高中生数学问题提出能力发展进程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高中生数学问题提出能力发展进程是指在适当的教学下,高中生的数学问题提出能力如何随着时间的推移而日渐得到发展的进程,它描述学生在一段较长的时间内发展数学问题提出能力可能需要经历的途径。
     研究以修订后的布卢姆教育目标分类学为理论基础,以设计研究为方法论指导,借鉴学习进程研究的研究范式,采用文献分析、问卷调查、教学模式研究等方法,经历能力发展进程假设的提出、检验和修正的研究过程,最后得到修正后的高中生数学问题提出能力发展进程。研究旨在弥补国内数学问题提出能力研究存在的概念界定不清晰、评价指标不明确等不足,以促进数学能力评估系统、教育研究与教学实践更有效地结合。
     研究工作主要包括以下三个方面:
     第一,提出高中生数学问题提出能力发展进程假设
     高中生数学问题提出能力发展进程假设提出主要确定高中生数学问题提出能力发展目标、能力发展进程变量、发展水平、发展表现、教学建议及发展评价。研究首先通过对多国或州的课程标准、已有数学问题提出能力研究进行文献分析,确定数学问题提出能力发展进程变量、发展水平;其次通过对浙江三所不同学校的高一、高二学生的问卷调查,确定学生具体发展水平、发展表现及教学建议;能力发展目标则结合文献分析与问卷调查结果最终确定。发展评价主要指形成的能力测试卷。
     第二,检验高中生数学问题提出能力发展进程假设
     高中生数学问题提出能力发展进程检验主要通过与一位高二数学授课教师合作,在设计研究方法论指导下,由设计研究原型规划得出的问题变式教学模式原型,通过原型规划具身化、设计、实施针对提高学生数学问题提出能力的为期四周的教学。通过视频分析、前后测、嵌入式测试分析、对师生的访谈分析研究,比较学生在变式教学模式研究迭代过程前、中、后数学问题提出能力的变化情况。最后使用上述分析结果检验高中生数学问题提出能力发展假设。检验结果将同时用于修正针对学生数学问题提出能力发展的教学模式。
     第三,修正高中生数学问题提出能力发展进程假设
     高中生数学问题提出能力发展进程修正主要基于前面高中生数学问题提出能力发展进程检验结果,对问卷调查所得到的高中生数学问题提出能力发展进程假设进行修正。修正内容具体包括能力发展目标、能力发展表现及教学建议。
     研究的关键性结论为修正后的高中生数学问题提出能力发展进程及修正后的针对学生数学问题提出能力发展的教学模式。研究发现随着年级的升高,学生只有在结构化情境中提出理解与联系性问题、反思与拓展性问题比例在随之提高,这种相关性达到显著水平,且在设计教学下,干预班学生也只有在结构情境中提出能力的优势有所提高。
     研究借鉴学习进程研究范式探究高中生数学问题提出能力是一个新的尝试,也是未来数学能力研究的一个新起点。研究所得到的修正后的高中生数学问题提出能力发展进程还需更多实践的检验,从而能更加合理、准确、清晰地评价学生数学问题提出能力,帮助教师开展数学问题提出能力培养教学。
Developing progressions for mathematics problem posing are empirically grounded and testable hypotheses about how students'understanding of, and ability to pose mathematics problem and explanations and related problem posing activities grow and become more sophisticated over time, with appropriate instruction. These hypotheses describe the pathways students are likely to follow to the mastery of mathematics problem posing.
     The research on developing progressions was based on revised Bloom's Taxonomy of Educational Objectives, put the design research as methodological guideline, learned from the research paradigm of learning progressions, and adopted some research methods including literature analysis, questionnaire investigation and teaching model. The research process of developing progressions included how to propose, validate and revise the hypotheses about mathematics problem posing, finally obtaining the revised developing progressions for mathematics problem posing. The main purpose of this dissertation was to make up the shortfall in research on domestic mathematics problem posing to improve the valid integration of mathematics competency evaluation system, educational research and teaching practice of mathematics competency, where the mathematics problem posing was vague in definition and unclear in evaluation index.
     The research was mainly composed of three parts:
     The first one was to pose the hypotheses of developing progressions for mathematics problem posing in grades10-11. The hypotheses include the target performances or developing goals, progress variables, levels of achievement and developing performances. First of all, the progress variables and levels of achievement were designed by literature analysis of the national curriculum standards and related research on mathematics problem posing. And then, the real levels of achievement and developing performances of students were decided by the questionnaire survey, which was performed among grades10-11students from3different schools. The target performances or developing goals were specified by the integration of literature analysis and questionnaire survey results. The hypotheses of developing progressions also embraced the corresponding instruction advice about mathematics problem posing.
     The second one was to validate the hypotheses of developing progressions for mathematics problem posing in grades10-11. Under the methodological guideline of design research, the research process of validating the hypotheses went through design prototype of design research, specific the prototype, design and implement the teaching in grade11that focused on the mathematics problem posing during a four-week period. The results of analyzing the teaching videos, pretest, interim test, posttest and the interview to the teacher and students were used to validate the hypotheses of developing progressions for mathematics problem posing in grades10-11, and also revised the teaching model for improving students' mathematics problem posing.
     The third one was to revise the hypotheses of developing progressions for mathematics problem posing in grades10-11. Based on the hypotheses and its validation of the developing progressions for mathematics problem posing in grades10-11, revising the hypotheses mainly involved the target performances or developing goals, developing performances and instruction advice.
     The key findings of this research contributed to the revised developing progressions for mathematics problem posing in grades10-11and the revised teaching model for improving students' mathematics problem posing. The research also found that students increasingly posed the understanding problem and reflecting problem from the structured situation with the growth of students' grade.
     The research drew lesson from learning progressions research, which was a new method of assessing mathematics competency, and it would be a start for the future competency study.
引文
1 斯海霞,朱雁.中小学数学核心能力的国际比较研究[J].比较教育研究.2013.11:34-39
    2 喻平,连四清,武锡环.中国数学教育心理研究30年[M].北京:科学出版社.2011:234
    3 Niss, M. Mathematical competencies and the learning of mathematics:The Danish KOM project[R]. Third Mediterranean conference on mathematics education 2003:115-124
    4 OECD. The PISA 2003 assessment framework-mathematics, reading, science and problem-solving knowledge and skills[M]. Paris:OECD Publications.2003
    5 OECD. PISA 2012 Mathematics Framework. Paris:OECD Publications [EB/OL].2010 http://www.oecd.org/dataoecd/8/38/46961598.pdf
    6 Melis, E. A. Faulhaber, A. Eichelmann, and S. Narciss. Interoperable competencies characterizing learning objects in mathematics[J].In Intelligent Tutoring Systems, ITS 2008.5091:416-425
    7 Albano, Giovannina. A Knowledge-Skill-Competencies e-learning Model in Mathematics[J]. Universities and Knowledge Society Journal (RUSC).2012 9(1):306-319
    8 徐斌艳编著.数学课程改革与教学指导[M].上海:华东师范大学出版社.2008.144-152
    9 喻平,连四清,武锡环.中国数学教育心理研究30年[M].北京:科学出版社.2011:234
    10 徐斌艳.数学学科核心能力研究[J].全球教育展望,2013(6),67-74.
    11 Christou, C. Mousolides, N. Pittalis, M., Pitta-Pantazi, D.& Shiraman, B.. An empirical taxonomy of problem posing processes[J]. ZDM,2005.37(3),149-158.
    12 夏小刚,汪秉彝,吕传汉.中小学生提出数学问题能力的评价再探[J].数学教育学报.2008.2:8-11
    13 韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    14 Mestre, P. J. Probing adults'conceptual understanding and transfer of learning via problem posing[J]. Applied Developmental Psychology.2002.23:9-50
    15 English, L. D. Promoting a problem-posing classroom[J]. Teaching Children Mathematics.1997.3,172-179.
    16 Mestre, P. J. Probing adults'conceptual understanding and transfer of learning via problem posing[J]. Applied Developmental Psychology.2002.23:9-50
    17 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    18 韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    19 刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012.8(2):81-87
    20 高芳,陈志伟.学习进程:美国科学教育改革新思路[J].外国教育研究.2011.5:87-90
    21 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    22 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory[J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98..
    23 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    24 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory[J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98.
    25 Karin K. Hess. Learning progressions Frameworks designed for use with The Common Core State Standards in Mathematics K-12. [EB/OL].2012 http://www.nciea.org/publications/Math_LPF_KH11.pdf
    26 喻平,连四清,武锡环.中国数学教育心理研究30年[M].北京:科学出版社.2011:234
    27 徐有标,陶文中.试谈数学能力成分及其测试方法[J].课程·教材·教法.1990.2:16-17
    28 胡中锋.中小学生数学能力结构研究述评[J].课程·教材·教法.2001(6):46
    29 Niss, M. Mathematical competencies and the learning of mathematics:The Danish KOM projectfR]. Third Mediterranean conference on mathematics education 2003:115-124
    30 Albano, Giovannina. A Knowledge-Skill-Competencies e-learning Model in Mathematics[J]. Universities and Knowledge Society Journal (RUSC).2012 9(1):306-319.
    31 Dillon, J. T. Problem finding and solving[J]. Journal of Creative Behavior.1982.16,97-111
    32 Silver, E. A. On mathematical problem posing[J]. For the Learning of Mathematics.1994:14(1),19-28
    33 Lowrie, T. Free problem posing:Year 3/4 students constructing problems for friends to solve[R]. Panorama, South Australia:Mathematics Education Research Group of Australasia 1999:328-335.
    34 Yuan, X.,& Sriraman, B. An exploratory study of relationships between students' creativity and mathematical problem posing abilities[R]. The Elements of Creativity and Giftedness in Mathematics, Rotterdam, The Netherlands:Sense Publishers.2010
    35 Leung, S. S. On analyzing problem-posing processes:A study of prospective elementary teachers differing in mathematics knowledge[R]. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th international conference of the International Group for the Psychology of Mathematics Education.1994.3:168-175.
    36 Silver, E. A. On mathematical problem posing[J]. For the Learning of Mathematics.1994:14(1),19-28
    37 Lowrie, T. Free problem posing:Year 3/4 students constructing problems for friends to solve[R]. Panorama, South Australia:Mathematics Education Research Group of Australasia 1999:328-335.
    38 刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012.8(2):81-87
    39 Zalman Usiskin. Grades 7-12 Learning Progressions in Mathematics Content[R].APEC Conference on Replicating Exemplary Practices in Mathematics Education, Koh Samui, Thailand,2010
    40 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory[J], Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98
    41 高芳,陈志伟.学习进程:美国科学教育改革新思路[J].外国教育研究.2011.5:87-90
    42 Pellegrino, J. W. The Design of an Assessment System for the Race to the Top:A Learning Sciences Perspective on Issues of Growth and Management[M]. Princeton:Educational Testing Service.2010
    43 Michael T. Battista, Conceptualizations and Issues Related to Learning Progressions, Learning Trajectories, and Levels of Sophistication [J].The Mathematics Enthusiast,2011.8(3):507-570.
    44 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009:8
    45 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214-215
    46 韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    47 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory [1]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98
    48 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    49 English, L. D. The Development of Fifth-Grade Children's Problem-Posing Abilities[J]. Educational Studies in Mathematics.1997 34(3):183-217
    50 郑雪静,汪秉彝,吕传汉.中小学生提出数学问题能力评价探究[J].数学教育学报.2007.16(7):49-52
    51 夏小刚,汪秉彝,吕传汉.中小学生提出数学问题能力的评价再探[J].数学教育学报.2008.17(2):8-11
    52 全美数学教师理事会著,蔡金法等人译.美国学校数学教育的原则和标准[M].北京:人民教育出版社,2004:50
    53 中华人民共和国教育部制定.义务教育数学课程标准[M].北京:北京师范大学出版社.2011:9
    54 Silver, E. A. On mathematical problem posing[J]. For the Learning of Mathematics.1994:14(1),19-28.
    55 Lowrie, T. Free problem posing:Year 3/4 students constructing problems for friends to solve[R]. Panorama, South Australia:Mathematics Education Research Group of Australasia 1999:328-335.
    56 Gonzales, Nancy A. Problem formulation:Insights from student generated questions[J]. School Science and Mathematics.1996.96,3
    57 Cai, J. An Investigation of U.S. and Chinese Students' Mathematical Problem Posing and Problem Solving[J]. Mathematics Education Research Journal.1998,10(1):37-50
    58 OECD. The PISA 2003 assessment framework-mathematics, reading, science and problem-solving knowledge and skills[M]. Paris:OECD Publications.2003
    59 郑雪静,汪秉彝,吕传汉.中小学生提出数学问题能力评价探究[J].数学教育学报2007(3):49-50
    60 夏小刚,汪秉彝,吕传汉.中小学生提出数学问题能力的评价再探[J].数学教育学报.2008.17(2):8-11
    61 English, L. D. Children's Problem Posing within Formal and Informal Contexts[J] Journal for Research in Mathematics Education,1998,29(l):83-106.
    62 郑雪静,汪秉彝,吕传汉.中小学生提出数学问题能力评价探究[J].数学教育学报2007(3):49-50
    63 王甲.关于高中生问题提出能力的调查研究[D].华东师范大学.2009:1
    64 Van Harpen, X. Y.,& Sriraman, B. Creativity and mathematical problem posing:An analysis of high school students? mathematical problem posing in China and the USA[J]. Educational Studies in Mathematics.2013.82(2): 201-221
    65 Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B.,& Garber T. Mathematical Problem Posing as a Measure of Curricular Effect on Student's Learning[J]. Educational Studies in Mathematics,2013.83(1),57-69
    64 王甲.关于高中生问题提出能力的调查研究[D].华东师范大学.2009:1
    65 向镒湄.高中生数学提问水平与问题意识和学习策略的关系研究fDl.首都师范大学.2012:1
    66 赵瑾.高中生数学问题提出与问题解决能力的关系研究[D].首都师范大学.2008:1
    67 向镒湄.高中生数学提问水平与问题意识和学习策略的关系研究[D].首都师范大学.2012:1
    70 王甲.关于高中生问题提出能力的调查研究[D].华东师范大学.2009:1
    71 赵瑾.高中生数学问题提出与问题解决能力的关系研究[D].首都师范大学.2008:1
    72 郑锵锵.高中生数学问题提出能力及其影响因素的研究[D].东北师范大学.2010:1
    73 夏小刚,吕传汉.美国数学教育中的提出问题研究综述[J].比较教育研究.2006(2):18-22
    74 Ciardiello, A. V. Did you ask a good question today? Alternative cognitive and metacognitive strategies[J], Journal of Adolescent & Adult Literacy.1998.42(3):210-219
    13 Constantinos Christou. An empirical taxonomy of problem posing processes[J].ZDM 2005.37(3):149-158
    76 Gonzales, N. A. A Blueprint for Problem Posing[J]. School Science & Mathematics.1998.94 (2),78-85
    77 吕传汉,汪秉彝.论中小学“数学情境与提出问题”的数学学习[J].数学教育学报.2001(4):9-14
    78 斯海霞.学习进程研究方法述评[J].外国教育研究.2013.11:21-28
    79 韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    80 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    81 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory [J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98.
    82 Karin K. Hess. Learning progressions Frameworks designed for use with The Common Core State Standards in Mathematics K-12. [EB/OL].2012 http://www.nciea.org/publications/Math_LPF_KHll.pdf
    83 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    84 韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    85 刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012.8(2):81-87
    86 高芳,陈志伟.学习进程:美国科学教育改革新思路[J].外国教育研究.2011.5:87-90
    87 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    88 Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory[J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98
    89 Zalman Usiskin. Grades 7-12 Learning Progressions in Mathematics Content[R].APEC Conference on Replicating Exemplary Practices in Mathematics Education, Koh Samui, Thailand,7-12 Mar.2010
    90 香港特别行政区政府教育局.特殊教育需要-新高中课程(智障学生)-学习进程架构[EB/OL].2012.10.http: //www.edb.gov.hk/index.aspx?langno=2&nodeID=7353,
    91 Karin K. Hess. Etc. Learning progressions frameworks designed for use with the Common core state standards in mathematics K-12.[EB/OL].2012.http://www.nciea.org/publications/Math LPF KHll.pdf.
    92 刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012.8(2):81-87
    93 Sadler, R. Formative assessment and the design of instructional systems[J]. Instructional Science,1989.18,119-144..
    94 Pellegrino, J. W. The Design of an Assessment System for the Race to the Top:A Learning Sciences Perspective on Issues of Growth and Management[M]. Princeton:Educational Testing Service.2010
    95 National Research Council. Knowing what students know:The science and design of educational assessment[M]. Washington, DC:The National Academies Press.2001:44
    96 Karin K. Hess. Etc. Learning progressions frameworks designed for use with the Common core state standards in mathematics K-12.[EB/OL].2012.http://www.nciea.org/publications/Math_LPF_KHll.pdf.
    97 Duncan, R.. Learning Progressions:Aligning Curriculum, Instruction, and Assessment [J]. Journal of Research in Science Teaching.2009,46(6):606-609.
    98 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    99 Pellegrino, J. W. The Design of an Assessment System for the Race to the Top:A Learning Sciences Perspective on Issues of Growth and Management[M]. Princeton:Educational Testing Service.2010
    100 Merritt, J., Krajcik, J.,& Shwartz, Y. Development of a Learning Progression for the Particle Model of Matter[R]. Paper presented at the International Conference for the Learning Sciences, Utrecht, Netherlands.2008
    101 Alonzo, A.,& Steedle, J. T.. Developing and Assessing a Force and Motion Learning Progression[J]. Science Education,2008.93(3),389-421.
    102 Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching,2009.46(6):675-698
    103 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.).Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    104 Duncan, R. G., Rogat, A.,& Yarden, A. Learning Progression in Genetics[EB/OL] 2007 http://www.project2061.org/publications/2061 Connections/2007/media/KSIdocs/golanduncan_rogat_yarden_paper .pdf.
    105 Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching,2009.46(6):675-698
    106 Karin K. Hess. Etc. Learning progressions frameworks designed for use with the Common core state standards in mathematics K-12.[EB/OL].2012.http://www.nciea.org/publications/Math_LPF_KHll.pdf.
    107 Duncan, R. G., Rogat, A.,& Yarden, A. Learning Progression in Genetics[EB/OL] 2007 http://www.project2061.org/publications/2061Connections/2007/media/KSIdocs/golanduncan_rogat_yarden_paper .pdf.
    108 Karin K. Hess. Etc. Learning progressions frameworks designed for use with the Common core state standards in mathematics K-12.[EB/OL].2012http://www.nciea.org/publications/Math_LPF_KHll.pdf.
    109 Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching,2009.46(6):675-698
    110 Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    111 Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching,2009.46(6):675-698
    112 Karin K. Hess. Etc. Learning progressions frameworks designed for use with the Common core state standards in mathematics K-12.[EB/OL].2012.http://www.nciea.org/publications/Math_LPF_KH11.pdf.
    113 Smith. C. L., Wiser. M., Anderson. C. W.& Kraicik. J. Imnlications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory [J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98.
    114 Songer, N.B., Kelcey, B.,& Gotwals, A.W. How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching,2009.46:610-631
    115 Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching,2009.46(6):675-698.
    116 Duschl, R. A..Learning Progressions:Aligning Curriculum, Instruction, and Assessment[J].Journal of Research in Science Teaching.2009.46(6):606-609
    117 Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    118 王祖浩,杨玉琴.基于Rasch模型的“化学实验认知能力”测验工具编制及测评研究[J].化学教育.2012.9:95-108
    119 Serrano, J. M. y Pons, R. M. Constructivism Today:Constructivist Approaches in Education[J]. Revista Electronica de Investigacion Educativa.2011.13(1):1-28
    120 林崇德,杨治良,黄希庭主编.心理学大辞典[Z].上海:上海教育出版社.2003.12:868
    121 喻平,连四清,武锡环.中国数学教育心理研究30年[M].北京:科学出版社.2011:234
    122 张奎明.建构主义视野下的教师素质及其培养[D].上海:华东师范大学.2005:30
    124 (美)莱斯利·P·斯特弗,(美)杰里·盖尔编,高文,徐斌艳,程可拉,等译.教育中的建构主义[M].上海:华东师范大学出版社.2007:6-7
    124 (美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:i
    125 安德森等编著,皮连生主译.学习、教学和评价的分类学.上海:华东师范大学出版社.2007.11:3
    126 (美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:10
    127 (美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学 与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:243
    128 (美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:247
    129 (美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:249
    130 苏洪雨.学生几何素养的内涵与评价研究[D].上海:华东师范大学.2009:27
    131 常经营,兰伟彬.布鲁姆教育目标分类的新发展[J]南阳师范学院学报(社会科学版).2008.7(5):84-86
    132 拉尔夫·泰勒,良方译.课程与教学的基本原理[M]:北京:人民教育出版社.1994:18
    133 高文.维果茨基心理发展理论对教育教学实践的影响—维果茨基思想研究之三[J].外国教育资料.1999.5:46-50
    134 杨南昌.学习科学视域中的设计研究[D].华东师范大学.2008:40-41
    135 杨南昌,刘晓艳,曾玉萍,李晶.学习科学的方法论革新与研究方法综述[J].开放教育研究.2011.17(6):20-29
    136 杨南昌,刘晓艳,曾玉萍,李晶.学习科学的方法论革新与研究方法综述[J].开放教育研究.2011.17(6):20-29
    137 Silver,E.A.On mathematical problem posing[J].For the Learning of Mathematics.1994:14(1),19-28.
    138 Lowrie, T. Free problem posing:Year 3/4 students constructing problems for friends to solve[R]. Panorama, South Australia:Mathematics Education Research Group of Australasia 1999:328-335
    139 Yuan, X.,& Sriraman, B. An exploratory study of relationships between students' creativity and mathematical problem posing abilities[R]. The Elements of Creativity and Giftedness in Mathematics, Rotterdam, The Netherlands:Sense Publishers.2010
    140 Cai, J. An Investigation of U.S. and Chinese Students' Mathematical Problem Posing and Problem Solving[J]. Mathematics Education Research Journal.1998,10(1):37-50
    141 OECD. The PISA 2003 assessment framework-mathematics, reading, science and problem-solving knowledge and skills[M]. Paris:OECD Publications.2003
    142 Gonzales, Nancy A. Problem formulation:Insights from student generated questions[J]. School Science and Mathematics.1996.96,3
    143 Tugrul Kara, Ercan Ozdemirb, Ali Sabri pekb, Mustafa Albayraka. The relation between the problem posing and problem solving skills of prospective elementary mathematics teachers[J]. Procedia Social and Behavioral Sciences.2010.2:1577-1583
    144 在首次测试卷编排中,将从自由情境中提出问题,从半结构化情境提出问题,从结构化情境中提出问题这三类题分别记为PA(Posing problem A类题),PB(Posing problem B类题),PC(Posing problem C类题),如PAl表示从自由情境中提出问题类第1题。
    145 Tugrul Kara, Ercan Ozdemirb, Ali Sabri pekb, Mustafa Albayraka. The relation between the problem posing and problem solving skills of prospective elementary mathematics teachersfJ]. Procedia Social and Behavioral Sciences.2010.2:1577-1583
    146 详见附录1
    147 修正后的测试卷编排中,为区别于首次测试卷题目编排,将从自由情境中提出问题,从半结构化情境提出问题,从结构化情境中提出问题这三类题分别记为A(类题),B(类题),C(类题),如A1表示从自由情境中提出问题类第1题。
    148 纪宏伟.基于SPSS的试卷分析与解读[J].职业教育研究.2011.8:169-170
    149 Sig.是差异性显著的检验值,该值一般与0.05或0.01比较,本文中若sig小于0.05则表示差异显著,若者小于0.01则表示差异十分显著,下同。
    150 代表0计分的问题,1-3分别依次代表记忆与操作类、理解与联系类、反思与拓展类问题。
    151 由于前面是个百分比是四舍五入后的结果,所以它们之和可能不完全等同100%,下同
    152 0代表0计分的问题,1-3分别依次代表记忆与操作类、理解与联系类、反思与拓展类问题。
    153 0代表0计分的问题,1-3分别依次代表记忆与操作类、理解与联系类、反思与拓展类问题。
    157 拉尔夫·泰勒,良方译.课程与教学的基本原理[M]:北京:人民教育出版社.1994:18
    158 0代表0计分的问题,1-3分别依次代表记忆与操作类、理解与联系类、反思与拓展类问题。
    164 顾明远等主编.教育大辞典(简编本)[M].上海:上海教育出版社.1999
    165 鲍建生等.变式教学研究[J].数学教学.2003.2:2-6
    166 郑毓信,变式理论的必要发展[J].中学数学月刊.2006.1:1-3
    167 鲍建生,周超.数学学习的心理基础与过程[M].上海:上海教育出版社.2009.10:174
    168 杨南昌.学习科学视域中的设计研究[D]:上海:华东师范大学.2008:188
    169 Shuk-kwan S. Leung. Teachers implementing mathematical problem posing in the classroom:challenges and strategies[J]. Educational Studies in Mathematics.2013.83:103-116
    170 Polya, G. How to solve it? [M]. Princeton, NJ:Princeton University Press.1945
    171 Freudenthal, H. Mathematics as an educational task[M]. Dordrecht:Reidel.1973
    172 Brown, S. I.,& Walter, M. I. The art of problem posing[M]. Philadelphia:Franklin Institute Press.1983
    173 Silver. E. A. On mathematical problem posing[Jl. For the Learning of Mathematics.1994:14(1),19-28
    174 National Council of Teachers of Mathematics. The principles and standards for school mathematics[M]. Reston: National Council of Teachers of Mathematics.2000
    175 Ellerton, N. F. Children's made up mathematics problems-a new perspective on talented mathematicians[J]. Educational Studies in Mathematics.1986.17,261-271
    176 English, L. D., Fox, J. L.,& Watters, J. J. Problem posing and solving with mathematical modeling[J].Teaching Children Mathematics.2005.12(3),156-163
    177 Kilpatrick, J. Problem formulating:Where do good problems come from? [J]. Cognitive Science and Mathematics Education.1987:123-147
    178 Azita Manouchehri. A Four-Point Instruction Model[J].Teaching Children Mathematics,2001,(3):180
    179 夏小刚,吕传汉.美国数学教育中的提出问题研究综述[J].比较教育研究.2006(2):18-22
    180 Igor Kontorovicha,,Boris Koichua, Roza Leikinb, Avi Berman. An exploratory framework for handling the complexity of mathematical problem posing in small groups[J]. Journal of Mathematical Behavior.2012.31:149-161
    181 Gonzales, Nancy A. Problem formulation:Insights from student generated questions[J]. School Science and Mathematics.1996.96,3
    182 Barnes, B. K.. Discourse particles in French conversation[J]. The French Review.1995.68(5):813-82
    183 刘兰英.小学数学课堂师生对话的特征分析[Dl.上海,华东师范大学博士论文.2012:18
    184 Sinclair, J. M. Towards an analysis of discourse:the English used by teachers and pupils[M]. Oxford University Press. London.1975
    185 刘兰英.小学数学课堂师生对话的特征分析[D].上海,华东师范大学博士论文.2012:15
    186 Barnes, B. K.. Discourse particles in French conversation[J]. The French Review.1995.68(5):813-821
    187 √表示四个环节都出现;×表示四个环节没有完全出现,括号内表示出现的几个环节(下同)
    188 √表示四个环节中存在重复环节,括号内表示重复的环节;×表示没有出现重复的环节(下同)
    189 √表示有环节之间顺序颠倒;×表示环节之间顺序没有出现颠倒(下同)
    190 对应不同轮循环,括号内编码表示重复环节编码
    191 非问题变式,辨析相关概念之间的异同,属于问题变式,虽然不是研究重点,但仍作为变式形式标出。
    194 A表示自由情境类问题均值,B表示半结构化情境类问题均值,C表示结构化情境类问题均值,下同。
    195 实验班总人数29,对照班总人数35
    196 表中数字都是四舍五入的结果,因此在sum中的数值可能与前面三个数值相加不一致,下同。
    197 这里的差值指相应表中实验班-对照班数值得到的差异,下同
    211 Hayri Akay, Nihat Boz. The Effect of Problem Posing Oriented Analyses-Ⅱ Course on the Attitudes toward Mathematics and Mathematics Self-Efficacy of Elementary Prospective Mathematics Teachers[J]. Australian Journal of Teacher Education.2010.25(1):1-18
    [1](美)安德森Anderson.L.W.)等编著;蒋小平等译.布卢姆教育目标分类学(修订版):分类学视野下的学与教及其测评:完整版.北京:外语教学与研究出版社.2009.10:i,10,243,247,249
    [2]安德森等编著,皮连生主译.学习、教学和评价的分类学.上海:华东师范大学出版社.2007.11:3
    [3]鲍建生等.变式教学研究[J].数学教学.2003.2:2-6
    [4]鲍建生,周超.数学学习的心理基础与过程[M].上海:上海教育出版社.2009.10:174
    [5]苏洪雨.学生几何素养的内涵与评价研究[[)].上海:华东师范大学.2009:27
    [6]常经营,兰伟彬.布鲁姆教育目标分类的新发展[J].南阳师范学院学报(社会科学版).2008.7(5):84-86
    [7]顾明远等主编.教育大辞典(简编本)[M].上海:上海教育出版社.1999
    [8]高芳,陈志伟.学习进程:美国科学教育改革新思路[J].外国教育研究.2011.5:87-90
    [9]高文.维果茨基心理发展理论对教育教学实践的影响—维果茨基思想研究之三[J].外国教育资料.1999.5:46-50
    [10]胡中锋.中小学生数学能力结构研究述评[J].课程·教材·教法.2001(6):46
    [11]纪宏伟.基于SPSS的试卷分析与解读[J].职业教育研究.2011.8:169-170
    [12]吕传汉,汪秉彝.论中小学“数学情境与提出问题”的数学学习[J].数学教育学报.2001(4):9-14
    [13]刘晟,刘恩山.学习进阶:关注学生认知发展和生活经验[J].教育学报.2012.8(2):81-87
    [14]林崇德,杨治良,黄希庭主编.心理学大辞典[Z].上海:上海教育出版社.2003.12:868
    [15](美)莱斯利·P·斯特弗,(美)杰里·盖尔编,高文,徐斌艳,程可拉,等译.教育中的建构主义[M].上海:华东师范大学出版社.2007:6-7
    [16]刘兰英.小学数学课堂师生对话的特征分析[D].上海,华东师范大学.2012:15,18
    [17]全美数学教师理事会著,蔡金法等人译.美国学校数学教育的原则和标准[M].北京:人民教育出版社,2004:50
    [18]斯海霞,朱雁.中小学数学核心能力的国际比较研究[J].比较教育研究.2013.11:34-39
    [19]斯海霞.学习进程研究方法述评[J].外国教育研究.2013.11:21-28
    [20]韦斯林,贾远娥.学习进程:促进课程、教学与评价的一致性[J].全球教育展望.2010.9:24-31
    [21]王祖浩,杨玉琴.基于Rasch模型的“化学实验认知能力”测验工具编制及测评研究[J].化学教育.2012.9:95-108
    [22]王甲.关于高中生问题提出能力的调查研究[D].华东师范大学.2009:1
    [23]徐斌艳编著.数学课程改革与教学指导[M].上海:华东师范大学出版社.2008.144-152
    [24]徐斌艳.数学学科核心能力研究[J].全球教育展望,2013(6),67-74.
    [25]夏小刚,汪秉彝,吕传汉.中小学生提出数学问题能力的评价再探[J].数学教育学报.2008.2:8-11
    [26]夏小刚,吕传汉.美国数学教育中的提出问题研究综述[J].比较教育研究.2006(2):18-22
    [27]徐有标,陶文中.试谈数学能力成分及其测试方法[J].课程·教材·教法.1990.2:16-17
    [28]向镒湄.高中生数学提问水平与问题意识和学习策略的关系研究[D].首都师范大学.2012:1
    [29]香港特别行政区政府教育局.特殊教育需要-新高中课程(智障学生)-学习进程架构[EB/OL].http:
    [30]杨南昌,刘晓艳,曾玉萍,李晶.学习科学的方法论革新与研究方法综述[J].开放教育研究.2011.17(6):20-29
    [31]杨南昌.学习科学视域中的设计研究[D].华东师范大学.2008:40-41,174-214
    [32]喻平,连四清,武锡环.中国数学教育心理研究30年[M].北京:科学出版社.2011:234
    [33]郑毓信,变式理论的必要发展[J].中学数学月刊.2006.1:1-3
    [34]张奎明.建构主义视野下的教师素质及其培养[D].上海:华东师范大学.2005:30
    [35]郑雪静,汪秉彝,吕传汉.中小学生提出数学问题能力评价探究[J].数学教育学报.2007.16(7):49-52
    [36]中华人民共和国教育部制定.义务教育数学课程标准[M].北京:北京师范大学出版社.2011:9
    [37]赵瑾.高中生数学问题提出与问题解决能力的关系研究[D].首都师范大学.2008:1
    [38]郑锵锵.高中生数学问题提出能力及其影响因素的研究[D].东北师范大学.2010:1
    [39]Albano, Giovannina. A Knowledge-Skill-Competencies e-learning Model in Mathematics[J]. Universities and Knowledge Society Journal (RUSC).2012 9(1): 306-319.
    [40]Alonzo, A.,& Steedle, J. T.. Developing and Assessing a Force and Motion Learning Progression[J]. Science Education,2008.93(3),389-421.
    [41]Azita Manouchehri. A Four-Point Instruction Model[J].Teaching Children Mathematics,2001,(3):180
    [42]Brown, S. I.,& Walter, M. I. The art of problem posing[M]. Philadelphia: Franklin Institute Press.1983.
    [43]Barnes, B. K.. Discourse particles in French conversation[J]. The French Review.1995.68(5):813-821.
    [43]Cai, J., Moyer, J. C., Wang, N., Hwang, S., Nie, B.,& Garber T. Mathematical Problem Posing as a Measure of Curricular Effect on Student's Learning[J]. Educational Studies in Mathematics,2013.83(1),57-69
    [44]Cai, J. An Investigation of U.S. and Chinese Students' Mathematical Problem Posing and Problem Solving[J]. Mathematics Education Research Journal.1998, 10(1):37-50
    [45]Ciardiello, A. V. Did you ask a good question today? Alternative cognitive and metacognitive strategies[J], Journal of Adolescent & Adult Literacy. 1998.42(3):210-219
    [46]Constantinos Christou. An empirical taxonomy of problem posing processes[J].ZDM 2005.37(3):149-158
    [47]Corcoran, T., F. A. Mosher,& A. Rogat. Learning Progressions in Science:An Evidence Based Approach to Reform [R]. Consortium for Policy Research in Education, Philadelphi,2009.11
    [48]Christou, C. Mousolides, N. Pittalis, M., Pitta-Pantazi, D.& Shiraman, B.. An empirical taxonomy of problem posing processes[J]. ZDM,2005.37(3),149-158.
    [49]Duschl, R. A., Schweingruber, H. A.,& Shouse, A. (Eds.). Taking science to school:Learning and teaching science in grades K-8[M]. Washington, D.C:National Academy Press.2007:214
    [50]Duschl, R. A..Learning Progressions:Aligning Curriculum, Instruction, and Assessment[J] Journal of Research in Science Teaching.2009.46(6):606-609
    [51]Dillon, J. T. Problem finding and solving [J]. Journal of Creative Behavior. 1982.16,97-111.
    [52]Duncan, R.. Learning Progressions:Aligning Curriculum, Instruction, and Assessment [J]. Journal of Research in Science Teaching.2009,46(6):606-609.
    [53]Duncan, R. G., Rogat, A.,& Yarden, A. Learning Progression in Genetics[EB/OL] 2007 http://www.project2061.org/publications/2061Connections/2007/media/KSIdocs/gola nduncan_rogat_yarden_paper.pdf
    [54]English, L. D. Promoting a problem-posing classroom[J]. Teaching Children Mathematics.1997.3,172-179.
    [55]English, L. D., Fox, J. L.,& Watters, J. J. Problem posing and solving with mathematical modeling[J].Teaching Children Mathematics.2005.12(3),156-163
    [56]English, L. D. The Development of Fifth-Grade Children's Problem-Posing Abilities[J]. Educational Studies in Mathematics.1997 34(3):183-217
    [57]English, L. D. Children's Problem Posing within Formal and Informal Contexts[J] Journal for Research in Mathematics Education,1998,29(1):83-106.
    [58]Ellerton, N. F. Children's made up mathematics problems-a new perspective on talented mathematicians[J]. Educational Studies in Mathematics.1986.17,261-271
    [59]Freudenthal, H. Mathematics as an educational task[M]. Dordrecht:Reidel.1973
    [60]Gonzales, Nancy A. Problem formulation:Insights from student generated questions[J]. School Science and Mathematics.1996.96,3
    [61]Gonzales, N. A. A Blueprint for Problem Posing[J]. School Science & Mathematics.1998.94 (2),78-85
    [62]Igor Kontorovicha,,Boris Koichua, Roza Leikinb, Avi Berman. An exploratory framework for handling the complexity of mathematical problem posing in small groups[J]. Journal of Mathematical Behavior.2012.31:149-161
    [63]Karin K. Hess. Learning progressions Frameworks designed for use with The Common Core State Standards in Mathematics K-12. [EB/OL].2012 http://www.nciea.org/publications/Math_LPF_KH11.pdf
    [64]Kilpatrick, J. Problem formulating:Where do good problems come from? [J]. Cognitive Science and Mathematics Education.1987:123-147
    [65]Lowrie, T. Free problem posing:Year 3/4 students constructing problems for friends to solve[R]. Panorama, South Australia:Mathematics Education Research Group of Australasia 1999:328-335.
    [66]Leung, S. S. On analyzing problem-posing processes:A study of prospective elementary teachers differing in mathematics knowledge[R]. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th international conference of the International Group for the Psychology of Mathematics Education.1994.3:168-175.
    [67]Mestre, P. J. Probing adults'conceptual understanding and transfer of learning via problem posing[J]. Applied Developmental Psychology.2002.23:9-50
    [68]Merritt, P. J., Krajcik, J.,& Shwartz, Y. Development of a Learning Progression for the Particle Model of Matter[R]. Paper presented at the International Conference for the Learning Sciences, Utrecht, Netherlands.2008
    [69]Michael T. Battista, Conceptualizations and Issues Related to Learning Progressions, Learning Trajectories, and Levels of Sophistication [J].The Mathematics Enthusiast,2011.8(3):507-570.
    [70]Melis, E. A. Faulhaber, A. Eichelmann, and S. Narciss. Interoperable competencies characterizing learning objects in mathematics[J].In Intelligent Tutoring Systems, ITS 2008.5091:416-425
    [71]Mohan, L., Chen, J.,& Anderson, W.A. Developing a multi-year learning progression for carbon cycling in socio-ecological systems[J]. Journal of Research in Science Teaching,2009.46(6):675-698
    [72]Niss, M. Mathematical competencies and the learning of mathematics:The Danish KOM project[R]. Third Mediterranean conference on mathematics education 2003:115-124
    [73]National Research Council. Knowing what students know:The science and design of educational assessment[M]. Washington, DC:The National Academies Press. 2001:44
    [74]National Council of Teachers of Mathematics. The principles and standards for school mathematics[M]. Reston:National Council of Teachers of Mathematics.2000
    [75]OECD. The PISA 2003 assessment framework-mathematics, reading, science and problem-solving knowledge and skills[M]. Paris:OECD Publications.2003
    [76]OECD. PISA 2012 Mathematics Framework. Paris:OECD Publications [EB/OL]. 2010 http://www.oecd.org/dataoecd/8/38/46961598.pdf.
    [77]Pellegrino, J. W. The Design of an Assessment System for the Race to the Top:A Learning Sciences Perspective on Issues of Growth and Management[M]. Princeton: Educational Testing Service.2010
    [78]Polya, G. How to solve it? [M]. Princeton, NJ:Princeton University Press.1945
    [79]Silver, E. A. On mathematical problem posing[J]. For the Learning of Mathematics.1994:14(1),19-28.
    [80]Smith, C. L., Wiser, M., Anderson, C. W.& Krajcik, J. Implications of research on children's learning for standards and assessment:A proposed learning progression for matter and the atomic molecular theory [J]. Measurement:Interdisciplinary Research and Perspectives,2006.14(1&2),1-98
    [81]Sadler, R. Formative assessment and the design of instructional systems[J]. Instructional Science,1989.18,119-144.
    [82]Songer, N.B., Kelcey, B.,& Gotwals, A.W. How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 2009.46:610-631
    [83]Serrano, J. M. y Pons, R. M. Constructivism Today:Constructivist Approaches in Education[J]. Revista Electr6nica de Investigacion Educativa.2011.13(1):1-28
    [84]Shuk-kwan S. Leung. Teachers implementing mathematical problem posing in the classroom:challenges and strategies[J]. Educational Studies in Mathematics. 2013.83:103-116
    [85]Sinclair, J. M. Towards an analysis of discourse:the English used by teachers and pupils[M]. Oxford University Press. London.1975
    [86]Tugrul Kara, Ercan Ozdemirb, Ali Sabri pekb, Mustafa Albayraka. The relation between the problem posing and problem solving skills of prospective elementary mathematics teachers[J]. Procedia Social and Behavioral Sciences.2010.2:1577-1583
    [87]Van Harpen, X. Y.,& Sriraman, B. Creativity and mathematical problem posing: An analysis of high school students? mathematical problem posing in China and the USA[J]. Educational Studies in Mathematics.2013.82(2):201-221.
    [88]Yuan, X.,& Sriraman, B. An exploratory study of relationships between students' creativity and mathematical problem posing abilities[R]. The Elements of Creativity and Giftedness in Mathematics, Rotterdam, The Netherlands:Sense Publishers.2010
    [89]Zalman Usiskin. Grades 7-12 Learning Progressions in Mathematics Content[R].APEC Conference on Replicating Exemplary Practices in Mathematics Education, Koh Samui, Thailand,2010