煤矿主通风机通风失稳控制的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为煤矿通风系统安全可靠的重要指标,煤矿主通风机需要运行稳定、故障少、无喘振、工况合理;有效的煤矿主通风机通风失稳控制对整个通风系统的安全乃至煤矿的安全生产都具有重要的意义。
     论文引入了“通风机侧通风系统”的概念,并通过对原通风系统的地面风道进行改造建立了该“通风机侧通风系统”的实际模型,利用通风机的等效变位理论,该物理模型可以等效成一台变位通风机,通过对影响其性能曲线的关键参数的分析,进一步提出从“通风机侧通风系统”的角度来进行“通风机运行异常通风失稳的防范”和“通风机侧通风系统稳定的控制”以保证整个矿井通风系统的稳定;相对于传统的针对单一风机控制来实现通风稳定的不足,该方法具有更高的可靠性。
     在防范通风机运行异常通风失稳方面,论文将通风机的常见故障重新分类为“致命性故障和非致命性故障”并给出其定义;从防范通风失稳的角度,提出了一种将故障树、人工免疫和神经网络相结合的通风机综合故障预警和诊断方法。其中,故障树推理用于实现对通风机的致命性和非致命性故障的快速分类;对于非致命性故障,则通过人工免疫和神经网络相结合来进一步实现对故障异常度的检测和简单分类;人工免疫的反面选择算法解决了目前在故障样本普遍缺少的情况下进行通风机故障诊断困难的问题。神经网络通过根据经验设置的人工免疫检测器进行训练,实现了对非致命性故障的不同异常度和故障种类的多分类,为通风机在故障情况下的通风失稳控制提供及时、准确的决策依据。
     在通风机倒机通风失稳控制方面,论文分析了备用通风机能否正常启动具有一定的不确定性,提出了煤矿通风机倒机前热备用的策略并予以实践;备用风机提前启动进入热备用,可以回避风险,消除因其启动失败对通风系统造成的影响。鉴于在传统的“停机倒机”模式下,倒机过程中通风动力的缺失是造成煤矿主通风机通风失稳、瓦斯积聚超限的根本原因,论文提出了一种“不停风倒机”的控制策略,该控制策略可以保证在整个倒机过程中通风动力可以得到持续可靠地供给。
     鉴于轴流式通风机的特性曲线存在不稳定工作区的问题,在主通风机并联运行、利用风门进行风路切换的不停风倒机过程中,为了防止通风机工况点落入喘振区,基于风阻等效的理论,论文研究了在主通风机切换过程中等效到通风机入口的通风网络的风阻的动态变化情况,给出了保证通风设备安全运行的边界条件。
     针对主通风机不停风倒机过程的特点,论文研究提出了基于顺序控制的不停风倒机控制方案。该方案基于风门匀速开、闭进行风路切换,并通过对倒机过程中等效到风机入口的风阻和风量波动情况与延时时间关系的数值模拟,得到了风路切换过程中的风门的配合方法和最佳延时。
     由于顺序控制在通风机倒机过程中应用仍然存在一定程度的通风失稳,文中进一步研究了一种基于模糊控制的通风机倒机通风失稳控制方法;由于模糊控制系统不仅要实现风量的稳定,更重要的是完成风门的规定的切换动作和保证风机的安全运行,该方法首先将通风机倒机过程中风机安全运行的边界条件,作为模糊控制器设计的约束条件;并研究了在有约束条件下模糊控制器规则的设计方法;为了完成规定的风路切换任务,让四个风门之中的任意三个风门执行预定开、闭动作,将其风阻变化和由其造成的两台通风机的风量波动均作为扰动处理,而模糊控制器通过对余下的一个风门的开度控制实现了在倒机过程中保持系统风量稳定的目标。文中通过现场测量积累的样本数据训练神经网络对通风机侧通风系统进行模型辨识;以神经网络辨识的系统模型作为控制对象,对模糊控制器在通风机倒机过程中通风失稳的控制作用进行仿真,得到被控风门角度和风量输出的仿真曲线,验证了模糊控制方案的可行性。
     鉴于通风机喘振不仅是通风系统失稳的重要原因,同时是对通风设备自身安全的严重威胁,结合通风机喘振通风失稳控制中对保证通风系统稳定和通风设备安全的双重需求,文中提出了一种基于喘振边界线(SLL)和轴向位移或式组合的煤矿主通风机喘振预测方法;进一步地,作为通风机发生喘振的有效控制,文中提出一种通风机喘振分级消除的控制策略,该策略可以在通风机发生喘振时,实现将其工作点迅速控制在喘振报警线(SAL)以下的就近区域的目标。
     最后,以平煤股份的科研项目为依托,将本文的研究成果应用到矿井主通风机监控系统中,实现了主通风机在定期自动倒机,和故障状态下的自动倒机期间保持通风系统稳定的目标,并消除了高瓦斯矿井在传统“停机倒机”方式下的倒机期间因为通风失稳造成的瓦斯积聚超限的安全隐患,倒机过程中风速和瓦斯浓度的现场运行数据进一步证明了通风机通风失稳控制的有效性。
As an important index of mine ventilation system safety and reliability, main fan is required to operate stably, with little fault, no surge and a reasonable working point. Therefore, effective control to prevent mine main fan from ventilation instability has great significance on the safety of ventilation system as well as mine.
     The concept of“main fan side ventilation system”as a whole including two main fans and air doors is introduced in the dissertation and its actual model is established through reconstruction of original ground air duct ventilation system. With ventilation equal theory, the model can be equivalent to a special displacement fan at the outlet of air shaft. Based on analysis of all key parameters which may influence its working point, a novel ideal to keep mine ventilation stability through preventing main fan from abnormal operation and controlling fan side of ventilation system stability at the same time is put forward. Compared with the shortage of conventional controlling single-fan for ventilation stability, the strategy of controlling main fan side ventilation system has higher reliability in achieving the stability of ventilation system.
     In the prevention of ventilation instability due to main fan running abnormally, based on the requirement analysis of main fan fault diagnosis for ventilation stability, main fan common faults are reclassified as“fatal fault and non-fatal fault”and their definitions are given. Then a novel method with the integration of Fault Tree Analysis (FTA.), Artificial Immune System (AIS.) and Artificial Neural Network (ANN.) for main fan fault early-warning and diagnosis is proposed, in which fault tree inference can identify fatal fault from non-fatal fault quickly. For the non-fatal fault, further fault classification and abnormal degree detection will be achieved by AIS and ANN. Based on Negative-Selection Algorithm, AIS fault diagnosis doesn’t need field fault samples, therefore, difficulty on main fan fault diagnosis due to lack of fault samples is solved successfully. Then many immune detectors on behalf of all kinds of fault with different abnormal degree are generated randomly and selected with rules for the training of a BP ANN, which will be used to realize main fan multi-fault classification.
     On another side of ventilation instability due to main fan switchover, considering the uncertainty of whether main fan standby can start successfully, main fan warm-standby before switchover is proposed, in which the risk of main fan starting failure during main fan switchover originally can be avoided. Considering the root cause of gas concentration exceeding limit during main fan switchover in traditional way is lack of ventilation power, a novel strategy for main fan switchover is proposed to realize ventilation power supplying continually and reliably during the whole process of switchover. As axial flow fan has an unstable working area, and in order to prevent main fan working point from falling to surge area during switchover, the equivalent resistance at the inlet of main fan is calculated, and the limit for main fan safety operating during main fan switchover has been deduced.
     Considering the characteristics of main fan switchover aiming at ventilation unceasing, a kind of sequential control scheme is put forward for main fan automatic switchover. Based on numerical simulation of equivalent resistance and flow rate during main fan switchover with four air doors in uniform motion, the cooperating way and the optimal delay time in sequential control have been gotten. For certain extent ventilation instability still exists during main fan switchover with sequential control, a kind of control based on fuzzy control theory is put forward in the dissertation, in which, the limit of main fan safety operating during main fan switchover is treated as a restriction in fuzzy controller designing. In order to accomplish the main fan switchover operation, three of four air doors actuate in each scheduled way, and their resistance changes and corresponding flow rate fluctuation of two main fans in parallel are considered as disturbance, and the objective of ventilation stability is achieved through adjusting the rest one of four air doors. In order to check the validity of fuzzy controller, field data during main fan switchover are collected to train a BP ANN, which is used to replace real ventilation system in control system simulation. And the simulation indicates that fuzzy controller is well designed to realize the objective of ventilation stability during main fan switchover.
     Considering that main fan surge is not only an important reason for ventilation instability but also a serious threat to main fan security, with the requirement analysis of main fan surge ventilation instability control, a way for main fan surge forecast with the combination of either axial displacement exceeding limits or working point across surge limit line is given. Fatherly, a level-based surge eliminating strategy is put forward too, which can control the working point nearly under the surge alarm line while main fan surge occurs.
     Finally, with a scientific research project of Ping Coal Mine Group, the achievement in the dissertation has been applied into a main fan monitoring system in a high gas mine. Field operation shows that ventilation stability during main fan switchover has been realized, and gas concentration exceeding limits due to main fan ventilation instability has been eliminated. The data of flow rate and gas concentration proves the feasibility of main fan ventilation instability control.
引文
[1]马健,丁日佳.煤炭企业在国民经济和社会发展中的地位[J].煤炭技术,2007,6.
    [2]范维唐.提高煤炭生产整体水平,保障煤矿生产安全[J].中国煤炭,2005,31(4).
    [3]周心权,陈桦.加强安全科技保障体系的建设[J].煤炭企业管理,2001,10 ,Page(s): 5-9.
    [4]许名标,彭德红.煤矿事故致因理论分析与预防对策研究[J].中国矿业,2006,15 ,Page(s):31-34.
    [5]王从陆.非灾变时期金属矿复杂矿井通风系统稳定性及数值模拟研究[D].中南大学,2007,4.
    [6]刘乘钧.矿井通风系统的可靠性问题与解决途径[J].煤矿安全,1993,3.
    [7]吴新忠,马小平等.基于热备用的煤矿通风机倒机关键技术研究[J].仪器仪表学报,2009,6(S1).
    [8]杨彬,尚志国,黄翠柏.矿井轴流风机启动问题分析[J].中州煤炭,2007,1.
    [9]李文碧.矿井主通风机变频调速控制及在线检系统的应用[J].河北煤炭,2008,6.
    [10]吴新忠,任子晖等.煤矿主要通风机在线监控系统研究现状及展望[J].煤炭科学技术,2009,12.
    [11]马良玉,安连锁,王松岭.轴流风机喘振实时预报的理论研究与实现[J].华北电力大学学报,1999,1.
    [12]董明洪,李俊.轴流通风机喘振现象分析及预防措施[J].风机技术,2008,4.
    [13]陈敏红,杨凤珍,黄钟岳等.轴流通风机非稳定工况特性的试验研究[J].风机技术,2006,6 ,Page(s):8-12.
    [14]胡亚非.矿井主通风机风量在线监测新方法[J].煤矿机电,1995,4,Page(s):77-83.
    [15]王家兵.煤矿主通风机在线监测与通讯系统[M].徐州:中国矿业大学,1999 ,Page(s):33-158.
    [16]胡维喜.矿井主要扇风机性能分布式测定系统的研究[D].徐州:中国矿业大学,2006.
    [17]宋莉.基于PLC的远程监控及故障诊断[D].济南:山东科技大学,2001.
    [18]曾祥鸿.矿井主通风机的振动监测与智能诊断[D] .徐州:中国矿业大学,2000.
    [19]任子晖,姚正华.基于PLC和组态软件的矿井主通风机监控系统[J].自动化技术与应用,2007,26(9):32-34.
    [20]谷善茂.无人值守矿井主通风机监控系统研究[D].徐州:中国矿业大学,2006.
    [21]张永建,傅源方,高丽.通风机叶片角度调节工况自动控制系统研究[J].煤炭科学技术,2004,3.
    [22]秦绪平,谷善茂.基于模糊PI控制的通风机风量控制[J].电气应用,2008,27,16.
    [23]李敬兆,汤文兵.PLC实现的模糊PID控制器及其在通风机风量调节系统中的应用[J].江南大学学报(自然科学版),2006,8.
    [24] Yuan-Bin Hou,Yong Wang,Yun Gao.The Study of Fault Location and Safety Control for the Mine Ventilating Fan [C].In: Machine Learning and Cybernetics, 2006 International Conference.
    [25]钟秉林.机械故障诊断学(第3版)[M].北京:机械工业出版社,2007.
    [23]钟秉林,颜廷虎.智能化故障诊断理论与方法的研究现状和展望[J].东南大学学报,1993,23(S) ,Page(s):1-12.
    [27]陶伟.煤矿轴流式通风机振动故障诊断[J].煤炭科学技术,2004,32(9).
    [28]张为荣.通风机振动监测与故障诊断的非参数法研究[D].徐州:中国矿业大学,2003.
    [29]陈长征,杨璐.基于小波分析技术的通风机振动故障诊断研究[J].风机技术,1999,6.
    [30]娄平仁,冷军发,铁占续.通风机振动信号的小波包阈值除噪研究[J].煤矿机械,2006,27.
    [31]郭小荟.基于SVM的故障诊断方法及其在煤矿机械设备中的应用研究[D].徐州:中国矿业大学,2008.
    [32]刘树林.基于免疫机理的设备故障诊断方法及应用研究[D].哈尔滨:哈尔滨工业大学,2003.
    [33] Liu shulin, Zhang jiazhong, Shi Wengang, Huang Wenhu.Negative-selection algorithm based approach for fault diagnosis of rotary machinery.In: proceedings of 2002 American Control Conference, 8-10 May 2002,Page(s):1034-1041,vol.2.
    [34] Dasgupta. D, Attoh-Okine.N.Immunity-based systems: a survey.In: Computational Cybernetics and Simulation. 1997 IEEE International Conference on Systems, Man, Cybernetics, 12-15 Oct. 1997, Page(s):369-374, vol.1.
    [35] Forrest. S, Pereleson. A. S, Allen. L., Cherukuri. R. Self-Nonself Discrimination in a computer In: Proceeding of 1994 IEEE Computer Society Symposium on Research in Security and Privacy, 16-18 May 1994, Page(s):202-212.
    [36] Dasgupta. D, Forrest. S.Artificial Immune systems in industrial application. In: Proceedings of the second International Conference on Intelligent Processing and Manufacturing of Materials, 10-15 July 1999 Page(s):257-267,vol.1.
    [37]柏猛.人工免疫系统在故障检测中的算法研究[D].徐州:中国矿业大学,2005.
    [38]侯军虎.基于多参数的风机状态监测与故障诊断的研究[D].北京:华北电力大学,2003.
    [39]方健,缪燕子,马小平.基于信息融合技术的矿井通风机故障模式识别[J].煤炭科学技术,2006,34(4).
    [40]陈长征,杨璐,张省.通风机综合故障诊断系统研究[J].风机技术,1999,3,Page(s):36-38.
    [41]朱全,付胜.基于小波包和神经网络的矿用通风机故障预警研究[J].中国矿业,2008,3.
    [42]付胜,李海涛,朱全.矿用主通风机故障预警及其软件开发[J].北京业大学学报,2007,8.
    [43]孙彦良.缩短矿井主通风机再启动时间的措施[J].煤矿机电,2007,6.
    [44]尤国俊,赵瑛.矿井双风机、双电源自动切换在线监测控制系统[J].煤炭技术,2006,12.
    [45]高宏伟,武彩霞.模糊控制理论在风机、泵类软起动器中的应用研究[J].中小型电机,2002,6.
    [46]张立群.矿井大功率通风机电控系统的设计及应用[J].中州煤炭,2009,7.
    [47]胡亚非,杨致红.矿井主通风机喘振的致振因素探析[J].流体机械,2003,2.
    [48]周静,盛赛斌.轴流风机喘振机理及预防措施[J].电力建设,2001,5.
    [49]陈静媛,孙华等.风机喘振现象分析及消除措施[J].煤矿机械2000,3.
    [50]薛永存,卢万杰.变频技术和模糊控制在风机调速系统中的应用[J].煤矿机电,2006,5.
    [51] Dhaeseleer. P.An Immunological Approach to Change Detection: Theoretical results.In: proceedings of the 9th IEEE Computer Security Foundation Workshop,10-12 June 1996, Page(s):18-26.
    [52] JIA,Ting-gui, LIU,Jian.Stability of mine ventilation system based on multiple regression analysis[J].Mining Science and Technology (China), July 2009 ,v 19, n 4, page(s): 463-466.
    [53] Cheng, Genyin; Ling, Biaocan; Xing, Yi. Research on safety of ventilation system in Jinpu Hill Coal Mine[c].In: Progress in Safety Science and Technology Volume 4:Proceedings of the 2004 International Symposium on Safety Science and Technology, 2004, Part A, page(s): 458-462.
    [54]马云东.矿井通风系统可靠性分析理论研究[J].阜新矿业学院学报,1995,14,Page(s):5-14.
    [55]贾进章.矿井火灾时期通风系统可靠性研究[D].葫芦岛:辽宁工程技术大学,2004.
    [56]张斌.稳定的通风系统是工作面瓦斯治理的关键[J].河北煤炭,2002,6.
    [57]吴向前.矿井通风系统稳定性的研究[D].泰安:山东科技大学,2002.
    [58]贾敏远,杜润魁,甘信峰等.矿井通风系统稳定性影响因素分析[J].中州煤炭,2009,8.
    [59]赵伏军,谢世勇,杨磊等.基于层次分析法—模糊综合评价(AHP-FCE)模型优化矿井通风系统的研究[J].中国安全科学学报,2006,4.
    [60]徐瑞龙.多台主扇同时运转的工况分析[J].河北煤炭,1988,2.
    [61]汪崇鲜,李绪国,谭波.矿井通风系统风量稳定性的影响因素[J].煤炭学报,2008,8.
    [62]葛春波,徐瑞龙.对角主扇的工况分析[J].重庆大学学报,1990,11.
    [63]徐瑞龙.通风网路理论[M].北京:煤炭工业出版社,1993,4.
    [64]张广永.矿井通风系统稳定性分析[J].科技咨询,2008,35.
    [65]陈长华.风网稳定性的定量分析[J].辽宁工程技术大学学报,2003,6.
    [66]黄正练.矿井主要通风机联合运转安全性研究[J].水力采煤与管道运输,2008,6.
    [67]朱正中,胡亚非.风机变频调速应用综述[J].煤矿机械,2005,7.
    [68]张鲁花,尹文波,闫福勇.矿井主通风机工况点调节实践与探讨[J].矿山机械,2008,18.
    [69] Wang, Chong-Xian, Li, Xu-Guo; Tan, Bo.Influencing factors of air quantity stability of ventilation system in coal mine[J].Journal of the China Coal Society, v33, n8, August 2008.
    [70]李春华.矿井通风机实时监测与故障诊断的智能系统[J].黑龙江科技学院学报,2004,11.
    [71]朱新明.矿井通风机的常见故障及消除方法[J].新疆有色金属(S),2005,1.
    [72]关惠玲,韩捷.设备故障诊断专家系统原理及实践[M].北京:机械工业出版社,2000,11.
    [73]付华,尹丽娜,汪琦.煤矿主通风机故障诊断的小波包方法[J].黑龙江科技学院学报,2007,1.
    [74]安晨亮.故障树原理在故障诊断系统中的应用[J].导弹与航天运载技术,2009,1.
    [75]赵亮培.基于故障树分析的液压系统故障诊断研究[J].液压气动与密封,2008,6.
    [76]荆双喜,冷军发,李臻.基于小波-神经网络的矿用通风机故障诊断研究[J].煤炭学报,2004,29,Page(s):736-739.
    [77] B.S.Yang,T. Han,J.L.An ART-KOHONEN neural network for fault diagnosis of rotating machinery[J],Mechanical Systems and Signal Processing,2004,18,Page(s):645–657.
    [78] B.Samanta,K.R.Al-Balushi.Artificial Neural Network Based Fault Diagnosis of Rolling Element Bearings Using Time-Domain Features[J].Mechanical Systems and Signal Processing,2003,17, Page(s):317-328.
    [79] S.Rajakarunakaran et al.Artificial neural network approach for fault detection in rotary system[J].Applied soft Computing,2008,8(1), Page(s):740-748.
    [80] Javier et al.Fault Diagnosis of Rotating Machinery based on auto-associative neural networks and wavelet transforms [J].Journal of Sound and Vibration,2007,(302), Page(s):981-999.
    [81] J.Rafiee,F.Arvani,et al.Intelligent condition monitoring of a gearbox using artificial neural network[J].Mechanical Systems and Signal Processing,2007,Page(s):1746-1754.
    [82]艾进聪.基于统计模式识别的离心风机故障诊断试验研究[D].河北:华北电力大学,2003.
    [83]张周锁,李凌均,何正嘉.基于支持向量机的机械故障诊断方法研究[J].西安交通大学学报,2002.12.
    [84] Xin LIU, Guo WEI, Jin-wei SUN, Dan LIU.Nonlinear multifunctional sensor signal reconstruction based on least squares support vector machines and total least squares algorithm. Journal of Zhejiang University, 2009,10(4), Page(s):497-503.
    [85] Hsu CW, Lin C J.A comparison of methods for multi-class support vector machines [J]. IEEE Trans on Neural Networks, 2002, 13(2), Page(s):415- 425.
    [86] Chapelle O. Haffner P, Vapnik V. N. Support vector machine for histogram-based image classification[J].IEEE Trans on Neural Networks, 1999, 10(5), Page(s):1055-1064.
    [87]刘树林.基于免疫机理的设备故障诊断方法及应用研究[D].哈尔滨:哈尔滨工业大学,2003.
    [88]袁胜发,杜红霞.基于支持向量机和人工免疫的机械故障诊断方法研究[J].制造技术与机床,2005,10.
    [89]施式亮,彭新,李润求.基于人工免疫原理的事故预防研究[J].中国安全科学学报,2009,1.
    [90]窦唯.生物免疫机理在往复压缩机在线状态监测中的应用[J].流体机械,2004,5.
    [91]焦李成,杜海峰,刘芳等.免疫优化计算、学习与识别[M].北京:科学技术出版社,2006.
    [92]孙彦良.缩短矿井主通风机再启动时间的措施[J].煤矿机电,2007,6.
    [93] Polly Matzinger.The danger model: A renewed sense of self[C].In: Science 12 April 2002:Vol. 296, No. 5566, Page(s):01–305.
    [94] Branco.P.J.C, Dente.J.A, Mendes.R.V.Using immunology principles for fault detection[C].In: IEEE Transactions on Industrial Electronics, Volume:50,Issue:2,April 2003, Page(s):362-373.
    [95] Fernando Esponda, Stephanie Forrest, Paul Helman. A Formal Framework for Positive and Negative Detection Schemes. In: IEEE Transactions on Systems, Man, Cybernetics Part B: Cybernetics: Accepted for future publication, 2003, Page(s):1-17.
    [96] Dasgupta. D. Artificial neural networks and artificial Immune systems: similarities and differences. In: Computational Cybernetics and Simulation of the 1997 IEEE International Conference on Systems, Man, Cybernetics, 12-15 ICt.1997, vol.1, Page(s):873-878.
    [97]张建.机械故障诊断技术[M].北京:机械工业出版社,2008.
    [98] Dasgupta. D., Majumda. N. S.Anomaly detection in multidimensional data using negative selection algorithm[C]. In: Proceedings of 2002 Congress on Evolutionary Computer, 12-17 May 2002, Page(s):1039-1044.
    [99] Hayu Hou, Jun Zhu, Dozier. G.Artificial immunity using constraint-based detectors[C].In: Proceedings of the 5th Biannual World Automation Congress, 9-13 June 2002, Volume 13, Page(s):239-244.
    [100] Canham. R., Jackson. A.H., Tyrrell.A.Robot error detection using an artificial immune system[C].In: Proceedings of NASA/DOD Conference on Evolvable Hardware,9-11 July 2003, Page(s):199-207.
    [101]廖常初.S7-300/S7-400 PLC应用技术[M].北京:机械工业出版社,2007,1.
    [102]张志涌.精通Matlab6.5[M].北京:北京航空航天大学出版社,2003,1.
    [103]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008,11.
    [104]章卫国,杨向忠.模糊控制理论与应用[M].西安:西北工业大学出版社,2000,10.
    [105]涂承宇,涂承媛,杨晓莱等.模糊控制理论与实践[M].北京:地震出版社,1998,8.
    [106]肖爱武,廖平,罗智勇等.模糊控制在矿井风机风量控制中的应用[J].湖南工业大学学报,2008,1.
    [107]臧小杰,王焱,宋绍楼等.模糊控制理论在煤矿通风安全自动化系统中的应用[J].中国安全科学学报,2000,6.
    [108]高金源.计算机控制系统-理论、设计与实现[M].北京:北京航空航天大学出版社,2001,2.
    [109]何平,王鸿绪.模糊控制器的设计及应用[M].北京:科学出版社,1997,1.
    [110]张吉礼.模糊-神经网络控制原理与工程应用[M].哈尔滨:哈尔滨工业大学出版社,2004,4.
    [111]曾光奇.模糊控制理论与工程应用[M] .武汉:华中科技大学出版社,2006,8.
    [112]柴天佑.多变量自适应解耦控制及应用[M].北京:科学出版社,2001,1.
    [113]李国勇.神经模糊控制理论与应用[M].北京:电子工业出版社,2009,3.
    [114]王正林,王胜开,陈国顺等.Matlab/Simulink与控制系统仿真[M].北京:电子工业出版社,2008,7.
    [115]王正林,郭阳宽.过程控制与Simulink应用[M].北京:电子工业出版社,2006,7.
    [116]王丹力等.Matlab控制系统设计、仿真、应用[M].北京:中国电力出版社,2007,9.
    [117]吴晓燕,张双选.Matlab在自动控制中的应用[M].西安:西安电子科技大学出版社,2006,9.
    [118]郑伟红,马培荪,陈佳品.模糊神经网络在四足步行机器人控制中的应用[J].上海交通大学学报,1996,30.
    [119]飞思科技产品研发中心.Matlab6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003,1.
    [120]李秀娟,于力.基于Matlab模糊控制器设计和仿真[J].电子测量技术,2004,3.
    [121]李明伟,陈守雄.模糊液位控制器的设计与Matlab仿真[J].自动化技术与应用,2006,6.
    [122]张丽,张朝轩,丁宝仓.基于Matlab的中央空调模糊控制器设计与仿真[J].微型电脑应用,2009,8.
    [123]邓纬,张宝平.模糊温度控制器设计与Matlab仿真[J].郑州轻工业学院学报(自然科学版),2009,4.
    [124] Ma, Xian Min.Fuzzy control of mining local fan gas drainage system based on DSP [C].In: Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, ICMLC 2007, v 2, Page(s): 660-663.
    [125] You, Guodong , Wang, Shufang.Fuzzy control model study and simulate on gas discharging system[C]. In: Proceedings-2009 International Conference on Computational Intelligence and Software Engineering, CiSE 2009.
    [126] Etik, Nazmi. Fuzzy expert system design for operating room air-condition control systems[C]. In: Expert Systems with Applications, August 2009, v 36, n 6, page(s):753-758.
    [127]李庆军,侯国忠,黄晓波.浅谈多风井多风机分区并联通风[J].煤炭技术, 2005,2.
    [128]马琴,马玉玲,赵静等.轴流风机防喘振控制优化设计[J].冶金动力,2008,4.
    [129]马良玉,安连锁.基于高精度性能模型的轴流通风机喘振故障预报方法[J].风机技术,2003,4,page(s):67- 68.
    [130]代克杰,张红梅,盛赛斌.基于神经网络的风机喘振故障诊断方法研究[J].测控技术,2004,11.
    [131]雷剑宇,廖明夫,杨伸记.预测风机喘振边界的新方法[J].风机技术,2005,4.
    [132]赵捷,祁砖.矿用轴流式通风机的‘喘振’及防护检测研究[J].山西煤炭,2009,6.
    [133]李春宏.轴流通风机失速与喘振分析风机技术[J].风机技术,2008,2.
    [134]陈静媛,孙华等.风机喘振现象分析及消除措施[J].煤矿机械2000,3.
    [135]李洛虎.煤矿轴流风机喘振监测方法的研究[J].煤矿安全,2005,6.
    [136]牛云鹏.变频调速控制系统在布尔台矿井主通风机的应用[J].神华科技,2009,8.
    [137]袁国忠.变频调速技术在矿用对旋轴流式通风机上的节能应用与分析[J].煤炭开采,2009,8.
    [138]张熠,王鼎媛,徐飞.煤矿风机智能远程监控系统的应用研究[J].工矿自动化,2008,4.
    [139]刘法治.基于PLC的矿井通风安全控制系统[J].金属矿山,2007,6.