镁单晶形变及微结构演化行为分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金是一种具有低密度和高比强度等优良特性的轻金属,但其有限的变形能力和低腐蚀抗性使其应用受到了限制,镁合金材料现有的使用状况远没有充分发挥其潜在优势。镁及镁合金是一种密排六方结构金属,相对于面心立方和体心立方结构的金属,引起镁中塑性变形的滑移系较少,因此塑性差已成为变形镁合金加工与应用上的一个瓶颈。镁及镁合金在拉伸和压缩展现出不同的塑性变形机制,通常认为镁的最主要的塑性变形机制是孪晶和滑移。然而,镁及镁合金的内在塑性变形机理非常复杂,到目前为止还不是很清楚,这也是最近几年对镁及镁合金的一个研究重点。
     由于镁单晶与镁合金具有类似或相同的微结构和变形特征,在微观下研究镁单晶的塑性变形机制是研究镁及镁合金的一个重要途径。本文应用分子动力学在原子尺度对镁单晶进行拉伸、压缩和剪切来研究镁及镁合金塑性变形机制,以及通过对镁单晶中不同缺陷与孪晶的相互影响研究其塑性变形机制内在本质及关系。主要内容和结论包括:
     1.采用分子动力学方法模拟镁单晶在c轴拉伸和压缩时不同温度下微观变形机制及微结构演化行为。模拟结果表明:拉伸时最主要的变形机制是{1012}<1011>型孪晶和型锥面滑移;压缩时最主要的变形机制不是通常认为的压缩孪晶,而是型锥面滑移。此结果揭示了镁单晶拉压不对称的微观本质。
     2.采用分子动力学方法模拟镁单晶受到剪切作用在不同温度下微观变形机制及微结构演化行为。模拟结果表明:剪切时最主要的微观变形机制是层错和相变,相变区的原子密排面与原晶粒的密排面保持平行,没有发生转角。
     3.采用分子动力学方法模拟不同温度下点缺陷、线缺陷和面缺陷在{1012}孪晶长大中所起的作用。模拟结果表明:点缺陷和各类线缺陷对于孪晶运动的影响不太明显。我们所研究的面缺陷在超低温(5K)时阻碍孪晶长大,孪晶面不能越过面缺陷所在的位置;低温和室温(约150K-350K)时,当孪晶界靠近面缺陷时,面缺陷对孪晶长大阻碍作用明显,而当孪晶界滑过面缺陷头部后,面缺陷对孪晶长大阻碍作用减小;高温时(350K-580K),面缺陷对孪晶长大影响作用不大,在位错周围的原子变得较为混乱,形成许多空位及微裂纹。
Magnesium and its alloys have attracted attention in recent years as lightweight for the transportation industry due to their low density and relatively high specific strength. However, the application of magnesium alloys is restricted due to the limited forming capacity and the poor corrosion resistance. From the mechanical point of view, magnesium and its wrought alloys show a pronounced direction-dependence of plastic yielding and work hardening, as well as different yielding behavior in tension and compression, the so-called strength differential effect. This feature is due to the crystal structure of magnesium, which is a hexagonally close-packed (hcp) structure. Compared to face-centered cubic (fcc) or body-centered cubic (bcc) metals, the number of slip systems allowing plastic deformation in magnesium is limited. It is generally agreed that mechanical behavior of magnesium is sensitive to twinning and slip. Nevertheless, deformation mechanisms acting on magnesium and its alloys are sophisticated and still a subject to be discussed. Therefore, the deformation mechanism is the key rule of magnesium and its alloys in rencent years.
     Because magnesium single crystal and magnesium alloys have the same or similar structures and deformation characteristics, it is an effective way to investigate the deformation behavior of magnesium and its alloys by researching the behaviors of magnesium single crystal. In this thesis, molecular dynamics simulatin at a certain strain rate is applied to investigate deformation mechanism in magnesium single crystal. The tension and the compression are applied along the c-axis direction and the shear stress is applied perpendicular to the c-direction at different temperatures. Furthermore, the influence of other defects in magnesium single crystal on the twinning behavior is discussed. The main contents and results including:
     1. Molecular dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under c-axis extension and compression at different temperatures. For extension, the {1012} twin and the pyramidal slip are found to be the main deformation mechanisms under the c-axis tension in magnesium single crystal. For compression, the pyramid slip is found to be the main deformation mechanism, instead of the twin.
     2. Molecular dynamics simulation is applied to investigate the microstructure evolution of magnesium single crystals under shear at different temperatures. These simulation results indicate that stacking fault and phase transformation are the main deformation mechanisms under shear. The new phase shares the same close-packed plane with the original hcp lattice.
     3. The influence of the point defect、the linear defect and the plane defect on the movement of {1012} twin in magnesium single crystal at different temperatures are investigated by molecular dynamics simulation. The simulation results indicate that the vacancy and the linear defects have no distinctly influence on the movement of twin. For the plane defect, at ultralow temperatures (5K), it will impede the {1012} twin movement; at low and room temperatures (150K-350K), the plane defect impedes twin movement when the twinboundary moves near it. However, when the twin boundary pass through the head of this line defect, the effect of this line defect hindering the twin boundaries movement can be ignored; at elevated temperatures (350K-580K), the impeding effect of this line defect on the twin movement can be ignored.
引文
[1]陈振华,严红革,陈吉华,全亚杰.镁合金[M].北京:化学工业出版社,2004.
    [2]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [3]Avedesian M M, Baker H. ASM Specialty Handbook:Magnesium and Magnesium alloys [M]. ASM International, Materials Park, OH, USA,1999.
    [4]Friedrich H E, Mordike B L. Magnesium Technology Metallurgy, Design Data. Applications[M]. Berlin Heidelbeg, Springer-Verlag,2006.
    [5]Yo K, Shigeharu K. Fundamental Magnesium research in Japan[J]. Materials Science Forum,2005,9:488-489.
    [6]Decker R F. The renaissance in Magnesium[J]. Advanced Materials and Process,1998,9: 31-35.
    [7]R W卡恩,P哈森,E J克雷默主编,丁道云译.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [8]尉胤红,王渠东,刘满平.镁合金超塑性的研究现状及发展趋势[J].材料导报,2002,9:20-24.
    [9]Mordike B L, Ebert T. Magnesium Properties-applications-potential[J]. Materials Science Engineering:A,2001,302:37-45.
    [10]Westengen H. Magnesium die-casting:form ingots to automotive parts[J]. Light Metal Age,2000,58:44-52.
    [11]Dwain M, Magers A. Global review of Magnesium parts in automobiles[J]. Light Metal Age,1996,54:60-63.
    [12]Luo A, Pekguleryuz Mo. Review cast Magnesium alloys for elevated temperature applications[J]. Journal of Materials Science,1994,29:5259-5271.
    [13]Unigovski Y B. Creep-Rupture behavior of die-cast Magnesium alloys[J]. Journal of Metals, Materials and Minerals,2009,19:1-7.
    [14]Winandy C D. Automotive Sourcing Special Report[M]. London:Automotive Sourcing UK Ltd,1998.
    [15]Robert S B. Magnesium Products Design[M]. United States of American:The International Magnesium Association,1987.
    [16]Unsworth W. The role of rare earth elements in the development of Magnesium base alloys[J]. International Journal of Materials and Product Technology,1989,4:359-378.
    [17]Pettersen K, Siedersleben M. Castability and mechanical properties of Magnesium based alloys[C].15th International Pressure Die casting Conference. Montreux, Switzerland, 1996.
    [18]Mercer W E. II:Magnesium die cast alloys for elevated temperature applications[J]. SAE Technical Paper, No:900788, Detroit, Michigan, Society of Automotive Engineers,1990.
    [19]Aune T K, Westengen H. Property update on Magnesium die casting alloys[J]. SAE Technical Paper, No:950424, Detroit, Michigan, Society of Automotive Engineers,1992.
    [20]Vagarali S S, Langdon T G. Deformation mechanisms in h.c.p metals at elevated temperatures-Ⅱ:Creep behaviour of a Mg-0.8%Al solid solution alloy[J]. Acta Metallurgica,1982,30:1157-1170.
    [21]Miller W K. Creep of die cast AZ91 Magnesium at room temperature and low stress[J]. Metallurgical and Materials Transactions A,1991,22:873-877.
    [22]Mordike B L, Lukac P. Creep behaviour of Magnesium alloys produced by different techniques[C]. Proceedings of the Third International Magnesium Conference, London, Institute of Materials,1997.
    [23]Cadek Z J. Creep in metallic materials[M]. Amsterdam:Elsevier,1988.
    [24]Uchida H, Shinya T. Estimation of creep deformation behavior in Mg-Al alloys by using θ projection method[J]. Keikinzoku,1995,45:572-577.
    [25]Suiter J W, Wood W A. Deformation of Magnesium at various rates and temperatures[J]. Journal Institute of Metals,1952,43:815-827.
    [26]高敬.镁合金在运输系统中的应用[J].稀有金属快报,2002,11:9-13.
    [27]郑晶,马光,贾志华,王铁,李银娥,刘啸锋.变形镁合金的研究进展[J].中国材料科技与设备,2007,6:11-19.
    [28]康明,褚东宁,敖炳秋.北美汽车材料的研究与应用动态[J].汽车工程,2003,25:315-321.
    [29]祁庆琚,刘勇兵,杨晓红.镁合金的研究及其在汽车工业中的应用于展望[J].汽车工程,2002,24:94-100,125.
    [30]刘正,王越.镁基轻质金属材料的研究与应用[J].材料研究学报,2000,14:449-456.
    [31]张永忠,张奎,樊建中.压铸镁合金及其在汽车工业中的应用[J].特种铸造及有色合金,1999,3:54-56.
    [32]刘英,李元元,张卫文,罗宗强.镁合金的研究进展和应用前景[J].轻金属,2002,8:56-61.
    [33]耿浩然,崔红卫,赵鹏.镁合金的应用与发展动态[J].铸造技术,2002,4:200-202.
    [34]何良菊,李培杰.中国镁合金工业现状与镁合金开发技术[J].铸造技术,2003,3:161-162.
    [35]Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [36]Wonsiewicz B C, Backofen W A. Plasticity of Magnesium crystals[J]. Transactions of the Metallurgical Society of AIME,1967,239:1422-1431.
    [37]Kelley E W, Hosford W F. Plane-strain compression of Magnesium and Magnesium alloy crystals[J]. Transactions of the Metallurgical Society of AIME,1968,242:5-13.
    [38]Kelley E W, Hosford W F. The deformation characteristics of textured Magnesium. Trans[J]. Transactions of the Metallurgical Society of AIME,1968,242:654-661.
    [39]Hartt W H, Reed-Hill R E. Internal deformation and fracture at second-order {1011}-{1012} twins in Magnesium[J]. Transactions of the Metallurgical Society of AIME,1968,242:1127-1133.
    [40]Flynn Ward P, Mote J, Dorn J E. On the thermally activated mechanism of prismatic slip in Magnesium single crystals[J]. Transactions of the Metallurgical Society of AIME,1961, 221:1148-1154.
    [41]Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals[J]. Metallurgical Reviews,1967,12:169-194.
    [42]Yoo M H. Twinning and fracture in hexagonal close-packed metals[J]. Metallurgical and Materials Transactions A,1981,12:409-418.
    [43]Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning:Application to Magnesium alloy AZ31B[J]. International Journal of Plasticity, 2003,19:1843-1864.
    [44]Mark Denis Nave, Matthew Robert Barnett. Microstructures and textures of pure Magnesium deformed in plane-strain compression[J]. Scripta Materialia,2004,51: 881-885.
    [45]Klimanek P, Potzsch A. Microstructure evolution under compressive plastic deformation of Magnesium at different temperatures and strain rates[J]. Materials Science and Engineering A,2002,324:145-150.
    [46]Wang J T, Yin D L, Liu J Q. Effect of grain size on mechanical properties of Mg-3Al-1Zn alloy[J]. Scripta Materialia,2008,59:63-66.
    [47]Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Materialia,2004,52: 5093-5103.
    [48]Barnett M R. A Taylor model based description of the proof stress of Magnesium AZ31 during hot working[J]. Metallurgical and Materials Transactions A,2003,34:1799-1806.
    [49]Koike J, Kobayashi T, Mukai T, Watanabe H. The activity of non-basal slip systems and dynamic recovery at room-temperature in fine grained AZ31B Magnesium alloys[J]. Acta Materialia,2003,51:2055-2065.
    [50]Barnett M R, Nave M D, Bettles C J. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering A,2004,386:205-211.
    [51]Bussiba A, Ben Artzy A, Shtechman A, Ifergan S, Grain refinement of AZ31 and ZK60 Mg alloys-towards superplasticity studied[J]. Materials Sience and Engineering A,2001, 302:56-62.
    [52]Hsu E, Szpunar J, Verma R. Effect of temperature and strain rate on formability of AZ31 Magnesium sheet alloy[J]. Sea International,2006,1:0258.
    [53]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in Magnesium alloy ZK60[J]. Acta Materialia,2001,49:1199-1207.
    [54]Jager A, Lukac P, Gartnerova V, Bohlen J, Kainer K U. The properties of hot rolled AZ31 Mg alloy sheet at elevated temperatures [J]. Journal of Alloys Compounds,2004,378: 184-187.
    [55]Kim W J, Chung S W, Chung C S, Kum D. Superplasticity in thin Magnesium alloy sheets and deformation mechanism maps for Magnesium alloys at elevated temperatures[J]. Acta Materialia,2001,49:3337-3345.
    [56]Langdon T G. The role of grain boundaries in high temperature deformation[J]. Materials Science and Engineering A,1993,166:67-79.
    [57]Marya M, Hector L G, Verma R, Tong W. Microstructural effects of AZ31 Magnesium alloy on its tensile deformation and failure behaviors[J]. Materials Science and Engineering A,2006,418:341-356.
    [58]Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki H, Aizawa T, Higashi K. Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn[J]. Materials Science and Engineering A,2000,290:139-144.
    [59]Somekawa H. Dislocation creep behavior in Mg-Al-Zn alloys[J]. Materials Science and Engineering A,2005,407:53-61.
    [60]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3A1-Zn alloy sheet[J]. Materials Science and Engineering A,2003,339: 124-132.
    [61]Tan J C, Tan M J. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3A1-Zn alloy sheet[J]. Materials Science and Engineering A,2003,339: 81-89.
    [62]Watanabe H, Mukai T, Mabuchi M, Higashi K. Superplastic deformation mechanism in powder metallurgy Magnesium alloys and composites [J]. Acta Materialia,2001,49: 2027-2037.
    [63]Watanabe H, Mukai T, Kohzu M, Tanabe S, Higashi K. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 Magnesium alloy[J]. Acta Materialia,1999,47:3753-3758.
    [64]Watanabe H, Tsutsui H, Mukai T, Kohzu M, Tanabe M, Higashi K. Deformation mechanism in a coarde-grained Mg-Al-Zn alloy at elevated temperatures [J]. International Journal of Plasticity,2001,17:387-397.
    [65]Wei Y H, Wang Q D, Zhu Y P, Zhou H T, Ding W J, Chino Y, Mabuchi M. Superplasticity and grain boundary sliding in rolled AZ91 Magnesium alloy at high strain rates[J]. Materials Science and Engineering A,2003,360:107-115.
    [66]Yin D L, Zhang K F, Wang G F, Han W B. Superplasticity and cavitation in AZ31 Mg alloy at elevated temperatures[J]. Materials Letters,2005,59:1714-1718.
    [67]王亚男,陈树江,董希淳.位错理论及其应用[M].北京:冶金工业出版社,2007.
    [68]陈进化.位错基础[M].上海:上海科学技术出版社,1984.
    [69]Hirth J P, Lothe J. Theory of dislocations[M]. Second Edition,1982.
    [70]Hull D, Bacon D L. Introduction to dislocations[M]. Third Edition,1984.
    [71]Partridge P G, Gardiner R W. Reply to comments on "indices of planes and directions in hcp crystals"(1) [J]. Scripta Metallurgica,1967,1:139-142.
    [72]余永宁.金属学原理[M].北京:冶金工业出版社,2000.
    [73]王英华.晶体学导论[M].北京:清华大学出版社,1989.
    [74]Stephane G, Wolfgang B, Dirk S. Yielding of Magnesium:from singe crystal to polycrystalline aggregates[J]. International Journal of Plasticity,2007,23:1957-1978.
    [75]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [76]Robert C S. Magnesium and its alloys[M]. United States of American:John Wiley Sons Inc,1960.
    [77]Emley E F. Principles of Magnesium technology[M]. Oxford:Pergamon Press,1966.
    [78]Callister W D. Materials science and engineering:An introduction[M],6th Edition. New York:John Wiley Sons,2003.
    [79]Bhattacharya B. Plastic deformation behavior of pure Magnesium in the temperature range 4.2K-300K[D]. Ph.D thesis, Mcmaster University 2006.
    [80]Dunnett K S. Microstructural effects on the formability of rolled and extruded Magnesium sheet[D]. Master of Science thesis, Mcmaster University 2009.
    [81]Berghezan A, Fourdeux A, Amelinckx S. Transmission electron microscopy studies of dislocations and stacking faults in a hexagonal metal:Zinc[J]. Acta Metallurgica,1961,9: 464-490.
    [82]Yoshinaga H, Horiuchi R. On the nonbasal slip in Magnesium crystals [J]. Transactions of the Japan Institute of Metals,1964,5:14-21.
    [83]Agnew S R, Duygulu O. Plastic anisotropy and the role of non-basal slip in Magnesium alloy AZ31B[J]. International Journal of Plasticity,2005,21:1161-1193.
    [84]Yoo M H, Agnew S R, Morris J R, Ho K M. Non-basal slip systems in hcp metals and alloys:source mechanisms [J]. Materials Science and Engineering A,2001,319-321: 87-92.
    [85]Chin G, Mammel W. Competition among basal, prism, and pyramidal slip modes in hcp metals[J]. Metallurgical Transactions A,1970,1:357-361.
    [86]Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995, 1:1-157.
    [87]Barnett M R. Twinning and the ductility of Magnesium alloys:Part Ⅰ. "Tension" twins[J]. Materials Science and Engineering A,2007,464:1-7.
    [88]Barnett M R. Twinning and the ductility of Magnesium alloys:Part Ⅱ. "Contraction" twins[J]. Materials Science and Engineering A,2007,464:8-16.
    [89]Al-Samman T, Gottstein G. Influence of strain path change on the rolling behavior of twin roll cast Magnesium alloy[J]. Scripta Materialia,2008,59:760-763.
    [90]Nave M D, Barnett M R. Microstructures and textures of pure Magnesium deformed in plane-strain compression [J]. Scripta Materialia,2004,51:881-885.
    [91]Yang P, Cui F E, Bian J H. Relationships between deformation mechanisms and initial textures in polycrystalline Magnesium alloy AZ31[J]. Transactions of Nonferrous Metals Society of China,2003,13:280-284.
    [92]Yang P, Yu Y, Chen L, Mao W. Experimental determination and theoretical prediction of twin orientations in Magnesium alloy AZ31[J]. Scripta Materialia,2004,50:1163-1168.
    [93]Yang P, Mao W M, Ren X P, Tang Q B. Shear bands in Magnesium alloy AZ31[J]. Transactions of Nonferrous Metals Society of China,2004,14:851-857.
    [94]Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in Magnesium[J]. Acta Metallurgica,1957,5:717-727.
    [95]Reed-Hill R E, Robertson W D. The crystallographic characteristics of fracture in Magnesium single crystals[J]. Acta Metallurgica,1957,5:728-737.
    [96]Sittner P, Paidar V. Observation and interpretation of grain boundary compatibility effects in Fe-3.3wt%Si bicrystals[J]. Acta Metallurgica,1989,37:1717-1726.
    [97]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [98]钟家湘,郑秀华,刘颖.金属学教程[M].北京:北京理工大学出版社,1995.
    [99]陈振华,夏伟军.基镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23:130-131.
    [100]Mathis K, Chmelik F, Trojanova Z, Lukac P, Lendvai J. Investigation of some Magnesium alloys by use of the acoustic emission technique[J]. Materials Science and Engineering A, 2004,387-389:331-335.
    [101]Chen Y J, Wang Q D, Roven H J, Liu M P, Karlsen M, Yu Y D, Hjelen J. Network-shaped fine-grained microstructure and high ductility of Magnesium alloy fabricated by cyclic extrusion compression[J]. Scripta Materialia,2008,58:311-314.
    [102]Jiang J, Godfrey A, Liu W, Liu Q. Identification and analysis of twinning variants during compression of a Mg-Al-Zn alloy[J]. Scripta Materialia,2008,58:122-125.
    [103]Barnett M R, Keshavarz Z, Beer A G, Ma X. Non-schmid behaviour during secondary twinning in a polycrystalline Magnesium alloy[J]. Acta Materialia,2008,56:5-15.
    [104]Lilleodden E. Microcompression study of Mg (0001) single crystal[J]. Scripta Materialia, 2010,62:532-535.
    [105]Byer C M, Li B, Cao B Y, Ramesh K T. Microcompression of single crystal Magnesium[J]. Scripta Materialia,2010,62:536-539.
    [106]Yu Q, Shan Z W, Li J, Huang X X, Xiao L, Sun J, Ma E. Strong crystal size effect on deformation twinning[J]. Nature,2010,463:335-338.
    [107]Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Deformation and texture evolution in AZ31 Magnesium alloy during uniaxial loading[J]. Acta Materialia,2006,54:549-562.
    [108]Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg-6%Al-1%Zn alloy[J]. Materials Science and Engineering A,2004,379:258-263.
    [109]Al-Samman T, Gottstein G. Room temperature formability of a Magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms[J]. Materials Science and Engineering A,2008,488:406-414.
    [110]Choi S H, Shin E J, Seong B S. Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression[J]. Acta Materialia,2007,55: 4181-4192.
    [111]Yin D L, Wang J T, Liu J Q, Zhao X. On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy [J]. Journal of Alloys and Compounds,2009,478:789-795.
    [112]Jiang J, Godfrey A, Liu W, Liu Q. Microtexture evolution via deformation twinning and slip during compression of Magnesium alloy AZ31[J]. Materials Science and Engineering A,2008,483-484:576-579.
    [113]Yan H, Chen R S, Han E H. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Materials Science and Engineering A,2010,527:3317-3322.
    [114]Jiang L, Joans J J, Luo A A, Sachdev A K, Godet S. Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures[J]. Scripta Materialia,2006,54: 771-775.
    [115]Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Materialia,2007,55:3899-3910.
    [116]Wang S R, Cho J Y, Guo P Q. Deformation behavior and failure analysis of wrought Magnesium duringtwin rolling[J]. Journal of Engineering Materials and Technology,2012, 134:041002:1-5.
    [117]Jain A, Agnew S R. Modeling the temperature dependent effect of twinning on the behavior of Magnesium alloy AZ31B sheet[J]. Materials Science and Engineering A,2007, 462:29-36.
    [118]Al-Samman T, Li X, Chowdhury S G. Orientation dependent slip and twinning during compression and tension of strongly textured Magnesium AZ31 alloy[J]. Materials Science and Engineering A,2010,527:3450-3463.
    [119]Prasad Y V R K, Rao K P. Processing maps for hot deformation of rolled AZ31 Magnesium alloy plate:Anisotropy of hot workability[J]. Materials Science and Engineering A,2008,487:316-327.
    [120]Tucker M T, Horstemeyer M F, Gullett P M, El Kadiri H, Whittington W R. Anisotropic effects on the strain rate dependence of a wrought Magnesium alloy[J]. Scripta Materialia, 2009,60:182-185.
    [121]Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Liaw P K. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought Magnesium alloy ZK60A[J]. Acta Materialia,2008,56:688-695.
    [122]Li X, Yang P, Wang L N, Meng L, Cui F. Orientational analysis of static revrystallization at compression twins in a Magnesium alloy AZ31 [J]. Materials Science and Engineering A, 2009,517:160-169.
    [123]Jager A, Lukac P, Gartnerova V, Haloda J, Dopita M. Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming[J]. Materials Science and Engineering A,2006,432:20-25.
    [124]Perez-Prado M T, Ruano O A. Texture evolution during annealing of Magnesium AZ31 alloy[J]. Scripta Materialia,2002,46:149-155.
    [125]Perez-Prado M T, Ruano O A. Texture evolution during grain growth in annealed Magnesium AZ61 alloy[J]. Scripta Materialia,2003,48:59-64.
    [126]Yang X Y, Zhu Y K, Miura H, Sakai T. Static recrystallization behavior of hot-deformed Magnesium alloy AZ31 during isothermal annealing[J]. Transactions of Nonferrous Metals Society of China,2010,20:1269-1274.
    [127]Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31 Magnesium alloy[J]. Materials Science and Engineering A,2007,456:52-57.
    [128]Sitdikov O, Kaibyshev R. Dynamic recrystallization in pure Magnesium[J]. Materials Transactions,2001,42:1928-1937.
    [129]Jin Q L, Shim S Y, Lim S G. Correlation of microstructural evolution and formation of basal textere in a coarse grained Mg-Al alloy during hot rolling[J]. Scripta Materialia, 2006,55:843-846.
    [130]Al-Samman T, Gottstein G. Dynamic recrystallization during high temperature deformation of Magnesium[J]. Materials Science and Engineering A,2008,490:411-420.
    [131]Xu S W, Kamado S, Honma T. Recrystallization mechanism and the relationship between grain size and Zener-Hollomon parameter of Mg-Al-Zn-Ca alloys during hot compression[J]. Scripta Materialia,2010,63:293-296.
    [132]del Valle J A, Ruano O A. Influence of texture on dynamic recrystallization and deformation mechanisms in rolled or ECAPed AZ31 Magnesium alloy[J]. Materials Science and Engineering A,2008,487:473-480.
    [133]Zhang Y, Zeng X Q, Lu C, Ding W J. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy[J]. Materials Science and Engineering A,2006,428:91-97.
    [134]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of Magnesium AZ31[J]. Journal of Light Metals,2001,1:167-177.
    [135]Yang X Y, Ji Z S, Miura H, Sakai T. Dynamic recrystallization and texture development during hot deformation of Magnesium alloy AZ31[J]. Transactions of Nonferrous Metals Society of China,2009,19:55-60.
    [136]Wang Q D, Li D Q, Blandin J J, Suery M, Donnadieu P, Ding W J. Microstructure and creep behavior of the extruded Mg-4Y-4Sm-0.5Zr alloy[J]. Materials Science and Engineering A,2009,516:189-192.
    [137]Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in Magnesium alloys[J]. Scripta Materialia,2003,48:1009-1015.
    [138]Zhang M X, Kelly P M. Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy[J]. Scripta Materialia,2003,48:379-384.
    [139]Matsuda M, Li S, Kawamura Y, Ikuhara Y, Nishida M. Interaction between long period stacking order phase and deformation twin on rapidly solidified Mg97Zn1Y2 alloy[J]. Materials Science and Engineering A,2004,386:447-452.
    [140]Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Effects of rare earth additions on microstructure and texture development of Magnesium alloy sheets[J]. Scripta Materialia,2010,63:725-730.
    [141]Ball E A, Prangnell P B. Tensile-compressive yield asymmetries in high strength wrought Magnesium alloys[J]. Scripta Metallurgica et Materialia,1994,31:111-116.
    [142]Mackenzie L W F, Davis B, Humphreys F J, Lorimer G W. The deformation recrystallisation and texture of three Magnesium alloy extrusions[J]. Materials Science and Technology,2007,23:1173-1180.
    [143]Senn J W, Agnew S R. Texture randomization of Magnesium alloys containing rare earth elements[C]. Proceedings of Magnesium Technology 2008. New Orleans, Louisiana, The Minerals, Metals, and Materials Society, USA.2008,153-158.
    [144]Mackenzie L W F, Pekguleryuz M O. The recrystallization and texture of Magnesium-zinc-cerium alloys[J]. Scripta Materialia,2008,59:665-668.
    [145]Cottam R, Robson J, Lorimer G, Davis B. Dynamic recrystallization of Mg and Mg-Y alloys:Crystallographic texture development[J]. Materials Science and Engineering A, 2008,485:375-382.
    [146]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia, 2001,49:4277-4289.
    [147]Alder B J, Wainwright T E. Studies in molecular dynamics. Ⅰ. General method [J]. Journal of Chemical Physics,1959,31:459-466.
    [148]Alder B J, Wainwright T E. Studies in molecular dynamics. Ⅱ. Behavior of a small number of elastic spheres [J]. Journal of Chemical Physics, 1960,33:1439-1451.
    [149]Daw M S, Foiles S M, Baskes M I. The embedded-atom method:a review of theory and applications[J]. Materials Science Reports,1993,9:251-310.
    [150]Allen M P, Tildesley D J. Computer simulation of Liquids[M]. Oxford University Press, New York,1987.
    [151]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method [J]. Journal of Applied Physics,1981,52:7182-7190.
    [152]Hoover W G. Molecular Dynamics, Lecture Notes in Physics, Volume 258[M]. Springer-Verlag, Berlin,1986.
    [153]Sankey O F, Niklewski D J. Ab initio multicenter tight-binding model for molecular dynamics simulations and other applications in covalent systems [J]. Physical Review B, 1989,40:3979-3995.
    [154]Schonfelder B, Wolf D, Phillpot S R, Furtkamp M. Molecular-dynamics method for the simulation of grain-boundary migration [J]. Interface Science,1997,5:245-262.
    [155]Doyama M, Kogure Y. Embedded atom potentials in fcc and bcc metals [J]. Computational Materials Science,1999,14:80-83.
    [156]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展,2003,33:65-73.
    [157]Verlet L. Computer "Experiments" on classical fluids. Ⅰ. Thermodynamical properties of Lennard-Jones molecules[J]. Physical Review,1967,159:98-103.
    [158]Verlet L. Computer "Experiments" on classical fluids. Ⅱ. Equilibrium correlation functions[J]. Physical Review,1968,165:201-214.
    [159]Hockney R W. The potential calculation and some applications[J]. Methods of Computational Physics,1969,9:136-211.
    [160]Ploeg van der P, Berendsen H J C. Molecular dynaics simulation of a bilayer embrane[J]. The Journal of chemical Physics,1982,76:3271-3276.
    [161]Beeman D. Some multistep methods for use in molecular dynamics calculations[J]. Journal of Computational Physics,1976,20:130-139.
    [162]Gear C W. Numerical initial value problems in ordinary differential equations[M]. Englewood Cliffs, NJ, Prentice-Hall,1971.
    [163]Rahman A. Correlations in the motion of atoms in liquid Argon[J]. Physical Review A, 1964,136:405-411.
    [164]Hoffmann K H, Schreiber M. Computational physics[M]. Berlin Heidelberg, Springer Verlag,1996.
    [165]Berendsen H J C, Postma J P M, Gunsteren van W F, Dinola A, Haak J R. Molecular dynaics with coupling to an external bath[J]. The Journal of chemical Physics,1984,81: 3684-3690.
    [166]Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of chemical Physics,1984,81:511-519.
    [167]Hoover W G. Canonical dynamics:Equilibrium phase-space distributions[J]. Physical Review A,1985,31:1695-1697.
    [168]Nose S. A molecular dynamics for simulations in the canonical ensemble[J]. Molecular Physics,1984,52:255-259.
    [169]Ackland G J, Vitek V. Many-body potentials and atom-scale relaxations in noble-metal alloys [J]. Physical Review B,1990,41:10324-10333.
    [170]Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Physical Review B,1986,33:7983-7991.
    [171]Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters,1983,50:1285-1288.
    [172]Daw M S, Baskes M I. Embedded atom method:derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B,1984,29:6443-6453.
    [173]Mavuleti K K. Molecular dynamics simulation using the modified Embedded Atom Method[D]. Master of Science thesis, Oklahoma State University,2000.
    [174]Liu X Y, Adams J B, Ercolessi Fm, Moriarty J A. EAM potential for Magnesium from quantum mechanical forces[J]. Modelling and Simulation in Materials Science and Engineering,1996,4:293-303.
    [175]Roberts C S. Magnesium and its alloys[M]. John Wiley & Sons, New York,1960.
    [176]Feng A H, Ma Z Y. Microstructural evolution of cast Ma-Al-Zn during friction stir processing and subsequent aging[J]. Acta Materialia,2009,57:4248-4260.
    [177]Homayonifar M, Mosler J. Characterization of micro-mechanical deformation systems of Magnesium based on energy minimization[J]. Technische Mechanik,2010,30:146-156.
    [178]Wang J, Beyerlein I J, Hirth J P, Tome C N. Twinning dislocation on {1011} and {1013} planes in hcp crystals[J]. Acta Materialia,2011,59:3990-4001.
    [179]Bakarian P W, Mathewson C H. Slip and twinning in Magnesium single crystals at elevated temperatures[J]. Transactions of the Metallurgical Society of AIME,1943,152: 226-253.
    [180]Gehrmann R, Frommert M M, Gottstein G. Texture effects on plastic deformation of Magnesium[J]. Materials Science and Engineering A,2005,395:338-349.
    [181]Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Influence of {1012} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Materials Science and Engineering A, 2007,445:302-309.
    [182]Graff S, Brocks W, Steglich D. Yielding of Magnesium:from single crystal to polycrystalline aggregates[J]. International Journal of Plasticity,2007,23:1957-1978.
    [183]Lilleodden E. Micro-compression study of Mg (0001) single crystal[J]. Scripta Materialia, 2010,62:532-535.
    [184]Myshlyaev M M, McQueen H J, Mwembela A, Konopleva E. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy[J]. Materials Science and Engineering A,2002,337:121-133.
    [185]Mathis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungar T, Lukac P. The evolution of non-basal dislocations as a function of deformation temperature in pure Magnesium determined by X-ray[J]. Acta Materialia,2004,52:2889-2894.
    [186]Serra A, Bacon D J, Pond R C. Comment on "Atomic shuffling dominated mechanism for deformation twinning in Magnesium"[J]. Physical Review Letters,2010,104:029603.
    [187]Li B, Ma E. Li and Ma reply[J]. Physical Review Letters,2010,104:029604.
    [188]Nogaret T, Curtin W A, Yasi J A, Hector Jr L G, Trinkele D R. Atomistic study of edge and screw dislocation in Magnesium[J]. Acta Materialia,2010,58:4332-4343.
    [189]Tang T, Kim S, Horstemeyer M F, Wang P. Atomistic modeling of crack growth in Magnesium single crystal[J]. Scripta Materialia,2011,78:191-201.
    [190]Tang T, Kim S, Jordon J B, Horstemeyer M F, Wang P. Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in Magnesium single crystals[J]. Computational Materials Science,2011,50:2977-2986.
    [191]Zeng X G, Xu S S, Chen H Y, Li J L. Molecular dynamics simulation on plasticity deformation mechanism and filure near void for Magnesium alloy [J]. Transactions of Nonferrous Metals Society of China,2010,20:519-522.
    [192]http://xmd.sourceforge.net/.
    [193]Guo Y F, Tang X Z, Wang Y S, Wang Z D, Yip S. Compression deformation mechanisms at nonoscale in Magnesium single crystal[J]. Acta Metallurgica Sinica (English Letters), 2013,26:75-84.
    [194]Faken D, Jonsson H. Systematic analysis of local atomic structure combined with 3D computer graphics [J]. Computational Materials Science,1994,2:279-286.
    [195]Tang T, Kim S, Horstemeyer M F, Wang P. Atomistic modeling of crack growth in Magnesium single crystal[J]. Scripta Materialia,2011,78:191-201.
    [196]Tang T, Kim S, Jordon J B, Horstemeyer M F, Wang P. Atomistic simulations of fatigue crack growth and the associated fatigue crack tip stress evolution in Magnesium single crystals[J]. Computational Materials Science,2011,50:2977-2986.
    [197]Tang T, Kim S, Horstemeyer M F. Molecular dynamics simulations of void growth and coalescence in single crystal Magnesium[J]. Acta Materialia,2010,58:4742-4759.
    [198]Serra A, Bacon D J. A new model for {1012} twin growth in hcp metals [J]. Philosophical Magazine A,1996,73:333-343.
    [199]Serra A, Bacon D J, Pond R C. Dislocations in interfaces in hcp metals-Ⅰ. Defects formed by absorption of crystal dislocations[J]. Acta Materialia,1999,47:1425-1439.
    [200]Wang J, Hirth J P, Tome C N. (1012) twinning nucleation mechanisms in hcp crystals[J]. Acta Materialia,2009,57:5521-5530.
    [201]Li B, Ma E. Atomic shuffling dominated mechanism for deformation twinning in Magnesium[J]. Physical Review Letters,2009,103:035503.
    [202]Pond R C, Serra A, Bacon D J. Dislocations in interfaces in hcp metals-Ⅱ. Mechanisms of defect mobility under stress[J]. Acta Materialia,1999,47:1441-1453.
    [203]Serra A, Bacon D J. Modelling the motion of {1122} twinning dislocations in the hcp metals[J]. Materials Science and Engineering A,2005,400:496-498.
    [204]Li B, Ma E. Zonal dislocations mediating {1011}<1012> twinning in Magnesium[J]. Acta Materialia,2009,57:1734-1743.
    [205]Ando S J, Takashima K, Tonda H. Molecular dynamics simulation of edge dislocation core structure in hcp crystal [J]. Materials Transactions,1996,37:319-322.
    [206]Mendelson S. Zonal dislocations and twin lamellae in hcp metals[J]. Materials Science and Engineering,1969,4:231-242.