足尺钢筋混凝土双向板抗火性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火灾时钢筋混凝土双向板起着重要作用,除自身受到高温作用外,还要防止火势蔓延和结构倒塌,而火灾下钢筋混凝土双向板受力复杂,且影响因素多,目前相关的试验及理论研究不完善。本文在国家自然科学基金面上项目“结构中钢筋混凝土双向板火灾行为研究”(批准号:51178143)和“结构构件火灾时声发射和振动特性的试验研究”(批准号:50878069)的资助下,开展了对足尺邻边简支邻边固支双向板、仅在柱上有梁的双向板楼盖和平板无梁楼盖的抗火性能研究,既可为钢筋混凝土双向板的抗火设计提供数据支持和理论指导,又可为消防工作提供参考。主要开展了以下几方面的研究工作:
     (1)试验研究足尺抗火试验可以准确反映钢筋混凝土双向板的抗火行为,本文对足尺邻边简支邻边固支双向板、仅在柱上有梁的双向板楼盖和平板无梁楼盖进行了恒载升温的试验研究。三种形式的板各制作了2个试件,试验测量了火灾作用下板的平面内位移和竖向位移等,考察了板的约束反力变化,分析了沿板厚度混凝土温度场的分布以及钢筋的温度变化。试验结果表明:火灾后邻边简支邻边固支双向板的顶部裂缝形成半椭圆形的破坏形式,仅在柱上有梁的双向板楼盖最终呈凹口向上的“球冠”形破坏,平板无梁楼盖的板顶裂缝最终为对角呈双曲线形的破坏形式。单面受火的钢筋混凝土板沿截面厚度方向混凝土温度场呈非线性分布,温度梯度随时间的增长而快速增大,并且水分的影响使混凝土在100℃时产生了一个升温水平段;水分不仅影响了混凝土的升温,还使受火混凝土产生爆裂,含水率太高时板将因混凝土的爆裂而导致破坏。
     (2)极限承载力计算传统塑性铰线理论对板的极限承载力计算时不能考虑薄膜效应,计算值偏保守,为了正确计算钢筋混凝土板的极限承载力,本文在传统塑性铰线理论的基础上,根据板块的受力平衡,提出了考虑张拉薄膜效应的板块平衡法计算火灾下邻边简支邻边固支双向板的极限承载力;根据板的内力和外力做功平衡,提出了考虑张拉薄膜效应的能量法计算火灾下平板无梁楼盖和邻边简支邻边固支双向板的极限承载力。火灾下板的受拉薄膜效应在塑性铰线形成后才出现,在板块平衡法中,认为板的张拉薄膜力是由塑性铰线上钢筋的竖向分力提供的,而在能量法中,认为板的张拉薄膜效应是由塑性铰线上钢筋的伸长所做塑性功引起。本文所提出方法的计算结果与试验结果吻合很好。在混凝土受压薄膜效应的作用下,仅在柱上有梁的双向板楼盖的板内形成“拱”作用,板的竖向位移在“拱”作用下向上发展,其破坏最终为梁内侧提供受压薄膜力截面上混凝土的压碎破坏。
     (3)板的声发射特性为了监测火灾作用下板的破坏特征,本文提出了将声发射技术用于火灾下邻边简支邻边固支双向板、仅在柱上有梁的双向板楼盖和平板无梁楼盖的破坏监测研究。考察了火灾作用下板的声发射事件率、能量率和b值的变化,分析了各参数与板的裂缝开展、炉温及竖向位移等的关系。研究结果表明,利用事件率、能量率、b值等参数可以对火灾下钢筋混凝土双向板和双向板无梁楼盖的第一和第二条裂缝的出现做出准确的判断,由于新出现的裂缝与已有裂缝的扩展相重叠,所以并不能区分所有裂缝,但可以准确区分板的裂缝开裂前阶段、裂缝集中出现阶段以及裂缝缓慢扩展阶段。
     (4)板的振动特性火灾下板的振动特性是其本身的特性,所以本文对火灾下邻边简支邻边固支双向板、仅在柱上有梁的双向板楼盖和平板无梁楼盖的振动特性进行了研究。通过快速Fourier转换,结合数值计算,分析了火灾作用下板的频率变化。结果表明,火灾下邻边简支邻边固支双向板、双向板楼盖和双向板无梁楼盖在火灾作用下频率大幅降低,到停火时这三种形式板的频率下降幅度分别为39.7%、52.7%和42.5%。通过回归分析,本文给出了火灾下三种形式板的频率与板中心竖向位移的关系式。
Two-way reinforced concrete slabs are of great importance in the prevention of fireaccidents. Other than bearing the high temperature effect, they also need to prevent firespread and collapse of the building structure. The force interactions in two-wayreinforcement concrete slabs under fire conditions are complicated, and there are manyaffecting factors. The relevant experiment and theory are imperfect. Supported by theNational Natural Science Foundation Projects “Fire Behavior of Two-way ReinforcedConcrete Slabs in Whole Structure”(Grant Number:51178143) and “Study on AcousticEmission and Vibration Characteristics of Structural Members in Fire”(Grant Number:50878069), this dissertation studies the fire-resistance properties of full-scale two-wayreinforced concrete slabs, which include slabs with two edges being clamped and twoedges being simply supported, two-way RC slabs and flate-plate floors slabs. It canprovide data support and theoretical guidance for the design of two-way reinforcementconcrete slabs with fire resistance, and offers reference for fire fighting. My workincludes:
     (1) Experiment study. The fire resistance of two-way reinforced concrete slabscould be reflected accurately by full-scale experiment. In this dissertation, We testfull-scale slabs, slabs with two edges being clamped and two edges being simplysupported, two-way RC slabs and flate-plate floor slabs which are exposed to elevatingtemperature with constant load. Two samples were made for the three different slabs. Theedge horizontal deflection and vertical deflection of slabs under fire are measured, thevariation of constrained force is recorded, the temperature distribution of concrete andtemperature variation of rebars are analyzed. The experiment study indicates that afterfire test, the slabs with two edges being clamped and two edges being simply supportedform cracks on the top surface in a semi-elliptic pattern,A spherical crown shape withnotch upward failure mode is formed of the two-way RC slabs, and the top surface cracksformed in a hyperbolic pattern between every diagonal columns of the flate-plate floor.The temperature field distribution along vertical direction of the slab with single surfacebeing exposed to fire is nonlinear and the temperature variation increases quickly by time.There is a plateau in the temperature rise at100℃level attributed to the existence ofmoisture. Not only this, moisture also leads to spallings of concrete, which will furtherlead to slab destruction if its rate is too high.
     (2) Calculation of limit load carrying capacity of slabs. The classical yield linetheory does not consider the membrane effect in calculating the limit load carryingcapacity of slabs, and the result was conservated. We take into account the membraneeffect and present several new ways for different slabs in this dissertation: Based on theclassical yield line theory and the force equilibrium, we give a segment equilibrium method when dealing with two-way slabs with two edges being clamped and two edgesbeing simply supported, and based on work equilibrium of internal and external force, wealso give an energy method to flate-plate floor and two-way slabs with two edges beingclamped and two edges being simply supported. The membrane effect shows only afterthe formation of mechanism of plastic hinge lines of slabs in fire. The segmentequilibrium method thinks the tensile membrane to be caused by the vertical componentof tensile force of reinforcements at the yield line section, and the energy method thinksthe tensile membrane to be caused by the plastic work of reinforcements at the yield linesection. The results calculated from our methods agree with experiments very well. Archaction was formed under the effect of compressive membrane force, which leads thevertical displacement upwords. And the damage of the two-way RC slab is the crushingof concrete at the compressive membrane force sections next to the inner side of thebeam.
     (3) Research on acoustic emission properties of slabs. In order to monitor the failureproperties of slabs under fire conditions, we propose to use Acoustic Emission techniqueto monitor the failure of these three types of slabs at elevated temperature. The changesof parameters of event rate, energy rate and b value, are investigated. And the relationbetween these parameters and the crack of slabs, temperature of the furnace and thevertical deflection are analyzed. The results indicate that,using these parameters, we caneasily tell the occurrence of the first and the second crack of the three different two-wayreinforced concrete slabs. Because of the overlapping of the occurrence of new cracksand the extension of old cracks, it is not easy to distinguish every crack,but theseparameters can accurately tell the three stages of the cracks:the stage before cracks occur,the stage when extensive cracks occur and the stage of when cracks extend slowly.
     (4) Research on vibration properties of slabs. The vibration properties areself-characteristics of slabs in fire. So in this dissertation the vibration properties of thesethree types of slabs at elevated temperature are studied. By means of the Fast FourierTransform (FFT) technique and numerical calculation, the frequency of the reinforcedconcrete slabs in fire is analyzed. The results indicate that, there is a large decrease infrequency under fire conditions. The decrease amplitude after fire is39.7%,52.7%and42.5%for each type respectively. We analyze relations between frequency and thecentral vertical deflection of the three different slabs by regression method in thisdissertation.
引文
[1]李耀庄,唐毓,曾志长.钢筋混凝土结构抗火研究进展与趋势[J].灾害学,2008,23(1):102-107.
    [2]高云,张浩,弋俊楠.高层建筑火灾致因因素分析与防火安全对策[J].中国安全科学学报,2009,10(6):149-153.
    [3] S. Lamont. Behavior of Structures in Fire and Real Design-A Case Study[J]. FireProtection Engineering,2006,16(1):5-35.
    [4]余志武,丁发兴.钢-混凝土组合结构抗火性能研究与应用.建筑结构学报,2010,31(6):96-109.
    [5] Y. C. Wang. Performance of steel–concrete composite structures in fire[J].Progress in Structural Engineering and Materials,2005,7(2):86-102.
    [6] A. S. Usmani, J. M. Rotter, S. Lamont. Fundamental Principles of SturucturalBehaviour under thermal effects[J]. Fire Safety Journal,2001,36(8):721-744.
    [7] M. E. Gordon. Cooke. Behaviour of precast concrete floor slabs exposed tostandardised fires[J]. Fire Safety Journal,2001,36(5):459-475.
    [8] E. Ellobody, C. G. Bailey. Behaviour of Unbonded Post-Tensioned One-wayConcrete Slabs[J]. Advances in Structural Engineering,2008,11(1):107-112.
    [9] E. Ellobody, C. G. Bailey. Modelling of Unbonded Post-Tensioned Concrete SlabsUnder Fire Conditions[J]. Fire Safety Journal,2009,44(2):159-167.
    [10] C. G. Bailey, E. Ellobody. Fire tests on bonded post-tensioned concrete slabs[J].Engineering Structures,2009,31(3):686-696.
    [11] C. G. Bailey, E. Ellobody. Fire tests on unbonded post-tensioned concrete slabs[J].Magazine of Concrete Research,2009,61(1):67-76.
    [12] F. J. Vecchio, M. P. Collins. Investigating the collapse of a warehouse[J]. ConcreteInternational,1990,12(3):72-78.
    [13] T. D. Lin, R. I. Zwiers, S. T. Shirley, et al. Fire test of concrete slab reinforcedwith epoxy-coated bars[J]. Structural Journal,1989,86(2):156-162.
    [14] T. Lennon, D. Moore. The natural fire safety concept—full-scale testsat Cardington [J]. Fire Safety Journal,2003,38(7):623-643.
    [15] M. Gillie, A. S. Usmani, J. M. Rotter. A structural analysis of the CardingtonBritish Steel Corner Test[J]. Journal of Constructional Steel Research,2002,58(4):427-442.
    [16] C. G. Bailey, D. S. White, D. B. Moore. The tensile membrane action ofunrestrained composite slabs simulated under fire conditions[J]. EngineeringStructures,2000,22(12):1583-1595.
    [17] C. G. Bailey. Membrane action of slab/beam composite floor systems in fire[J].Engineering Structures,2004,26(12):1691-1703.
    [18] S. J. Foster, I. W. Burgess, R. J. Plank. High-temperature experiments onmodel-scale concrete slabs at high displacement[C]. Ottawa: Third Internationalworkshop “Structures in Fire”,2004: S5-5.
    [19] S. J. Foster, C. G. Bailey, I. W. Burgess, et al. Experimental Behaviour of ConcreteFloor Slabs at Large Displacements[J]. Engineering Structures,2004,26(9):1231-1247.
    [20] C. G. Bailey, W. S. Toh. Behaviour of Concrete Floor Slabs at Ambient andElevated temperatures[J]. Fire Safety Journal,2007,42(6-7):425-436.
    [21] C. G. Bailey, W. S. Toh. Small-scale Concrete Slab Tests at Ambient and ElevatedTemperatures[J]. Engineering Structures,2007,29(10):2775-2791.
    [22] L. Lim, C. Wade. Experimental fire tests of two-way concrete slabs[M]. FireEngineering Research Report02/12. University of Canterbury and BRANZ Ltd,New Zealand,2002:5-60.
    [23] L. Lim, A. Buchanan, P. Moss. Numerical modeling of two-way reinforcedconcrete slabs in fire[J]. Engineering Structures,2004,26(8):1081-1091.
    [24]高立堂.无粘结预应力混凝土板火灾行为的试验研究及热弹塑性有限元分析[D].西安:西安建筑科技大学博士学位论文,2003:19-50.
    [25]高立堂,李晓东,陈礼刚,等.平面应力状态下混凝土的热弹塑性积分方案[J].重庆建筑大学学报,2008,52(3):41-44.
    [26]高立堂,董毓利,袁爱民.无粘结预应力混凝土连续板边中两跨受火试验[J].哈尔滨工业大学学报,2009,56(8):179-182.
    [27]高立堂,陈礼刚,李晓东,等.无粘结预应力混凝土板火灾行为的非线性分析[J].应用力学学报,2007,23(3):490-493.
    [28]陈礼刚.钢筋混凝土板受火性能的试验研究[D].西安:西安建筑科技大学博士学位论文,2004:28-62.
    [29]陈礼刚,王一鸣.应力—温度作用后钢筋强度的试验研究.青岛理工大学学报.2008,29(4):1-4.
    [30]王滨,董毓利.四边简支钢筋混凝土双向板火灾试验研究[J].建筑结构学报,2009,30(6):23-33.
    [31]王滨,董毓利.钢筋混凝土双向板火灾试验研究[J].土木工程学报,2010,57(4):53-62.
    [32]韩金生,董毓利,徐赵东,等.简支组合楼板的火灾试验研究[J].特种结构,2007,12(2):70-73.
    [33]韩金生,程文瀼,董毓利,等.压型钢板-混凝土组合楼板火灾行为试验分析[J].工业建筑,2006,43(3):87-90.
    [34] R. Park. The lateral stiffness and strength required to ensure membrane action atthe ultimate load of a reinforced concrete slab-and-beam floor[J]. Magazine ofConcrete Research,1965,17(50):29-38.
    [35] C. G Bailey. Efficient arrangement of reinforcement for membrane behaviour ofcomposite floor slabs in fire conditions[J]. Journal of Constructional SteelResearch,2003,59(7):931-949.
    [36] W. S. Toh, N. Bernabè. Tensile Membrance Action of Composite Slab Panels inFire-Simple VS. Advanced Models. Journal of Structural Fire Engineering,2010,1(3):177-187.
    [37]李国强,周昊圣,郭士雄.火灾下钢结构建筑楼板的薄膜效应机理及理论模型[J].建筑结构学报,2007,28(5):40-47.
    [38]李国强,郭士雄,周昊圣.火灾下钢结构建筑楼板的薄膜效应模型验证及实用方法[J].建筑结构学报,2007,28(5):48-53.
    [39]王振清,苏娟,王永军,等.火灾下钢筋混凝土楼板的薄膜效应分析[J].哈尔滨工程大学学报,2009,30(8):878-882.
    [40] K. O Kemp. Yield of a square reinforced concrete slab on simple supportsallowing for membrane forces[J]. The Structural Engineer,1967,45(7):235-240.
    [41] M. Janas. Large plastic Deformations of reinforced concrete slabs[J]. InternationalJournal of Solids and Structures,1968,4(1):61-74.
    [42] S. Spyrou, B. Davison, L. Burgess, et al. Experimental and Analytical Studies ofSteel Joint Components at Elevated Temperatures[J]. Fire and Material,2004,28(2-4):83-94.
    [43]李国强,张娜思.组合楼板受火薄膜效应试验研究[J].土木工程学报,2010,43(3):24-31.
    [44]张娜思,李国强.火灾下组合楼板薄膜效应分析的改进方法[J].土木工程学报,2009,42(3):29-35.
    [45] C. M. Yu, Z. H. Huang, I. W. Burgess. Development and Validation of3DComposite Structural Elements at Elevated Temperatures[J]. Journal of StructuralEngineering,2010,136(8):275-284.
    [46] O. Vassart, C. G. Bailey, M. Hawes, et al. Large-Scale Fire Test of UnprotectedCellular Beam Acting in Membrane Action[J]. Journal of Structural FireEngineering,2011,2(3):259-268.
    [47] E. Omer, B. A. Izzuddin, A. Y. Elghazouli. Failure of unrestrained lightlyreinforced concrete slabs under fire, Part I: Analytical models[J]. EngineerStructural,2010,32(9):2631-2646.
    [48] M. Gillie, A. Usmani, M. Rotter, et al. Modelling of heated composite floor slabswith reference to the Cardington experiments[J]. Fire Safety Journal,2001,36(8):745-767.
    [49] Z. H. Huang, I. W. Burgess, R. J. Plank. Three-dimensional modeling of twofull-scale fire tests on a composite building[J]. Journal of Structural Engineering,2000,126(8):243-255.
    [50] Z. H. Huang. The behaviour of reinforced concrete slabs in fire[J]. Fire SafetyJournal,2010,45(8):271-282.
    [51] Y. X. Zhang, M. A. Bradford. Nonlinear analysis of moderately thickreinforced concrete slabs at elevated temperatures using a rectangular layeredplate element with Timoshenko beam functions [J]. Engineering Structures,2007,29(10):2751-2761.
    [52] Z. Nizamuddin, B. Bresler. Fire response of reinforced concrete slabs[J]. Journalof the Structural Division,1979,105(8):1653-1671.
    [53] C. G. Bailey. Development of computer software to simulate the structuralbehaviour of steel-framed buildings in fire[J]. Computers&Structures,1998,67(6):421-438.
    [54] Z. H. Huang, I. W. Burgess, R. J. Plank. Nonlinear analysis of reinforced concreteslabs subjected to fire[J]. Structural Journal,1999,96(1):127-135.
    [55] Z. H. Huang, I. W. Burgess, R. J. Plank. Non-linear structural modeling of a firetest subject to high restraint[J]. Fire Safety Journal,2001,36(8):795-814.
    [56] Z. H. Huang, I. W. Burgess, R. J. Plank. Modelling membrane action of concreteslabs in composite buildings in fire I: Theoretical development[J]. Journal ofStructural Engineering,2003,129(8):1093-1102.
    [57] Z. H. Huang, I. W. Burgess, R. J. Plank. Modelling membrane action of concreteslabs in composite buildings in fire. II: Validations[J]. Journal of StructuralEngineering,2003,129(8):1103-1112.
    [58] Z. H. Huang, I. W. Burgess, R. J. Plank. Behaviour of reinforced concretestructures in fire[C]. London: The4th International workshop on structures in fire,2006:561-572.
    [59] B. A. Izzuddin, X. Y. Tao, A. Y. Elghazouli. Realistic modeling of composite andreinforced concrete floor slabs under extreme loading. I: Analytical method[J].Journal of Structural Engineering,2004,130(12):1972-1984.
    [60] K. A. Anthony, V. Ramanitrarivo, I. W. Burgess. Collapse Mechanisms ofComposite Slab Panels in Fire[J]. Journal of Structural Fire Engineering,2011,2(3):205-216.
    [61] Z. H. Huang, I. W. Burgess, R. J. Plank. Three-dimensional analysis of compositesteel-framed buildings in fire[J]. Structural Engineering,2000,126(3):389-397.
    [62] M. Gillie. Analysis of heated structures: Nature and modeling benchmarks[J]. FireSafety Journal,2009,44(5):673-680.
    [63] J. M. Franssen. SAFIR: a thermal/structural program modeling structures underfire[J]. Engineering Journal-American Institute of Steel Construction Inc,2005,42(3):143-158.
    [64]王玉镯.火灾作用下(后)混凝土框架节点的力学性能研究[D].南京:东南大学博士学位论文,2010:62-87.
    [65]孙杰.压型钢板组合楼板温度场及其抗火性能研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2008:23-51.
    [66] R. Park. Ultimate strength of rectangular concrete slabs under short-term uniformloading with edges restrained against lateral movement[J]. ICE Proceedings,1964,28(2):125-150.
    [67] L. K. Guice, T. R. Slawson, E. J. Rhomberg. Membrane analysis of flat plateslabs[J]. Structural Journal,1989,86(1):83-92.
    [68] F. J. Vecchio, K. Tang. Membrane action in reinforced concrete slabs[J]. Canadianjournal of civil engineering,1990,17(5):686-697.
    [69] B. Bakht, A. A. Mufti. FRC deck slabs without tensile reinforcement[J]. ConcreteInternational,1969,18(2):50-63.
    [70] K. P. Christiansen. The effect of membrane stresses on the ultimate strength of theinterior panel in a reinforced concrete slab[J]. The Structural Engineer,1963,41(8):261-265.
    [71] E. H. Roberts. Load carrying capacity of slab strips restrained against longitudinalexpansion[J]. Concrete,1969,3(3):369-378.
    [72] R. Park. Tensile membrane behaviour of uniformly loaded rectangular reinforcedconcrete slabs with fully restrained edges[J]. Magazine of Concrete Research,1964,16(46):39-44.
    [73] C. T. Morley. Yield Line Theory for Reinforced Concrete Slabs at ModeratelyLarge Deflections[J]. Magazine of Concrete Research,1967,19(66):212-222.
    [74] A. Jacobson. Membrane flexural modes of restrained slabs[J]. Journal ofStructural Division,1967,93(ST5):85-112.
    [75] J. F. Brotchi, M. J. Holley. Membrane action in slabs[M]. Cracking, Deflectionand Ultimate Load of Concrete Slab Systems. ACI, Detroit,1971(SP.30):345-377.
    [76] A. Sawczuk, L. Winnicki. Plastic behaviour of simply supported reinforcedconcrete plates at moderately large deflections[J]. International Journal of Solidsand Structures,1965,1(1):97-111.
    [77] T. Y. Hung, E. G. Nawy. Limit strength and serviceability factors in uniformlyloaded isotropically reinforced two-way slabs[M]. Cracking, Deflection andUltimate Load of Concrete Slab Systems. ACI, Detroit,1971(SP.30):301-311.
    [78] R. Park, W. L. Gamble. Reinforced Concrete Slabs[M]. New York: John Wiley&Sons,1980,562-610.
    [79] R. Park. Further tests on a reinforced concrete floor designed by limitprocedures[M]. Cracking, Deflection and Ultimate Load of Concrete SlabSystems. ACI, Detroit,1971(SP.30):251-269.
    [80] D. C. Hopkins, R. Park. Test on a reinforced concrete slab and beam floordesigned with allowance for membrane action[M]. Cracking, Deflection andUltimate Load of Concrete Slab Systems. ACI, Detroit,1971(SP.30):223-250.
    [81] C. K. Ramesh, T. K. Datta. Ultimate strength of reinforced concrete slab-beamsystems[J]. The Indian Concrete Journal,1973,47(8):301-308.
    [82] S. S. J. Moy, B. Mavfield. Load-deflection characteristics of rectangularreinforced concrete slabs[J]. Magazine of Concrete Research,1972,24(81):209-218.
    [83] C. G. Bailey, T. Lennon, D. B. Moore. The behaviour of full-scale steel framedbuildings subjected to compartment fires[J]. The Structural Engineer,1999,77(8):15-21.
    [84] C. G. Bailey, D. S. White, D. B. Moore. The tensile membrane action ofunrestrained composite slabs simulated under fire conditions[J]. EngineeringStructures,2000,22(12):1583-1595.
    [85] A. S. Usmani, N. J. K. Cameron. Limit capacity of laterally restrained reinforcedconcrete floor slabs in fire [J]. Cement and Concrete Composites,2004,26(2):127-140.
    [86] N. J. K. Cameron, A. S. Usmani. New design method to determine the membranecapacity of laterally restrained composite floor slabs in fire. Part1: Theory andmethod[J]. The Structural Engineer,2005,83(19):28-33.
    [87]陈洋.声发射技术在混凝土结构检测中的应用[J].中国水运(学术版),2007,7(8):74-75.
    [88] A. H. Ruseh. Physical Problems in the Testing of concrete[J]. Cementand Concrete Association,1959,12(1):83-91.
    [89] D. Wells. An Acoustie Apparatus to Record Emissions from concrete underStrain[J]. Nuclear Engineering and Design,1970,12(1):80-88.
    [90] A. T Green. Stress Wave Emission and Fracture of prestressed concrete ReactorVessel Material[J]. Materials Technology,1970,22(1):635-649.
    [91] M. Ohtsu, T. Okamoto, S. Yuyama. Moment Tensor Analysis of AcousticEmission for Cracking Mechanisms in Concrete[J]. Structural Journal,1998,95(2):87-95.
    [92] C. S. Ouyang, E. Landis, S. P. Shah. Damage Assessment in Concrete UsingQuantitative Acoustic Emission[J]. Journal of Engineering Mechanics,1991,117(11):1011-1029.
    [93] C. Grosse, H. Reinhardt, T. Dahm. Localization and classification of fracturetypes in concrete with quantitative acoustic emission measurement techniques[J].NDT&E International,1997,30(4):223-230.
    [94] E. N. Landis, L. Baillon. Experiments to Relate Acoustic Emission Energy toFracture Energy of Concrete[J]. Journal of Engineering Mechanics,2002,128(6):698-703.
    [95] M. Ohtsu, H. Watanabe. Quantitative damage estimation of concrete by acousticemission[J]. Construction and Building Materials,2001,15(5-6):217-224.
    [96] A. B. Hossain, B. Pease, J. Weiss. Quantifying Early-Age Stress Development andCracking in Low Water-to-Cement Concrete: Restrained-Ring Test with AcousticEmission[J]. Materials and Construction,2007,1834(2003):24-32.
    [97] C. U. Grosse, H. W. Reinhardt, Florian Finck. Signal-Based Acoustic EmissionTechniques in Civil Engineering[J]. Journal of Materials in Civil Engineering,2003,15(3):274-280.
    [98] C. U. Grosse,F. Finck. Quantitative evaluation of fracture processes in concreteusing signal-based acoustic emission techniques[J]. Cement and ConcreteComposites,2006,28(4):330-336.
    [99] Z. Li, F. Li, A. Zdunek, et al. Application of Acoustic Emission Technique toDetection of Rebar Corrosion in Concrete[J]. Materials Journal,1998,95(1):68-81.
    [100] A. Carpinteri, G. Lacidogna, N. Pugno. Structural damage diagnosis and life-timeassessment by acoustic emission monitoring[J]. Engineering Fracture Mechanics,2007,74(1-2):273-289.
    [101] I. S. Colombo, I. G. Main, M. C. Forde. Assessing Damage of ReinforcedConcrete Beam Using “b-value” Analysis of Acoustic Emission Signals[J].Journal of Materials in Civil Engineering,2003,15(3):280-287.
    [102] D. Soulioti, N. M. Barkoula, A. Paipetis, et al. Acoustic emission behavior of steelfibre reinforced concrete under bending[J]. Construction and Building Materials,2009,23(12):3532-3536.
    [103] B. Schechinger, T. Vogel. Acoustic emission for monitoring a reinforced concretebeam subject to four-point-bending[J]. Construction and Building Materials,2007,21(3):483-490.
    [104] M. K. Lim,T. K. Koo. Acoustic emission from reinforced concrete beams[J].Magazine of Concrete Research,1989,41(149):229-234.
    [105]纪洪广.混凝土材料声发射性能研究与应用[M].北京:煤炭工业出版社,2004:66-70.
    [106] C. D. Mote Jr. Theory of thermal natural frequency variations in disks[J].International Journal of Mechanical Sciences,1966,8(8):547-557.
    [107] V. K. R. Kodur, L. Phan. Critical Factors Governing the Fire Performance of HighStrength Concrete Systems[J]. Fire Safety Journal,2007,42(6-7):482-488.
    [108] Z. H. Duron. Early Warning Capability for firefighters: Testing of CollapsePrediction Techniques[M]. National Institute of Standards and Technology Report,2005:43-60.
    [109]朱伯龙,陆洲导,胡克旭.高温(火灾)下混凝土与钢筋的本构关系[J].四川建筑科学研究,1990,8(1):37-43.
    [110]时旭东,过镇海.适用于结构高温分析的砼和钢筋应力—应变关系[J].工程力学,1997,14(2):28-35.
    [111]过镇海,李卫.混凝土在不同应力-温度途径下的变形试验和本构关系[J].土木工程学报,1993,40(5):58-69.
    [112]刘义祥,胡建国,侯爽.不同温度下混凝土受热痕迹的扫描电子显微分析[J].火灾科学,2005,5(2):80-83.
    [113] T. T Lie. A procedure to calculate fire resistance of structural members[J]. Fireand Materials,1984,8(1):40-48.
    [114] Design of Concrete Structures. Eurocode2: Part1-2: General rules-Structural firedesign[M]. The European Standard EN1992-1-2,2004:19-33.
    [115]段文玺.建筑结构的火灾分析和处理(四)—混凝土和钢筋的高温特性[J].工业建筑,1985,15(11):50-54.
    [116]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16.
    [117]过镇海,时旭东.钢筋混凝土的高温性能及计算[M].北京:清华大学出版社,2003:24-25.
    [118] J. C. Marechal. Variations in the Modulus of Elasticity and Poisson’s Ratio withTemperature[J]. Fire Technology,1972,1(30):40-43.
    [119] M. F. Kaplan and F. J. P. Roux. Effects of Elevated Temperature on the Propertiesof Concrete for the Containment and Shielding of Nuclear Reactors[J].Concrete for Nuclear Reactors,1972,34:437-442.
    [120]钮宏,陆洲导,陈磊.高温下钢筋与混凝土本构关系的试验研究[J].同济大学学报,1990,35(3):287-297.
    [121]南建林,过镇海,时旭东.混凝土的温度-应力耦合本构关系[J].清华大学学报(自然版),1997,6:89-92.
    [122]倪建刚,时旭东.不同升温速率下各种强度等级混凝土的自由膨胀变形[J].工业建筑,2007,37(12):100-103.
    [123]过镇海.常温和高温下混凝土材料和构件[M].北京:清华大学出版社,2006:402-435.
    [124]李卫.高温下混凝土强度与变形的试验研究[D].北京:清华大学硕士学位论文,1996:40-53.
    [125]杨建平,时旭东,过镇海.两面与三面高温下钢筋混凝土压弯构件的性能比较[J].工业建筑,2000,30(6):34-37.
    [126] T. Z. Harmathy. Thermal properties of concrete at elevated temperatures[J].Journal of Materials,1970,5(1):47-74.
    [127]孙金香,高伟译.建筑物综合防火设计[M].天津:天津科学技术出版公司,1994:127-138.
    [128] GB50017-2003钢结构设计规范[M].北京:中国建筑工业出版社,2003:28-29.
    [129] T. T. Lie. Fire Resistance of Circular Steel Columns Filled with Bar-ReinforcedConcrete. Structural Engineering,1994,120(5):1489-1509.
    [130]李引擎,马道贞,徐坚.建筑结构防火设计计算和构造出理[M].北京:中国建筑工业出版社,1991:49-50.
    [131] Eurocode3: Design of Steel Structures,Part1.2: General Rule/Structural FireDesign, DAFT ENV1993-1-2[M]. European Committee for Standardization(CEN),2001:19-20.
    [132] BS5950: Stucture Use of Steel Work in Building. Part8: Code of Practice forFire Resistant Design[M]. British Standard Institution,1990:3-4.
    [133]闫继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津:天津大学博士学位论文,2000:23-25.
    [134] DAFTENV1993, Euroeode3: Design of steel structures[M]. EuroPean Committeefor Standardisation,1995.
    [135]李国强,陈凯,蒋首超,等.高温下Q345钢的材料性能试验研究[J].建筑结构,2001,31(1):53-55.
    [136] A.米洛瓦诺夫,周永铨译.耐热钢筋混凝土结构计算[M].北京:冶金工业出版社,1978:146-151.
    [137]王学谦.火灾高温下钢筋混凝土梁截面极限弯矩的计算[J].建筑结构,1996,26(7):38-42.
    [138] E. E. Smith, T. Z. Harmathy. Design of Building for Fire Safety[M]. AmericanSociety for Testing and Materials,1979:27-36.
    [139]吕彤光,时旭东,过镇海.高温下Ⅰ~Ⅴ级钢筋的强度和变形试验研究[J].福州大学学报(自然科学板),1996:13-19.
    [140] T. Z. Harmathy,W. W. Stanzak. Elevated-Temperature Tensile and CreepProperties of Some Structural and Prestressing Steels[J]. Fire Test Performance,1970,49(464):187-208.
    [141]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001:1-3.
    [142]董毓利.混凝土连续板抗火性能的试验研究[C].第三届全国钢结构防火及防腐技术研讨会暨第一届全国结构抗火学术交流会,福州,2005:1-19.
    [143] GB/T9978.3-2008建筑构件耐火试验方法第3部分:试验方法和试验数据应用注释[M].北京:中国标准出版社,2009:5-8.
    [144] GB50010-2002混凝土结构设计规范[M].北京:中国建筑工业出版社,2002:42-79.
    [145] GB50152-1992混凝土结构试验方法标准[M].北京:中国建筑工业出版社,1992:15-18.
    [146]朱聘儒.双向板无梁楼盖[M].北京:中国建筑工业出版社,1999:1-3.
    [147] M. A. O′Conner, B. R. Kirby, D. M. Martin. Behaviour of a multi-storeycomposite steel framed building in fire[J]. Structural Engineering,2003,81(30):27-36.
    [148] R. Park, W. L. Gambe.黄国桢,成源华译.钢筋混凝土板[M].上海:同济大学出版社,1992:212-230.
    [149] Y. L. Dong,Y. Y. Fang. Determination of Tensile Membrane Effects by SegmentEquilibrium[J]. Magazine of Concrete Research,2009,61(12):1-7.
    [150] C. G. Bailey. Membrane action of unrestrained lightly reinforced concrete slabs atlarge displacement[J]. Engineering Structures,2001,23(5):470-483.
    [151]董毓利.用变形和分解原理求混凝土板的受拉薄膜效应[J].力学学报,2010,27(6):1180-1187.
    [152] M. Ohtsu, M. Uchida, T. Okamoto, et al. Damage Assessment of ReinforcedConcrete Beams Qualified by Acoustic Emission[J]. Structural Journal,2002,99(4):411-417.
    [153] A. Carpinteri1, G. Lacidogna1, G. Niccolini. Damage analysis of reinforcedconcrete buildings by the acoustic emission technique[J]. Structural Control andHealth Monitoring,2011,18(6):660-673.
    [154]刘茂军.钢筋混凝土梁受载过程的声发射特性试验研究[D].广西:广西大学硕士学位论文,2008:25-76.
    [155]宗金霞.基于声发射技术的钢筋混凝土梁损伤识别研究及数值分析[D].武汉:武汉理工大学硕士学位论文,2010:36-55.
    [156] B. Chen,J. yu. Investigation of effetes of aggregate size on the fracture behaviorof high Performance concrete by acoustic emission[J]. Construction and BuildingMaterials,2007,21(5):1696-1170.
    [157]陈兵,姚武.声发射技术在混凝土研究中的应用[J].无损检测,2000,22(9):387-390.
    [158]纪洪广,蔡美峰.混凝土材料声发射与应力—应变参量耦合关系及应用[J].岩石力学与工程学报,2003,22(2):227-231.
    [159] A. I. Sagaid, S. V. Elizarov. Acoustic emission parameters correlated with fractureand deformation Processes of concrete members[J]. Construction and BuildingMaterials,2007,21(3):477-482.
    [160]纪洪广,王基才.混凝土材料声发射过程分形特征及其在断裂分析中的应用[J].岩石力学与工程学报,2001,20(6):801-804.
    [161] K. Ohno, M. Ohtsu. Crack classification in concrete based on acoustic emission[J].Construction and Building Materials,2010,13(12):2339-2346.
    [162] T. shiotani, M. Shigeishi, M. ohtsu. Acoustic emission Characteristics ofconcrete-Piles[J]. Construction and Building Materials,1999,13(1-2):73-85.
    [163]王彬,顾建祖,骆英,李忠芳.预应力钢筋混凝土梁破坏过程的声发射特性实验研究[J].防灾减灾工程学报,2006,13(4):453-457.
    [164]朱宏平,徐文胜,陈晓强,夏勇.利用声发射信号与速率过程理论对混凝土损伤进行定量评估[J].工程力学,2008,24(1):186-191.
    [165] C. K. Shield. Comparison of acoustic of emission activity in reinforced andprestressed concrete beams under bending[J]. Construction and Building Materials,1997,11(3):189-194.
    [166] T. Watanabe, S. Nishibata,C. Hashimoto,et al. Compressive failure in concrete ofrecycled aggregate by acoustic emission[J]. Construetion and Building Materials,2007,21(3):470-476.
    [167]吴胜兴,张顺祥,沈德建.混凝土轴心受拉声发射Kaiser效应试验研究[J].土木工程学报,2008,54(4):31-39.
    [168]张克强,杨波.混凝土的无损检测方法及其新发展[J].混凝土,2007,28(5):99-101.
    [169]纪洪广,李造鼎.混凝土材料凯塞效应与Felicity效应关系的试验研究[J].应用声学,1997,8(6):30-33.
    [170]袁振明.数字式声发射仪的发展[J].无损探伤,1997,11(2):1-5.
    [171] Z. J. Li,S. P. shah. Localization of Microcracking in concrete under UniaxialTension[J]. Material Journal,1994,91(4):372-381.
    [172]吴胜兴,王岩,李佳,沈德建.混凝土静态轴拉声发射试验相关参数研究[J].振动与冲击,2011,30(5):196-204.
    [173]沈功田,刘时风,戴光.声发射检测[M].中国计量出版社,2004:42-51.
    [174]赵兴东,李元辉,刘建坡,等.基于声发射及其定位技术的岩石破裂过程研究[J].岩石力学与工程学报,2008,27(5):990-995.
    [175]尹祥础,李世愚,李红,等.从断裂力学观点探讨b值的物理实质[J].地震学报,1987,9(4):364-374.
    [176]董毓利,谢和平,李玉寿.砼受压全过程声发射特性及其损伤本构模型[J].力学与实践,1995,9(4):25-28.
    [177]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989:257-259.
    [178]贾子文,周绪红.冷弯薄壁型钢-混凝土组合楼盖振动性能试验研究[J].土木工程学报,2011,58(4):42-51.
    [179] N. Baghiee, M. R. Esfahani, K. Moslem. Studies on damage and FRPstrengthening of reinforced concrete beams by vibration monitoring[J].Engineering Structures,2009,31(4):875-893.
    [180] A. Clément, S. Laurens. Vibration-based damage detection in a concrete beamunder temperature variations using AR models and state-space approaches[C].Journal of Physics: Conference Series,2011,305(1):42-48.
    [181]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:283-288.
    [182] Comite Euro-International Du Beton (CEB). RC elements under cyclicloading[M]. Thomas Telford,1996:24-25.