee, S.L. Chung, “Ignition phenomena and reaction mechanisms of
     the self-propagating high-temperature synthesis reaction in the Ti+C
     system”, Journal of Materials Science, 1995; 30: 1487-1494.
    [226] D.C. Halverson, K.H. Ewald, Z.A. Munir, “Influence of reactant
     characteristics on the microstructures of combustion-synthesized titanium
     carbide”, Journal of Materials Science, 1993; 28: 4583-4594.
    [227] R.A. Rapp, X. Zheng, “Thermodynamic consideration of grain refinement
     of aluminum alloys by titanium and carbon”, Metallurgical Transactions,
     1991; A22, 3071-3075.
    [228] C.F. Feng, L. Froyen, “In-situ synthesis of Al2O3 and TiB2 particulate
     mixture reinforced aluminum matrix composites”, Scripta Materialia, 1997;
     36(4): 467-473.
    [229] C.F. Feng, L. Froyen, “on the reaction mechanism of an Al-TiO2-B system
     for producing in-situ (Al2O3+TiB2)/Al composites”, Scrpta Materialia,
     1998; 39(1): 109-118.
    [230] R. Schulz, M. Trudeau, J.Y. Huot, “Interdiffusion during the formation of
     amorphous alloys by mechanical alloying”, Physical Review Letters, 1989;
     62(24): 2849-2852.
    [231] M. Atzmon, “In situ thermal observation of explosive compound-formation
     reaction during mechanical alloying”, Physical Review Letters, 1990;
     64(4): 487-490.
    [232] Z.G. Liu, J.T. Guo, L.L. Ye, G.S. Li, Z.Q. Hu, “Formation mechanism of
     TiC by mechanical alloying”, Applied Physics Letters, 1994; 65(21):
     2666-2668.
    [233] L.L. Ye, Z.G. Liu, M.X. Quan, Z.Q. Hu, “Different reaction mechanisms
     during mechanical alloying Ti50C50 and Ti33B67”, Journal of Applied
     Physics, 1996; 80(3): 1910-1912.
     - 168 -
    
    
    吉林大学博士学位论文
    [234] L. Lu, M.O. Lai, X.P. Niu, H.N. Ho, “In-situ formation of TiB2 reinforced
     aluminium via mechanical alloying”, Z. Metallkd, 1998, 89(8): 567-572.
    [235] R.M. Aikin, Jr. “The mechanical properties of in-situ composites”, JOM,
     1997; August: 35-39.
    [236] R.M. Aikin, Jr. and L. Christodoulou, “The role of equiaxed particles on
     the yield stress of composites”, Scripta Metallurgica Materialia, 1991; 25:
     9-14.
    [237] J. W. Luster, M. Thumann, R. Baumann,“Mechanical properties of
     aluminium alloy 6061-Al2O3 composites”, Materials Science and
     Technology, 1993; 9: 853-862.
    [238] W.S. Miller, F.J. Humphreys, “Strengthening mechanisms in particulate
     metal matrix composites”, Scripta Metallurgica et Materialia, 1991; 25:
     33-38.
    [239] I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, “Particulate reinforced metal
     matrix composites-a review”, Journal of Materials Science, 1991; 26:
     1137-1156.
    [240] H. Henry, “Grain microstructure evolution of Mg (AM50A)/SiCp metal
     matrix composites”, Scripta Materialia, 1998; 39(8): 1015-1022.
    [241] R.J. Arsenault, L. Wang, C.R. Feng, “Strengthening of composites due to
     microstructural changes in the matrix”, Acta Metallurgica Materialia, 1991;
     39: 47-57.
    [242] C. Voituriez, I.W. Hall, “Strengthening mechanisms in whisker reinforced
     aluminum composites”, Journal of Materials Science, 1991; 26:
     4241-4249.
    [243] H.S. Yu, R.L. Gao, G.H. Min, Z.F. Wang, X.C. Chen, “Mechanical
     properties and creep resistance of Mg-Li composites reinforced by
     MgO/Mg2Si particles”, Transactions of Nonferrous Metals Society of
     China, 2002; 12(6): 1154-1157.
    [244] B.Q. Han, D.C. Dunand, “Microstructure and mechanical properties of
     magnesium containing high volume fractions of yttria dispersoids”,
     Materials Science and Engineering, 2000; A277(1-2): 297-304.
    [245] B.W. Chua, L. lu, M.O. Lai, “Influence of SiC particles on mechanical
     properties of Mg based composite”, Composite Structures, 1999; 47(1-4):
     595-601.
    [246] M. Mabuchi, K. Kubota, K. Higashi, “High strength and high strain rate
     superplasticity in a Mg-Mg2Si composite”, Scripta Metallurgica Materialia,
     1995; 33(2): 331-335.
    [247] L. Lu, M.O. Lai, M.L. Hoe, “Formation of nanocrystalline Mg2Si and
     - 169 -
    
    
    参考文献
     Mg2Si dispersion strengthened Mg-Al alloy by mechanical alloying”,
     Nanostructured Materials, 1998; 10(4): 551-563.
    [248] G.R. Sivakumar, S.N. Kalkura, P. Ramasamy, “Effect of magnesium on the
     crystallization and the microhardness of dicalcium phosphate dihydrate”,
     Materials Chemistry and Physics, 1999; 57: 238-243.
    [249] F. Jonas, E.W.J. Anders, E.-B. Talaat, “Experimental investigation and
     thermodynamic assessment of the Al-rich side of the Al-B system”,
     Materials and Design, 2001; 22(6): 443-449.
    [250] K.L. Tee, L. Lu, M.O. Lai, “In situ processing of Al-TiB2 composite by the
     stir-casting technique”, Journal of Materials Processing Technology, 1999,
     89-90: 513-519.
    [251] 梁英教,车荫昌,“无机物热力学数据手册”,东北大学出版社,1993.
    [252] N.L. Yue, L. Lu, M.O. Lai, “Application of thermodynamic calculation in
     the in-situ process of Al/TiB2”, Composite Structures, 1999; 47(1-4):
     691-694.
    [253] T. Wang, R.Y. Liu, M.L. Zhu, J.S. Zhang, “Physical simulation of the effect
     of sample volume on ignition temperature in the thermal explosion
     synthesis of Ti+3Al→TiAl3”, Materials Letters, 2003; 57(15): 2151-2155.
    [254] F. Zhang, L. Lu, M.O. Lai, “Study of thermal stability of mechanically
     alloyed Ti–75% Al powders”, Journal of Alloys and Compounds, 2000;
     297: (1-2): 211-218.
    [255] K.P. Rao, J.B. Zhou, “Characterization of mechanically alloyed Ti–Al–Si
     powder blends and their subsequent thermal stability”, Materials Science
     and Engineering, 2002; 338(1-2): 282-298.
    [256] A. Sanfeld, A. Steinchen, “Surface energy, stress, capillary-elastic pressure
     and chemical equilibrium constant in nanoparticles”, Surface Science,
     2000; 463(3): 157-173.
    [257] S.H. Lee, J.H. Lee, Y.H. Lee, D.H. Shin, Y.S. Kim, “Effect of heating rate
     on the combustion synthesis of intermetallics”, Materials Science and
     Engineering, 2000; A281(1-2): 275-285.
    [258] K.A. Philpot, Z.A. Munir, J.B. Holt, “An invesigation of the synthesis of
     nickel aluminides through gasless combustion,” Journal of Materials
     Science, 1997; 22: 159-169.
    [259] A.G. Merzhanov, A.E. Averson, “The present state of the thermal ignition
     theory”, Combustion and Flame, 1971; 16: 89-124.
    [260] A. Contreras, C.A.Leon, R.A.L. Drew, E. Bedolla, “Wettability and
     spreading kinetics of Al and Mg on TiC”, Scripta Materialia, 2003; 48(12):
     1625-1630.
     - 170 -
    
    
    吉林大学博士学位论文
    [261] M.C. Flemings, “Behavior of metal alloys in the semisolid state”,
     Metallurgical Transactions, 1991; A22: 957-981.
    [262] W.R. Loue, M. Suery, “Microstructural evolution during partial remelting
     of Al-Si7Mg alloys”, Materials Science and Engineering, 1995; A203:
     1-13.
    [263] T.W. Hong, S.K. Kim, H.S. Ha, M.G. Kim, D.B. Lee, Y.J. Kim,
     “Microstructural evolution and semislid forming of SiC particulate
     reinforced AZ91HP magnesium composites”, Materials Science and
     Technology, 2000; 16: 887-892.
    [264] F. Czerwinski, A. Zielinska-lipiec, P.J. Pinet, J. Overbeeke, “Correlating
     the microstructure and tensile properties of a thixomolded AZ91D
     magnesium alloy”, Acta Materialia, 2001; 49(7): 1225-1235.
    [265] V.O. Abramov, O.V. Abramov, B.B. Straumal, W. Gust, “Hypereutectic
     Al-Si based alloys with a thixotropic microstructure produced by ultrasonic
     treatment”, Materials and Design, 1997; 18(4-6): 323-326.
    [266] B.I. Jung, C.H. Jung, T.K. Han, Y.H. Kim, “Electromagnetic stirring and Sr
     modification in A356 alloy”, Journal of Materials Processing Technology,
     2001; 111(1-3): 69-73.
    [267] F. Czerwinski, “On the generation of thixotropic structures during melting
     of Mg-9%Al-1%Zn alloy”, Acta Materialia, 2002; 50(12): 3265-3281.
    [268] F. Czerwinski, “Size evolution of the unmelted phase during injection
     molding of semisolid magnesium alloys”, Scripta Materialia, 2003; 48(4):
     327-331.
    [269] F. Czerwinski, A. Zielinska-Lipiec, “The melting behaviour of extruded
     Mg-8%Al-2%Zn alloy”, Acta Materialia, 2003, 51(11): 3319-3332.
    [270] M.C. Flemings, “Solidification Processing”, McGraw-Hill, New York,
     1974; 160-161.
    [271] G. Pettersen, H. Westengen, R. Hoier, O. Lohne, “Microstructure of a
     pressure die cast magnesium-4wt.% aluminium alloy modified with rare
     earth additions”, Materials Science and Engineering, 1996; A207(1):
     115-120.
    [272] J. Valer, P. Ménéses, S.A. Fran?ois; M. Suéry, “Microstructural and
     mechanical characterisation of an Al-21.8 wt.% Ge brazing alloy with a
     globular morphology of the primary Al-rich phase”, Materials Science and
     Engineering, 1999; A272(2): 342-350.
    [273] E. Tzimas, A. Zavaliangos, “Evolution of near-equiaxed microstructure in
     the semisolid state”, Materials Science and Engineering, 2000; 289(1-2):
     228-240.