多无量纲免疫检测器的机组并发故障诊断技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物免疫系统是一个具有模式识别、分布式检测、记忆能力、自学习能力、多样性等特征的系统。借鉴生物免疫系统,以生物免疫系统具有的诸多特性为基,解决实际工程与应用中的问题,便诞生了人工免疫系统这一极具生命力的新兴学科。由免疫系统自己-非己识别机理衍生而来的阴性选择算法的提出为故障诊断领域提供了新思路和新方法。
     在阴性选择算法中采用无量纲指标进行旋转机械的故障诊断是一种非常有效的诊断方法。但是到目前为止,可供使用的无量纲指标数目有限,应用在多重并发故障诊断的无量纲指标更是少之又少。近年来,借鉴仿生学的思想,基于生物体系的生物进化、细胞免疫、神经细胞网络等的某些机制,利用抽象描述的数学语言模仿生物体系和人类的智能机制,产生了计算智能。遗传编程是计算智能理论中一种崭新的、重要的方法。遗传编程将遗传算法和计算机程序有机结合,具有在候选解表示上的动态结构特点和搜索寻优机制上全局性的特点,在计算智能中的应用越来越广泛。本文利用遗传编程构建新的无量纲指标,把遗传编程作为一种智能的层式结构优化算法,以现有的无量纲指标为初始参数,通过对原始参数的重新组合和优化,形成新的复合参数。把分类效果作为判断参数优劣程度的准则,获得了具有最佳识别能力的优化指标。仿真结果表明,优化指标对于并发故障有很好的诊断能力。
     针对本文在无量纲指标免疫检测器的生成过程中因进行约简、聚类等分类处理而丢失部分有用故障特征信息的不足,采用了利用各无量纲指标免疫检测器进行集成诊断的弥补方法。仿真结果表明,该方法具有较高的诊断准确率。
     以茂名乙烯厂橡胶装置二线挤压脱水机GY6204及膨胀干燥机GY6205为工业应用背景,设计了“橡胶装置二线挤压脱水机GY6204及膨胀干燥机GY6205智能故障诊断系统”。
Biology immune system is a system with the ability of pattern recognition, distributed detection, memory capacity, self-learning, diversity, etc. Artificial immune system is a new discipline with strong vitality based on the features of biology immune system to solve the problems encountered in practical application and project. The negative selection algorithm which derived from the mechanism of recognizing self and non-self of immune system provides the new idea and method for the field of fault diagnosis.
     Applying the non-dimensional parameter to diagnose the faults of rotating machinery in the negative selection algorithm is very effective. But so far, the number of usable non-dimensional parameter is finite, particularly in the application of multiple concurrent faults diagnosis. In recent years, computational intelligence has produced by using abstract mathematics language to imitate biological systems and human intelligence mechanism based on the mechanism of biological evolution, cellular immunity, neuron network, etc of biological systems. The genetic programming is a brand-new and important method of computational intelligence theory. The genetic programming is the organic combination of both the genetic algorithm and computer programs. The genetic programming has the characteristics of dynamic structure on the denotation of candidate solutions and overall significance on searching optimization mechanism. The application of the genetic programming in computational intelligence is becoming more and more widespread. In this paper, the new non-dimensional parameters were constructed using the genetic programming as the intelligent layered structure optimization algorithm to reset and optimize the existing non-dimensional parameters as the original parameters. The optimal parameters which have best discernment were acquired by taking the classification effect as the rule of judging a parameter. The simulation results show that the optimal parameters have very good diagnosis ability for multiple concurrent faults.
     Aiming at the shortage of losing partial useful failure feature information because of the data processing of reduction and clustering in the process of non-dimensional parameter immune detector generation, this paper adopt a recuperate method of using every kinds of non-dimensional parameter immune detector to the integrated diagnosis. The simulation results show that this method has high veracity ratio in multiple concurrent faults diagnosis.
     Regarding second-line extrusion dewatering machine GY6204 and expansion dryer GY6205 in rubber device of Maoming ethylene plant as the background of industry application, this paper has designed the“extrusion dewatering machine GY6204 and expansion dryer GY6205 intelligent fault diagnosis system”.
引文
[1]景敏卿,张晓丽.基于ART-并行BP神经网络的柴油机故障诊断研究[J].机械科学技术,2007,26(4):412-426.
    [2]陈耀武,汪乐宇,程耀东.基于组合式模糊神经网络的旋转机械故障诊断模型[J].中国机械工程学报,2000,11(11):1255-1259.
    [3]刘琳,沈颂华,刘强.基于小波模糊网络的电厂汽轮发电机组故障诊断[J].电网技术,2005,29(16):11-15.
    [4]李国勇,杨庆佛.基于模糊神经网络的车用发动机故障诊断系统[J].系统仿真学报,2007,19(5):1034-1037.
    [5]董彩凤,隗喜斌,王天宇.汽轮发电机组转子复合故障的研究[J].汽轮机技术,2003,45(6):377-379.
    [6]吴梅,许东,王鹏.导弹复合故障诊断专家系统研究[J].弹箭与制导学报,2002,22(1):17-20.
    [7] Jerne N K. The immune system[J]. Scientific American, 1973, 229(1): 51-60.
    [8] Perelson A S. Immune network theory[J]. Immunological Review, 1989, 110: 5-36.
    [9] Farmer J D, Packard N H, Perelson A S. The immune system, adaptation, and machine learning[J]. Physical D, 1986, 22: 187-204.
    [10] Ishida Y. Fully Distributed Diagnosis by PDP Learning Algorithm: Towards Immune Network PDP Model[M]. San Diego: Proceedings of ICNN90, 1990.
    [11] Kayawa M, SugitaY, Morooka. Sensor Diagnosis System Combing Immune Network and Learning Vector Quantization[J]. Electrical Engineering in Japan, 1997: 44-55.
    [12] Dasgupta D, KrishnaKumar K, Wong D, et al. Negative selection algorithm for aircraft fault detection[EB/OL]. http://issrl.cs.memphis. edu/papers/ais/2004/ICARIS04.pdf.
    [13] Dasgupta D, Forrest S. Artificial immune systems in industrial applications[C]. Proc. 2nd International Conference on Intelligent Processing and Manufacturing of Materials, Honolulu, 1999: 257-267.
    [14] Gonzalez F, Dasgupta D. Anomaly detection using real-valued negative selection[J].Genetic Programming and Evolvable Machines, 2003, 12(4): 383-403.
    [15] Ishiguro A, Watanabe Y, Uchikawa Y. Fault diagnosis of plant systems using immune networks[C]. Proc. IEEE International Conference On multi-sensor Fusion and Integration for Intelligent Systems, Las Vegas, NV, 1994, 34-42.
    [16] Taniguchi S, Dote Y. Sensor fault detection for uninterruptible power supply control systems using fast fuzzy neural network and immune network[C]. Proc. of the SMC’2001, USA, Oct, 2001: 7-10.
    [17] Tang Z, Yamaguchi T, Tashima K, et al. Multiple-valued immune network model and its simulation[C]. Proc. the 27 International Symposium on Multiple-Valued Logic, Antigonish, Nova Scotia, Canada, 1997: 519-524.
    [18] Luh Guan-chun, Cheng Weichong. Immune model-based fault diagnosis[J]. Mathematics and Computers in Simulation, 2004, 7: 5 6.
    [19]刘树林,黄文虎,王日新等.基于免疫系统的往复泵在线故障诊断方法[J].中国机械工程学报,2002,13(8):686-689.
    [20]谷吉海,姜兴渭,刘树林等.免疫系统的反面选择算法在故障诊断中的应用[J].中国空间科学技术,2002,(2):24-29.
    [21]栾家辉,姜兴渭.免疫状态观测器的设计及应用[J].中国空间科学技术,2005,(5):34-39.
    [22]庞茂,周晓军,孟庆华.基于免疫学的在线故障检测算法的研究及应用[J].中国电机工程学报,2005,25(24):149-153.
    [23]李伟,黄席樾.基于免疫原理的故障诊断推理模型研究[J].计算机仿真, 2005,22(7):111-113.
    [24]陈强,郑德玲.基于免疫原理的齿轮箱故障检测和诊断方法研究[J].矿山机械,2005,33(5):75-77.
    [25]李蓓智,杨建国,杨江云等.基于自我-非我识别机理的状态监测与故障诊断[J].上海工程技术大学学报,2004,18(1):24-27.
    [26]窦唯,于楷,孟庆武等.基于免疫系统机理的距离函数故障诊断方法[J].大庆石油学院学报,2003,27(3):54-56.
    [27]窦唯,刘树林,孙明等.生物免疫机理在往复压缩机在线状态监测中的应用[J].流体机械,2004,32(5):16-19.
    [28]殷桂梁,肖丽萍,吴长奇等.免疫原理用于异步电动机故障诊断的研究[J].中国电机工程学报,2003,23(6):132-136.
    [29]孟庆华,周晓军,吴跃成等.基于小波免疫系统的车辆总成故障检测[J].汽车工程,2004,26(5):619-622.
    [30]唐志航,何宏,胡忠望等.改进的BP神经网络在故障诊断中的应用[J].微计算机信息,2008,5(1):171-173.
    [31]韩捷,张瑞林等.旋转机械故障机理及诊断技术[M].北京:机械工业出版社,1997:2-4,35-37.
    [32]李国华,张永忠.机械故障诊断[M].北京:化学工业出版社,1999:114-115.
    [33]梅宏斌.滚动轴承振动监测与诊断[M].北京:机械工业出版社,1995.
    [34]莫宏伟.人工免疫系统原理与应用[M].哈尔滨:哈尔滨工业大学出版社,2003:20-40.
    [35] Chun J S, Kim M K, Jung H K, et al. Shape optimization of electronic devices using immune algorithm[J]. IEEE Trans on Magnetics, 1997, 33(2): 1876-1879.
    [36] Chun J S, Jung H K, Hahn S Y. A study on comparison of optimization performance between immune algorithm and other heuristic algorithms[J]. IEEE Trans on Magnetics, 1998, 34(5): 2972-2975.
    [37] Forrest S, Hofmeyr S A. Immunology as information processing[C]. Segel and Cohen eds. Design Principles for the Immune System and other Distributed Autonomous systems, USA: Oxford University Press, 2000.
    [38]张清华.基于人工免疫系统的机组故障诊断技术[D].广州:华南理工大学,2004.
    [39] Burnet F M. The clonal selection theory of acquired immunity[M]. UK: Cambridge University Press, 1959: 70-93.
    [40] De Castro L N, Von Zuben F J. Clonal selection algorithm with engineering applications[C]. Proc. GECC0 00, Las Vegas, Nevada, USA, 2000: 36-37.
    [41] Kim J, Bentley P. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator[C]. Proc. Congress on Evolutionary Computation, Seoul, Korea, 2001:27-30.
    [42] Kephart J O, Sorkin G B, Swimmer M. An immune system for cyberspace[C]. Proc.IEEE International Conference on Systems, Man, and Cybernetics, Orlando, Florida, 1997: 879-884.
    [43] Hunt J E, Timmis J, Cooke D E, et al. Jisys: The development of artificial immune system for real world applications[C]. Dasgupta D eds. Artifical Immune System and Their Applications, Berlin, Springer-Verlag, 1999: 157-186.
    [44] Hunt J E, Cooke D E. Learning using an artificial immune system[J]. Journal of Network and Computer Application, 1996, 19(2): 189-212.
    [45]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [46]李良敏,屈梁生.遗传编程在无量纲指标构建中的应用[J].西安交通大学学报,2002,36(7):736-739.